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Introduction

I began writing these notes during the last weeks of year 2002, collecting some
work I had already written in my studentship. This is intended to be my
personal approach to Algebraic Geometry, in particular to Hartshorne (1977),
and originally it was meant to be a collection of solved exercises. But as my
understanding grew stronger I began to add comments of any sort, so as to
reach the level of exposition you will find. I am very pleased to hear that
there is somebody out there who thinks those comments are interesting, and I
really wish them to be of any help. To those students approaching the subject,
wishing to learn something about the abstract concepts that arise in Algebraic
Geometry and finding themselves lost into a sea of difficult to grasp material,
I have to say that unfortunately there is no easy way, they will have to work a
lot and pretty much alone.

A word of caution: don’t take these notes for granted! I am a lone student,
I’m writing as I’m learning the subject and I’m not a good nor an experienced
mathematician. Chances are that some of my proofs are wrong, and be ad-
vised that also some of the statements are mine and may be wrong. For this
reason when I state a result I always try to give a reference for it, in particular
most of the times I will deal with statements that are actually exercises in some
book and the reader may want to check their proofs carefully if not to try to
work them out on his own.

We wish to learn the formalism of schemes, therefore throughout these
notes our main reference will be Hartshorne (1977) which is the most cele-
brated book where to learn the machinery. The reader will be assumed famil-
iar with the notations and definitions in there, however there are quite a few
other books one can look at, such as Eisenbud and Harris (2000), Shafarevich
(1994b) or Mumford (1999). The original work by Grothendieck is also still
a good reference, although very abstract, you can obtain all the Éleménts de
géométrie algébrique from <http://www.numdam.org/> (rigorously in French),
and many other articles, included the Séminaire de géométrie algébrique from
<http://www.grothendieck-circle.org/>. Unfortunately the concepts we are go-
ing to introduce cannot make any sense if you haven’t at least a basic knowl-
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edge of Commutative Algebra. I used to study this subject in Atiyah and
Macdonald (1969) and this is the main reference for these notes, but you may
want to read Eisenbud (1995) or the classic textbooks by Matsumura (1989),
Zariski and Samuel (1958, 1960), or Bourbaki (1998). The word “ring” will
always mean “commutative ring with unit” and a morphism of rings will be
always assumed to respect this structure, that is will send the unit element to
the unit element.

As Eisenbud and Harris say in the introduction to their book, “the basic
definitions of scheme theory appear as natural and necessary ways of dealing
with a range of ordinary geometric phenomena, and the constructions in the
theory take on an intuitive geometric content which makes them much easier
to learn and work with.” For this reason, in line with the authors, I think there
is no point in learning all the machinery first, and then work out the geometry
as a consequence of it. But I still think that any student has to think a little
through the basic definitions before going straight to geometry, and in this re-
spect I disagree with Eisenbud and Harris. Chapter one is my attempt to com-
promise, with all the basic abstract concepts introduced in a systematic way
before to arrive at the very definition of algebraic variety. The reader famil-
iar with the second chapter of Hartshorne (1977) will surely recognise where
the discussion is going, and will find some useful comments helping him to
familiarise with abstract definitions otherwise totally detached by the geomet-
ric content they are supposed to carry over. In fact, this approach is essentially
different from any other I am aware of. Classic references as Mumford (1999),
or Shafarevich (1994a,b), develop the theory quite extensively before getting
into schemes, while more recent accounts such as Liu (2002) or Ueno (1999,
2001, 2003) concentrate more on the abstract machinery leaving the geometry
slightly aside. Finally in Iitaka (1982) commutative algebra is developed to-
gether with algebraic geometry, which makes it the most self-contained book.

Once again let me say that these notes are not to be trusted that much,
but if you are going to read them for whatever reason then let me ask you
something in return. If you find any mistake, misprint or anything wrong just
let me know, you can contact me by e-mail on giudice@mat.unimi.it and you can
find out something more about me on my homepage at the University of Bath
<http://www.maths.bath.ac.uk/∼mapmlg/>, any comments or suggestions are
also more than welcome.

Marco Lo Giudice
University Of Bath

November 2004
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Chapter 1

Affine Varieties

Our goal in this chapter is to define affine varieties from an abstract point of
view. The main effort required to the reader is getting accustomed to switch-
ing frequently between algebra and geometry, for what we will do is giving
geometric names to purely algebraic objects. We will follow the guidelines of
§I.1 in Eisenbud and Harris (2000), but we will try to keep as close as possible
to standard introductions such as Chapter II in Reid (1988). In fact the author
has been highly inspired by Milne (2005), where a wonderfully clear account
of the basic material is accompanied with a precise description of some of the
abstract concepts.

It must be said that originally this was simply a collection of solved exer-
cises from Atiyah and Macdonald (1969), therefore some background knowl-
edge of commutative algebra is required throughout (nothing more than a
standard undergraduate course, see for example Reid, 1995). The reader will
also be assumed familiar with sheaf theory, at least with what Hartshorne
(1977) reads about it, but occasionally we may refer to Tennison (1975) for
more advanced material.

1.1 The Spectrum of a Ring

1.1.1 Zeros of an Ideal The main object of study in Algebraic Geometry are
systems of algebraic equations and their sets of solutions. Let k be a field and
let R be the polynomial ring k[x1, . . . , xn], a system of algebraic equations S is a
collection of equations

S =





F1(x1, . . . , xn) = 0
. . .
Fr(x1, . . . , xn) = 0

7



Marco Lo Giudice 1. Affine Varieties

where Fi is a polynomial in R for every i, and a solution of S in k is an n-
tuple (λ1, . . . , λn) ∈ kn satisfying every equation. If we denote by a the ideal
generated by F1, . . . , Fr, then solutions of S are in one-to-one correspondence
with n-tuples in kn annihilating any polynomial in a, in particular any other
set of generators for a will define a system of algebraic equations with exactly
the same set of solutions as S. We encode this information in our language by
saying that (λ1, . . . , λn) is a zero of a.

Proposition. Let k be any field. There is a natural injective correspondence from
n-tuples in kn to maximal ideals of R, given by

λ = (λ1, . . . , λn) 7→ mλ = (x1 − λ1, . . . , xn − λn)

If a ⊆ R is any ideal, then λ is a zero of a if and only if the maximal ideal mλ contains
a.

Proof. The ideal mλ is maximal because it is the kernel of the surjective ho-
momorphism ϕ : k[x1, . . . , xn] → k defined by evaluation in λ. Indeed it is
enough to show that the kernel is contained in mλ: we can apply the division
algorithm to any polynomial F ∈ ker ϕ, to obtain F = G + α where G ∈ mλ

and α is a constant. The reader can learn more about the division algorithm in
Cox, Little, and O’Shea (1997, §2.3).

For any subset Σ of kn define ı(Σ) as the ideal consisting of those polyno-
mials vanishing at every n-tuple in Σ, while for any ideal a of R define v(a)
to be the subset of kn consisting of the zeros of a. In this way for any n-tuple
λ = (λ1, . . . , λn) in kn we have mλ = ı(λ). Now we conclude that λ 7→ mλ is
injective since v

(
ı(λ)

)
consists of the n-tuple λ only.

An ideal of R does not always have zeros, the obvious example is the ideal
(x2 + 1) in R[ x ], but it does when the field k is algebraically closed. This is the
famous Hilbert’s Nullstellensatz, which can be found in the literature in many
different guises, from the classic statement in Reid (1988, §3.10) to the very
abstract one in Eisenbud (1995, Theorem 4.19).

Hilbert’s Nullstellensatz. Let k be any field. The following statements are equiva-
lent:

i) k is algebraically closed;

ii) For any n ∈ N+, every proper ideal a ⊂ k[x1, . . . , xn] has a zero in kn;

iii) For any n ∈ N+, the association λ 7→ mλ is a bijection between n-tuples in kn

and maximal ideals of k[x1, . . . , xn].
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Proof. The only difficult part is how to obtain ii) from i), the rest is almost
trivial. Indeed assuming ii) any maximal ideal m ⊆ k[x1, . . . , xn] will have
a zero λ and therefore m will be contained in mλ. From iii) to show i) we
have to prove that any polynomial F ∈ k[x] has a root in k, and this follows
immediately by considering any maximal ideal that contains (F).

We will not give the complete proof in that we are going to use the follow-
ing purely algebraic result, known as Weak Nullstellensatz in the formulation
of Atiyah and Macdonald (1969, Corollary 7.10) or as Zariski Lemma in the for-
mulation of Milne (2005, Lemma 2.7)

Let k be algebraically closed and m be a maximal ideal in R, then
the quotient k[x1, . . . , xn]/m is isomorphic to k.

With this result understood we can easily derive ii) from i). First, since every
proper ideal is contained in a maximal ideal, it is enough to show that every
maximal ideal m has a zero in kn, then the canonical projection defines a sur-
jective homomorphism ϕ : k[x1, . . . , xn] → k whose kernel is given both by m

and
(

x1 − ϕ(x1), . . . , xn − ϕ(xn)
)
.

1.1.2 Affine Space In our way to abstraction we have so far replaced the
system of algebraic equations S with the ideal a and we have identified the
set of solutions of S with a subset of the maximal ideals of R containing a.
In order to go a step further recall that there is a one-to-one correspondence
between (maximal) ideals of R/a and (maximal) ideals of R containing a, so
that in fact we have identified the set of solutions of S with a subset of the
maximal ideals of R/a. Thus we say goodbye to n-tuples and we work directly
inside the quotient ring, of which we now consider a more general set of ideals
than the maximal ones only.

Definition. Let A be any ring, the prime spectrum of A is the set of all its prime
ideals and is denoted by Spec A; thus a point of Spec A is a prime ideal p ⊆ A.
We will adopt the usual convention that A itself is not a prime ideal, so that
Spec{0} = ∅. Of course, the zero ideal (0) is an element of Spec A if and only
if A is a domain.

We define affine n-space to be the spectrum of the ring of polynomials R,
that is

An
k := Spec k[x1, . . . , xn]

In view of the Proposition above An
k contains kn in a natural way, and by the

Nullstellensatz if the field k is algebraically closed this inclusion is precisely
given by all the maximal ideals in R. We will refer to “the point (λ1, . . . , λn)”
to mean the point mλ, but of course not every point in affine space corresponds
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to some n-tuple, for instance the zero ideal. This oddity is one of the reasons
why schemes are not so popular among mathematicians, and can be quite
frustrating for the beginner.

1.1.3 Zariski Topology Let A be a ring and let X be its spectrum Spec A.
For each subset E of A, let V(E) denote the set of all prime ideals of A which
contain E, in other words define

V(E) = {p ∈ X | E ⊆ p}
Note that this association is inclusion-reversing, that is whenever E′ ⊆ E we
have the opposite inclusion V(E′) ⊇ V(E). The following result shows that
the sets V(E) satisfy the axioms for the closed sets in a topological space. The
resulting topology is called the Zariski topology.

Proposition (Exercise I.15 in Atiyah and Macdonald, 1969).

i) if a is the ideal generated by E, then V(E) = V(a) = V(
√

a)

ii) V(0) = X, V(1) = ∅

iii) if (Ei)i∈I is any family of subsets of A, then V (
⋃

Ei) =
⋂V (Ei)

iv) V(a∩ b) = V(ab) = V(a) ∪ V(b) for any ideals a, b of A.

Proof. To prove these statements, at least the first three, it is in fact enough to
make some remarks: a prime ideal containing the set E also contains the ideals
a and

√
a. Every prime ideal contains the zero element but doesn’t contain the

unit element (that’s because we are assuming that prime ideals are proper).
An ideal contains a union of sets if and only if it contains every set of the
family. We then prove part iv) only.

Since ab ⊆ a ∩ b we have V(a ∩ b) ⊆ V(ab). Conversely x2 ∈ ab for every
x ∈ a ∩ b so if a prime ideal contains ab it contains the intersection a ∩ b also.
Now we have the obvious inclusion V(a) ∪ V(b) ⊆ V(a ∩ b), while the other
follows from Proposition 1.11 in Atiyah and Macdonald (1969): if a prime ideal
contains a finite intersection of ideals then it contains one of the ideals.

Although we have defined a closed set V(E) for any subset E of the ring
A, it is clear by the Proposition that it is enough to consider ideals a ⊆ A. For
this reason usually the properties above are stated as follows:

iii) If a and b are two ideals of A, then V(ab) = V(a) ∪ V(b).

iv) If {ai} is any set of ideals of A, then V (
∑ ai

)
=

⋂V(ai).
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It is useful at this stage to think a little through this correspondence be-
tween ideals of A and closed sets of X. The following Lemma may help our
understanding, showing that in fact we have a one-to-one correspondence be-
tween radical ideals and closed sets of X.

Lemma (II.1.6 in Liu, 2002). Let A be a ring and let a, b be two ideals of A. Then:

(a) The radical
√

a equals the intersection of the ideals p ∈ V(a).

(b) V(a) ⊆ V(b) if and only if b ⊆ √
a.

In particular V(b) = Spec A if and only if b ⊆ Nil(A), where Nil(A) denotes the
nilradical of the ring A, the set of all nilpotent elements.

Examples. The correspondence v of §1.1.1 is given by V on affine space An
k ,

more precisely for every ideal a ⊆ R the set v(a) of the zeros of a is given by
the maximal ideals of the form mλ contained in V(a).

If k is a field, then Spec k is the point-set topological space, its unique ele-
ment is given by the zero ideal in k.

Let A be the local ring k[ t ](t), obtained from k[ t ] by localising on the max-
imal ideal ( t ). The set Spec A consists of two points only, the ideals 0 and ( t ),
and the topology is given by ∅ ⊆ { 0 } ⊆ Spec A.

1.1.4 A Base for the Zariski Topology “An open set in the Zariski topology
is simply the complement of one of the sets V(E). The open sets corresponding
to sets E with just one element will play a special role, essentially because they
are again spectra of rings (see §1.4.5); for this reason they get a special name
and notation. If α ∈ A, we define the distinguished (or basic) open subset D(α)
of X associated with α to be the complement of V(α).”

taken from Eisenbud and Harris (2000, §I.1.2)
The distinguished open sets form a base for the Zariski topology in the

sense that any open set is a union of distinguished ones:

U = X \ V(E) = X \
(

⋂

α∈E
V(α)

)
=

⋃

α∈E
D(α)

Proposition (Exercise I.17 in Atiyah and Macdonald, 1969). For each α ∈ A, let
D(α) denote the distinguished open subset of X = Spec A associated with α. Then
for any α, β ∈ A we have the following:

i) D(α) ∩ D(β) = D(αβ)

ii) D(α) = ∅⇔ α is nilpotent
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iii) D(α) = X ⇔ α is a unit

iv) D(α) ⊆ D(β) ⇔ α ∈ √
(β)

v) X is quasi-compact

vi) More generally, each D(α) is quasi-compact

vii) An open subset of X is quasi-compact if and only if it is a finite union of sets
D(α)

Proof. Again it is enough in most cases to make some remarks: a prime ideal
does not contain two elements α and β if and only if it does not contain their
product αβ. An element α is contained in every prime ideal if and only if it
is contained in the nilradical of A, the set of all nilpotent elements (Atiyah
and Macdonald, 1969, Proposition 1.8). An element α is not contained in any
prime ideal if and only if it is a unit (that’s because otherwise the ideal (α) was
contained in a maximal ideal). Statement iv) is a reformulation of the previous
Lemma, while vii) follows immediately from vi).

To prove v) it is enough to consider a covering of X by basic open sets.
Indeed if {Uj} is an open covering, we can write each Uj as a union of basic
sets, then find a finite subcover consisting of basic sets. Each one of these was
contained in some Uj, so we find a finite subcover of the given covering. Now
note the following

Spec A =
⋃

i∈I

D(αi) ⇐⇒ ({αi | i ∈ I}) = A

where
({αi | i ∈ I}) is the ideal generated by the elements αi. Indeed we have

⋃

i∈I

D(αi) = X \ V ({αi | i ∈ I})

So that the sets D(αi) cover X if and only if the unit element of A can be written
as a finite combination of the elements αi. But then only this finite number is
enough to cover X.

The same argument applies to each set D(α), for if D(α) =
⋃

D(βi) we
have V(α) = V(a) where a is the ideal generated by the set of elements {βi},
thus we can say α ∈ √a and find an expression of a power of α in terms of a
finite combination of the βi. To conclude note that V(α) = V(αn) for all n.

12



1.1 The Spectrum of a Ring Marco Lo Giudice

1.1.5 Closed Points A point x of a topological space is said to be closed if the
set {x} is closed. In the next result we show that the closed points of Spec A
are given by the maximal ideals in the ring A and we call this set the maximal
spectrum of A, denoted max-Spec A.

Proposition (Exercise I.18 in Atiyah and Macdonald, 1969).

i) The set {p} is closed in Spec A ⇔ p is a maximal ideal

ii) The closure {p} is given by V(p)

iii) q ∈ {p} ⇔ p ⊆ q

iv) Spec A is a T0-space (this means that if x, y are distinct points of X, then ei-
ther there is a neighborhood of x which does not contain y, or else there is a
neighborhood of y which does not contain x)

Proof. First observe that V(E) is a closed set that contains the point p if and
only if E ⊆ p. Hence we have

{p} =
⋂

E⊆p

V(E) = V
(

⋃

E⊆p

E

)
= V(p)

This proves the first three statements.
Let p and q be different points of X, we then have p 6= q as ideals, but we

still can have one contained in the other. Without loss of generality we can
assume q 6⊆ p and find an element α ∈ q such that α 6∈ p. Then D(α) is the
open neighborhood of p we were looking for. Note however that if p ⊆ q every
closed set that contains p is given by V(a) for some ideal a ⊆ p and therefore
it also contains q, that is every neighborhood of q does contain p also.

Examples. The space Spec Z contains a set of closed points in one-to-one cor-
respondence with prime numbers and a non-closed point η given by the zero-
ideal in Z. Observe that this point is dense in Spec Z that is the closure of the
set {η} is the whole space.

Affine space An
k contains analogously a dense one-point set, its unique

element is given by the zero ideal of R.

1.1.6 Algebraic Sets Let S be a system of algebraic equations and let a be
the ideal in R given by the polynomials defining the equations in S. The set of
solutions of S is, strictly speaking, given by the zeros of a, which are particular
closed points inside the closed subset V(a) of An

k , or all the closed points when
k is algebraically closed.
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Definition. An algebraic set is a closed subset of An
k , in other words it is given

by V(a) for some ideal a ⊆ k[x1, . . . , xn]. It consists of all the prime ideals in R
that contain a.

Following Eisenbud (1995) we will call affine k-algebra any finitely gener-
ated algebra over the field k (not necessarily algebraically closed), when it will
not be necessary to refer explicitly to k, we will say simply affine ring. We will
soon see to what extent affine rings and affine varieties are in fact different
names for the same object, here we are interested in pointing out that an alge-
braic set is naturally given by the spectrum of an affine ring, but first we need
the following result.

Lemma. Let A be a ring and let X = Spec A. A closed subset V = V(a) of X is
naturally homeomorphic to Spec A/a.

Proof. It is well known that for any ring A there is a one-to-one correspon-
dence between ideals of A/a and ideals of A that contain a. Such a correspon-
dence defines the homeomorphism of the statement as follows. Every closed
subset of V is in fact a closed subset in X, therefore it is given by V(b) for some
ideal b of A; thus we have V(b) ⊆ V(a) and we have seen in §1.1.3 that this is
equivalent to say a ⊆ √

b.

The spectrum of an affine ring R/a is therefore naturally homeomorphic
to the algebraic set V = V(a) in An

k , note however that the same algebraic set
can be regarded as the spectrum of a ring in many different ways, namely as
many as the ideals b such that

√
b =

√
a. For this reason we sometimes denote

I(V) the unique radical ideal corresponding to V.

1.2 Topological Properties

We are going to examine more closely the topology of an algebraic set, but first
let us recall what we already know about it. An algebraic set is the spectrum
of an affine ring A, and as such it is always quasi-compact and it always sat-
isfies the T0 separation axiom. Further we have a one-to-one correspondence
between radical ideals in A and closed subsets of Spec A, and we know in gen-
eral how a base for the Zariski topology looks like. We proceed now analysing
some specific topological properties related to specific properties of the ring,
the beginner will face some difficulty in realising how far the Zariski topology
is from the usual Euclidean topology.
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1.2.1 Irreducible Spaces A non-empty topological space X is irreducible if
it cannot be expressed as the union X = X1 ∪ X2 of two proper subsets, each
one of which is closed in X. The empty set is not considered to be irreducible.

Lemma. For a non-empty topological space X, the following conditions are equiva-
lent

i) X is irreducible;

ii) Every non-empty open set is dense in X;

iii) Every pair of non-empty open sets in X intersect;

iv) if X = C1 ∪ C2 where Ci is a closed subset of X then Ci = X for some i = 1, 2.

Proof. Assume X is irreducible and let U ⊆ X be a non-empty and non total
open subset, write X = U ∪ (X \U); if we assume U 6= X we have a decompo-
sition of X into two distinct and proper closed subsets. But this is not possible
since X is irreducible, so that ii) holds. Let now U, V ⊆ X be non-empty open
sets; if the intersection U ∩ V was empty then U would be contained in the
proper closed set X \ V and hence U couldn’t be the whole of X. But assum-
ing ii) this is not possible, hence ii) implies iii). To show that iii) implies iv)
let X = C1 ∪ C2 where Ci is a closed subset, and let Ui be the complement of
Ci. Note that U1 ∩U2 is the complement of C1 ∪ C2 and hence is empty. By iii)
this is only possible if one of the two open sets is empty, that is if one of the
two closed sets is the whole space. Finally iv) implies i) by definition.

Example (Points are the only irreducible subsets of a Hausdorff space). In a
Hausdorff space X points are in particular closed and therefore irreducible,
conversely let Y be any irreducible subset of X and assume it contains at least
two points P1 and P2. Since X is a Hausdorff space there exist two open sets
U1 and U2 with Pi ∈ Ui and such that U1 ∩U2 = ∅. We have

(U1 ∩Y) ∩ (U2 ∩Y) = ∅

note that Ui ∩ Y is not empty since it contains Pi, and is open in the induced
topology on Y. Taking complements we obtain

(
Y \ (U1 ∩Y

) ∪ (
Y \ (U2 ∩Y)

)
= Y

which is a decomposition of Y into proper closed subsets, contradicting Y is
irreducible.

Proposition (Exercise I.19 in Atiyah and Macdonald, 1969). Let A be a ring.
Then Spec A is irreducible if and only if the nilradical of A is a prime ideal.
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Proof. In §1.1.4 we have seen that D(α) ∩ D(β) = D(αβ) and also

D(α) ∩ D(β) = ∅ ⇐⇒ αβ ∈ Nil(A)

where Nil(A) denotes the nilradical of the ring A. Hence if Nil(A) is prime
every pair of non-empty distinguished open sets in Spec A intersect. Con-
versely let αβ ∈ Nil(A) then D(α) ∩ D(β) = ∅, but we are assuming Spec A
is irreducible, then one of the two open sets is empty, and this is equivalent to
say that one between α and β is an element of Nil(A).

Corollary. Let A be a ring and a an ideal. Then the closed subset of Spec A defined
by a is irreducible if and only if the radical of a is prime.

Proof. Recall that the closed subset V(a) is homeomorphic to Spec A/a (see
§1.1.6). Now apply the Proposition, knowing that the nilradical of A/a corre-
sponds to

√
a.

Remark (Points and Irreducible Subsets). Let A be a ring and X = Spec A its
spectrum, an interesting way of rephrasing the above Corollary is the follow-
ing. A closed subset V of X is irreducible if and only if it is the closure {p} of
a uniquely determined point p.
Example. Let k be a field and R be the polynomial ring k[x1, . . . , xn]. Since R is
a domain, affine space An

k is irreducible

Proposition (Exercise I.1.6 in Hartshorne, 1977). Any non-empty open subset of
an irreducible topological space is dense and irreducible. If Y is a subset of a topolog-
ical space X, which is irreducible in its induced topology, then the closure Y is also
irreducible.

Proof. Let U ⊆ X be a non-empty open subset. We have already seen U is
dense, to show that U is irreducible suppose it isn’t and write U = C1 ∪ C2
where Ci is closed in U, non-empty and non total; then Ai = U \ Ci is open
both in U and X. We now obtain

(X \ A1) ∪ (X \ A2) = X \ (A1 ∩ A2) = X \ (
U \ (C1 ∪ C2)

)
= X \∅ = X

where X \ Ai is a non total and non-empty closed subset of X. This is a con-
tradiction since X is irreducible.

Let now Y be irreducible in its induced topology and write Y = Y1 ∪ Y2
where Yi is closed both in Y and X. We have

Y = Y ∩Y = (Y1 ∪Y2) ∩Y = (Y1 ∩Y) ∪ (Y2 ∩Y)

Since Y is irreducible there exists i = 1, 2 such that Yi ∩ Y = Y, so that Yi ⊇ Y.
Hence Yi = Y and Y is irreducible.
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1.2.2 Linear Subspaces – lines and planes Let k be a field and R be the
polynomial ring k[x1, . . . , xn]. The first geometric objects we want to define
inside An

k are lines, but to do this we need to go back to basic geometry. In a
classical set-up an affine space is a set of points directed by a vector space and a
line is just an affine subspace of dimension one (see for example Audin, 2003),
however a vector space, such as kn has a natural structure of affine space for
which it is very easy to define lines in terms of linear algebra. To this purpose
I would like to take the chance of naming another really beautiful book, Artin
(1991).

A linear subspace of An
k is the set of solutions of a linear system of equations,

which we call S; in other words it is an algebraic set V(a) where the ideal a

is generated by linear polynomials L1(x1, . . . , xn), . . . , Lr(x1, . . . , xn). But this
definition is useless if we are not able to accompany it with a notion of dimen-
sion, so firstly let us agree that the dimension of An

k is n.

Lemma. The algebraic set V(a) is not empty if and only if the linear system S has a
solution in k.

Proof. Indeed the linear system doesn’t have any solution if and only if the
ideal a contains an element of k. The proof is given by the following remark: if
we form a matrix from the coefficients of the system of generators for a we can
assume it to be in row echelon form. To see this, we have to convince ourselves
that reducing that matrix in row echelon form actually gives us another system
of generators for a, and this follows from two key observations: the first is that
such a transformation involve linear combinations of the rows, that is of the
polynomials, and the second is that this process is invertible.

Given this Lemma, assuming a linear subspace is non-empty we can per-
form Gauss-Jordan elimination to solve the system S. If ρ is the rank of S,
we will be able in this way to write xi1 , . . . , xiρ as a linear expression of all the
other indeterminates, actually defining a surjective morphism of k-algebras

k[x1, . . . , xn] −→ k[y1, . . . , ys]

where s = n− ρ. It is easy to see that a is the kernel of this morphism, thus it
is a prime ideal. Putting all things together we have seen that any nonempty
linear subspace of An

k is an affine space of dimension s, in particular it is irre-
ducible. Linear subspaces of dimension one are lines while linear subspaces of
dimension two are planes.

1.2.3 Irreducible Components Any topological space is a union of irre-
ducible ones. If X is Hausdorff this is equivalent to saying that X is the union

17



Marco Lo Giudice 1. Affine Varieties

of its points and is not particularly interesting, while from our point of view
this statement is not only interesting but also not immediately obvious.

Lemma (Exercise I.20 in Atiyah and Macdonald, 1969). Let X be a topological
space.

i) Every irreducible subspace of X is contained in a maximal irreducible subspace.

ii) The maximal irreducible subspaces of X are closed and cover X. They are called
the irreducible components of X.

Proof. Part i) is a standard application of Zorn’s Lemma. Indeed if {Si}i∈I is a
chain of irreducible subspaces then the union S =

⋃
i∈I Si is also irreducible.

A maximal irreducible subspace S must be closed, otherwise its closure
would be irreducible and strictly bigger (see above). Note that for each x ∈ X
the closure {x} is irreducible, hence every point of X is contained in some
(maximal) irreducible subspace.

Let A be a ring 6= 0. Then the set of prime ideals of A has minimal elements
with respect to inclusion. To see this we can apply Zorn’s Lemma to the family
of all prime ideals in A, indeed if {pi}i∈I is a chain of prime ideals then the
intersection a =

⋂
i∈I pi is also a prime ideal. The argument goes as follows: if

xy ∈ a suppose that neither x ∈ a nor y ∈ a, then there exist i1 and i2 such that
x 6∈ pi1 and y 6∈ pi2 . But {pi}i∈I is a chain so either pi1 ⊆ pi2 or pi2 ⊆ pi1 and in
any case we arrive to the contradiction xy 6∈ a.

Proposition (Exercise I.20 in Atiyah and Macdonald, 1969). Let A be a ring and
let X be the topological space Spec A. The irreducible components of X are the closed
sets V(p), where p is a minimal prime ideal of A.

Proof. A maximal irreducible subspace of Spec A must be closed, that is of the
form V(a) for some ideal a of A. Since it is irreducible we can assume the ideal
to be prime, so it is V(p) for some p ⊂ A. Now p is minimal because V(p) is
maximal.

1.2.4 Noetherian Spaces The rings we are most interested in are affine k-
algebras, which are of course rather special rings. The first point of distinction
is represented by Hilbert’s Basis Theorem, which asserts that they are all Noe-
therian rings, it is explained in Cox, Little, and O’Shea (1997). This has some
interesting consequences on the geometry of the spectrum of an affine ring, so
interesting to deserve a purely topological definition.
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Definition. A topological space X is called Noetherian if it satisfies the de-
scending chain condition for closed subsets: for any descending sequence
Y1 ⊇ Y2 ⊇ . . . of closed subsets, there is an integer r such that Yr = Yr+1 = . . .

If the ring A is Noetherian and a ⊆ A is an ideal, it is a well known result
that among the primes of A containing a there are only finitely many that are
minimal with respect to inclusion, these are usually called the minimal primes of
a. It can be proved directly quite easily as in Eisenbud (1995, Exercise 1.2). In
geometric terms this means that in Spec A every non-empty closed subset has
only a finite number of irreducible components, indeed a closed irreducible
subset containing V(a) is of the form V(p) for some prime ideal p, and it is
maximal if and only if p is minimal (as in §1.2.3). This property holds in gen-
eral for Noetherian topological spaces.

Proposition (I.1.5 in Hartshorne, 1977). In a Noetherian topological space X, every
non-empty closed subset Y can be expressed as a finite union of irreducible closed
subsets Y = Y1 ∪ . . . ∪ Yr. If we require that Yi + Yj for i 6= j, then the Yi are
uniquely determined.

Example (Exercise I.1.3 in Hartshorne, 1977). Let Y be the algebraic set in A3

defined by the two polynomials x2 − yz and xz − x. We have the following
equalities of ideals in k[x, y, z]

(x2 − yz, xz− x) = (x2 − yz, x) ∩ (x2 − yz, z− 1)

= (x, yz) ∩ (x2 − y, z− 1)

= (x, y) ∩ (x, z) ∩ (x2 − y, z− 1)

Therefore Y is the union of three irreducible components, two of them are lines
and the third is a plane curve.

The next example is the evidence that dealing with these general concepts
can be quite misleading. It is in fact obviously true since the very definition
that the spectrum of a Noetherian ring is a Noetherian topological space but
the converse is not true.

Example (In which Spec A is Noetherian while A is not). Let m be the maximal
ideal in R = k[{xi}i∈N] generated by the set of indeterminates. Localise R in
m and consider A = Rm/p where p is the prime ideal

p = (x1 − x2
2, x2 − x3

3, x3 − x4
4, . . .)

It happens that in R there are no prime ideals between p and m, which would
correspond to prime ideals in A other than the zero ideal and the maximal
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ideal. Indeed in the quotient R/p every polynomial F can be written as a
polynomial in only one indeterminate xi, then if F has to be in m one can
factorise a power of xi and conclude that a prime ideal containing F that is
contained in m has to contain xi also. But then it is m already. Therefore Spec A
consists of only two points and in particular is a Noetherian topological space.
But A is not a Noetherian ring, since we have the strictly ascending chain of
ideals (x1) ( (x2) ( . . .

1.2.5 Characterisation of Noetherianity The definition of Noetherian topo-
logical space is just a chain condition, like the ones described in Chapter VI of
Atiyah and Macdonald (1969). Not surprisingly then we have the following
characterisation in terms of maximal and minimal conditions also.

Lemma (Exercise I.1.7 in Hartshorne, 1977). The following conditions are equiva-
lent for a topological space X:

i) X is Noetherian;

ii) every non-empty family of closed subsets has a minimal element;

iii) X satisfies the ascending chain condition for open subsets;

iv) every non-empty family of open subsets has a maximal element.

Proof. The equivalences i) ⇔ iii) and ii) ⇔ iv) are trivial (it is enough to con-
sider the complements). To complete the proof we then show the equivalence
i) ⇔ ii). If ii) was false we could find inductively a strictly descending chain
of closed subsets. Conversely a descending chain of closed subsets is a partic-
ular family of closed subsets, so it must have a minimal element, which proves
that it is stationary.

To be able to prove a more useful (and less immediate) criterion for Noethe-
rianity we need to understand better such a topology. First we can make the
following remark.

• A Noetherian topological space is quasi-compact.

To see this, we want to use Zorn’s Lemma. Let {Ai}i∈I be an open covering
of X, i.e. X =

⋃
i∈I Ai. Let S be the following family of open subsets of X,

ordered by inclusion

S =





⋃

j∈J

Aj

∣∣∣∣∣∣
J is finite




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Since X is Noetherian every ascending chain of open subsets in X is sta-
tionary, hence in S every chain has an upper bound and by Zorn’s Lemma
S has a maximal element B =

⋃
j∈J0

Aj (where J0 is some finite subset of I).
In particular B is an open set of X which contains any open set of the form⋃

j∈J Aj where J is a finite subset of I. Then B = X and {Aj}j∈J0 is the finite
subcover we were looking for. Next we examine the subsets of a Noetherian
topological space, and we conclude the following.

• Any subset of a Noetherian topological space is Noetherian in its in-
duced topology.

Let Y0 ⊇ Y1 ⊇ Y2 ⊇ . . . be a descending chain of closed subsets of Y ⊆ X.
Consider the descending chain of closed subsets of X given by Y0 ⊇ Y1 ⊇
Y2 ⊇ . . ., where Yi is the closure in X of Yi. Since X is Noetherian the latter
chain is stationary, hence also the first is and Y is Noetherian.
Example. A Noetherian space which is also Hausdorff must be a finite set with
the discrete topology. Indeed let X be a Hausdorff and Noetherian space, then
Y = X \ {x} is also Noetherian. In particular Y is compact (by the first remark
above) hence is closed (compact in a Hausdorff space). We conclude that {x}
is open and X has the discrete topology. To see that X is also finite assume that
there exists an injective sequence (xn)n∈N and let An = {x1, . . . , xn}. Since X
is Noetherian every ascending chain of open subsets of X is stationary, but we
have found a strictly ascending chain A1  A2  . . .. This is a contradiction
thus X is finite.

Proposition (Exercise II.2.13 in Hartshorne, 1977). A topological space X is Noe-
therian if and only if every open subset U ⊆ X is quasi-compact.

Proof. If X is a Noetherian topological space, any open subset is again Noe-
therian in its induced topology, and therefore it is quasi-compact. Conversely
let U1 ⊆ U2 ⊆ . . . be an ascending chain of open subsets. Let U be the union
of all the opens in the chain. Then U is open and therefore is quasi-compact.
Hence U is the union of only a finite number of the open sets, and since these
were on a chain we can conclude that U is one of them. This proves that
U1 ⊆ U2 ⊆ . . . is stationary.

1.3 The Structure Sheaf

Any algebraic set is given by the spectrum of an affine ring, but we have seen
that different affine rings can define the same algebraic set. The need to re-
move this ambiguity is at the heart of the following development, which even-
tually will lead us to the definition of Affine Algebraic Variety. In complete
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generality now that we have learned how to construct a topological space
given any ring, we are going to tighten this correspondence, adding some
extra structure in order to be able to recover the ring given the “space” associ-
ated with it. The right instrument turns out to be sheaf theory, given a ring A
we will now endow the topological space Spec A with a sheaf of rings. A quick
look at our references highlights two different approaches, the more geometric
and in fact closer to our intuition of Hartshorne (1977) and the really algebraic
one in Eisenbud and Harris (2000). They are essentially equivalent, although
this is not immediately obvious, but they show different aspects of the theory
that is useful to keep in mind, therefore we are going to describe them both.

Definition. “Let A be a ring, we define a sheaf of rings O on Spec A. For each
prime ideal p ⊆ A, let Ap denote the localisation of A in p. For an open set
U ⊆ Spec A, we define O(U) to be the set of functions s : U → äp∈U Ap, such
that s(p) ∈ Ap for each p and such that s is locally a quotient of elements of A:
to be precise, we require that for each p ∈ U, there is a neighborhood V of p,
contained in U, and elements α, β ∈ A, such that for each q ∈ V we have that
β 6∈ q, and s(q) = α/β in Aq.”

taken from Hartshorne (1977, §II.2)

In other contexts such as Topology or Differential Geometry the structure
sheaf of a manifold consists of functions. By analogy the definition just ex-
plained usually fits intuition best, but on the other hand one has to work a bit
to make it useful. Not unexpectedly it turns out that there is a strong connec-
tion between the sheaf O , and the ring A.

Proposition (II.2.2 in Hartshorne, 1977). Let A be a ring, and (Spec A, O) its
prime spectrum.

(a) For any p ∈ Spec A, the stalk Op is isomorphic to the local ring Ap.

(b) For any α ∈ A, the ring O
(

D(α)
)

is isomorphic to the localised ring Aα.

(c) In particular, Γ(Spec A, O) ∼= A

The really hard part in the proof of this proposition is statement (b), which
asserts that the obvious homomorphism Aα → O

(
D(α)

)
is an isomorphism.

As we mentioned above a more algebraic approach is possible, and it goes
precisely the other way round. The starting point is to define O

(
D(α)

)
to be

the localised ring Aα for any distinguished open subset D(α), recalling that
distinguished open subsets form a base B for the Zariski topology in Spec A.
If D(β) ⊆ D(α) then β ∈ √

(α) (see §1.1.4), therefore α/1 is invertible in Aβ
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and we can define the restriction map as the unique homomorphism Aα → Aβ

such that the following diagram commutes (universal property of localisation)

A //

²²

Aβ

Aα

>>}}}}}}}}

Of course this doesn’t define a sheaf yet, but according to Eisenbud and Harris
(2000, Proposition I.18) it defines a B-sheaf on Spec A.

Let X be a topological space and let B be a base for the topology of X. “We
say that a collection of groups F (U) for open sets U ∈ B and maps

resU
V : F (U) −→ F (V)

for V ⊆ U form a B-sheaf if they satisfy the sheaf axiom with respect to
inclusions of basic open sets in basic open sets and coverings of basic open sets
by basic open sets. (The condition in the definition that sections of Ui, Uj ∈ B
agree on Ui ∩ Uj must be replaced by the condition that they agree on any
basic open set V ∈ B such that V ⊆ Ui ∩Uj).”

taken from Eisenbud and Harris (2000, §I.1.3)

Theorem. Let X be a topological space and let B be a base for the topology of X. There
is a one-to-one correspondence between B-sheaves and sheaves over X. In particular
every sheaf is a B-sheaf and every B-sheaf extends uniquely to a sheaf.

In Eisenbud and Harris (2000, §I.1.3) the reader will find the construction
for the extension of a B-sheaf, here we prove the converse.

Lemma. Let X be a topological space and let B be a base for the topology of X. Then
every sheaf F over X is a B-sheaf. More generally the gluing condition on basic open
subsets applies for any open subset.

Proof. Let U ⊆ X be any open set, cover U by basic open sets, say U =
⋃

i∈I Ui,
and let { fi ∈ F (Ui)} be a family of sections such that for any basic open set
V ⊆ Ui ∩Uj the restrictions to V of fi and f j are equal. We claim that there
exists a unique element f ∈ F (U) such that resU

Ui
( f ) = fi.

It suffices to prove that fi and f j agree on Ui ∩Uj, for this means that the
family is coherent for the sheaf F and hence defines a unique element in
F (U) as required. We are now in the following situation: U is an open set
of X and for any open basic set V ⊆ U we are given a section fV ∈ F (V).
If V1 ⊆ V2 is an inclusion of two such open basic sets with clear meaning of
notation we have res2

1( f2) = f1.
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We must show that there is a unique section f ∈ U such that resU
V ( f ) = fV

for any open basic set V ⊆ U, to this purpose we will use Zorn’s Lemma.
Define Σ to be the set of couples (W, f ) such that

W ⊆ U is an open set

f ∈ F (W) is a section

resW
V ( f ) = fV for any open basic set V ⊆ W

Σ is not empty for it contains all the couples (V, fV) where V is a basic open
set contained in U. Now we order Σ as follows: we say (W1, f1) ≤ (W2, f2)
if W1 ⊆ W2 and res2

1( f2) = f1. To apply Zorn’s Lemma we must show that
every chain in Σ has an upper bound in Σ; let (W1, f1) ≤ (W2, f2) ≤ . . . be
such a chain, set W =

⋃
i≥1 Wi and observe the following: {Wi} is an open

covering for W and the family { fi} is a coherent family for the sheaf F (since
Wi ∩Wj = Wj if j ≤ i). Hence there exists a unique section f ∈ F (W) such
that resW

i ( f ) = fi. The couple (W, f ) will be an upper bound for the given
chain if we prove that for any open basic set V ⊆ W we have resW

V ( f ) = fV .
We have an open covering of V consisting of open basic sets A such that

A ⊆ V ∩ Wi for some Wi. On this open covering we can define the co-
herent family {resW

A ( f )} given by the restriction of f , this defines the sec-
tion resW

V ( f ) ∈ F (V). Observe that this coherent family is given by { fA}
so that the unique corresponding section in F (V) is given by fV and hence
resW

V ( f ) = fV .
We can now consider a maximal element (W, f ) in Σ and what remains to

prove is that W = U. Assume this is not the case, hence there exists x ∈ U such
that x 6∈ W. Let V be a basic open set such that x ∈ V and consider the open set
W ∪V. We have an open covering of it made up by V, W and all the basic open
sets A ⊆ W ∩ V, define the coherent family given by f , fV and by the set of
sections {resV

A( fV) = fA}. This defines a unique element g ∈ F (W ∪V) such
that the couple (W ∪ V, g) is an element of Σ contradicting the maximality of
(W, f ).

Given a ring A we are now able to construct a ringed space, that is a couple
(Spec A, O) consisting of a topological space and a sheaf of rings on it, more
about ringed spaces can be found in Tennison (1975, Chapter 4). The sheaf O
is called the structure sheaf or the sheaf of functions of Spec A.

When A is an affine ring, the structure sheaf of Spec A is in fact a sheaf of
k-algebras, meaning that there exists a natural homomorphism k → O(U) for
any open set U. To see this observe that any element α ∈ A defines a section
in O(U), as it defines a global section, in particular any α ∈ k. Thus we have
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in fact a composition of homomorphisms k → Γ(Spec A, O) → O(U), where
the external one is just the restriction of the sheaf O .

Examples. This is in fact Exercise I.20 in Eisenbud and Harris (2000), we want
to describe the points and the structure sheaf of each of the following spaces.

(a) X1 = Spec C[ x ]/(x2) (b) X2 = Spec C[ x ]/(x2 − x)

(c) X3 = Spec C[ x ]/(x3 − x2) (d) X4 = Spec R[ x ]/(x2 + 1)

As a topological space, points of X1 corresponds to prime ideals in C[ x ]
that contain x2, hence that contain x. Since (x) is a maximal ideal we can
conclude that X1 = {(x)}. Open sets are only ∅ ⊆ X1 and the structure sheaf
is obvious

O(∅) = 0 O(X1) = C[ x ]/(x2)

Observe that O(X1) is a local ring.
The same argument brings to the conclusion that

X2 = {(x), (x− 1)} = {P, Q}

and both P and Q are closed points. The topology is discrete and we have the
structure sheaf

O(∅) = 0, O(X2) = C[ x ]/(x2 − x), O(P) = C, O(Q) = C

Indeed {P} = D(x− 1), and we have

[
C

[
x

]
/
(

x(x− 1)
)]

x−1 = C
[

x
]

x−1/
(

x(x− 1)
)

= C[ x ]x−1/(x) =
[
C[ x ]/(x)

]
x−1 = C

Observe that the restriction maps are different; from X2 to P you send (the
equivalence class of) a polynomial f (x) to f (0), while from X2 to Q you send
the same polynomial to f (1).

As a topological space X3 is the same as X2, but this time we have the
following structure sheaf

O(∅) = 0, O(X3) = C[ x ]/(x3 − x2),
O(P) = C[ x ]/(x2), O(Q) = C

Finally observe that R[ x ]/(x2 + 1) ∼= C.
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At this stage we have all the instruments to define affine varieties, but
unfortunately here is where the real trouble begins. There is not a unique
and widely accepted definition of algebraic variety, there are instead several
slightly different ones. Depending on the field of research, each mathemati-
cian will choose his favourite notion and will work with it. As a result, here
is a brief summary of the confusion reigning already among our references.
In Hartshorne (1977) and Shafarevich (1994b) an affine algebraic variety is the
spectrum of an affine domain. In Milne (2005) it is the spectrum of a reduced
affine ring. In Ueno (2003) and Liu (2002) it is the spectrum of any affine ring,
but be careful because in Liu (2002) the field of definition is not assumed to
be algebraically closed. In Eisenbud and Harris (2000) there is not even a de-
finition of algebraic variety! To deal with this confusion we will follow the
guidelines of Fulton (1998), which contains probably the most reasonable set
of definitions.

Definition. An affine scheme is the spectrum of a ring (any ring), while an affine
algebraic scheme is the spectrum of an affine ring, that is, a finitely generated
algebra over a field k. We don’t make any assumption on the base field k,
assuming that whether it will be algebraically closed or not will depend on
the context. An affine algebraic variety will be the spectrum of an affine domain.

1.4 Functoriality

1.4.1 The Functor Spec Let ϕ : A → B be a ring homomorphism. For any
q ∈ Spec B, by taking ϕ−1(q) we construct a prime ideal of A, that is a point of
Spec A. Hence ϕ induces a function

Spec ϕ : Spec B −→ Spec A

This is a continuous function and Spec turns out to be a contravariant functor
between the category of Rings and the category of Topological Spaces. The
reader not familiar with category theory shouldn’t worry too much because
we will use only very basic material, it can be convenient anyway having a
look at Mac Lane (1998) or Berrick and Keating (2000) just for reference.

Proposition (Exercise I.21 in Atiyah and Macdonald, 1969). Let ϕ : A → B be a
ring homomorphism. Then the induced map Φ : Spec B → Spec A has the following
properties:

i) If α ∈ A then Φ−1(D(α)
)

= D
(

ϕ(α)
)
, hence Φ is continuous.

ii) If a is an ideal of A, then Φ−1(V(a)
)

= V(ae).
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iii) If b is an ideal of B, then Φ
(V(b)

)
= V(bc).

iv) If ϕ is surjective, then Φ is a homeomorphism of Spec B onto the closed subset
V(ker ϕ) ⊆ Spec A.

v) If ϕ is injective, then Φ(Spec B) is dense in Spec A. More precisely, the image
Φ(Spec B) is dense in Spec A if and only if ker ϕ ⊆ Nil(A), where Nil(A) is
the nilradical of A.

vi) Let ψ : B → C be another ring homomorphism, and let Spec ψ be the corre-
sponding induced map. Then

Spec(ψ ◦ ϕ) = Spec ϕ ◦ Spec ψ

Proof. Statements i) and ii) are easily worked out by writing their meaning in
terms of sets, while vi) is trivial. Assuming iii) we have

Φ(Spec B) = Φ
(V(0)

)
= V(ker ϕ)

which implies v), since V(ker ϕ) is the whole space if and only if ker ϕ is con-
tained in the nilradical of A. About iv), injectivity of Φ follows immediately
by a direct argument, further observe the following:

If ϕ is surjective and p ⊆ A is a prime ideal such that ker ϕ ⊆ p,
then p = Φ(pe). Indeed this amounts to say that p = pec, and the
only thing to prove is the inclusion pec ⊆ p. This is easily done by
contradiction.

assuming iii) this proves that Φ is a closed map with image V(ker ϕ).
We now prove statement iii). Observe first

Φ
(V(b)

)
=

{
p ⊆ A | p = ϕ−1(q) with b ⊆ q

}

This set is contained in V(bc) so the inclusion Φ
( V(b)

) ⊆ V(bc) is given.
To prove the converse we need to show that for each p ∈ V(bc) every open
neighborhood of p intersects Φ

( V(b)
)
. Let p ∈ V(bc) and let D(α) be a basic

open set which contains it. By definition α 6∈ p and in particular α 6∈ bc, hence
ϕ(α) 6∈ b. We claim that there is a point q ∈ V(b) such that ϕ(α) 6∈ q. Indeed
if V(b) ⊆ V (

ϕ(α)
)

then ϕ(α) ∈ √b, that is ϕ(α)t ∈ b. But then αt ∈ bc ⊆ p

which contradicts α not being in p. Now ϕ−1(q) ∈ D(α) ∩Φ
( V(b)

)
.
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1.4.2 Connectedness So far we have described functoriality precisely but
only when we regard the spectrum of a ring as a topological space, forgetting
about the structure sheaf. Nevertheless what we have seen can be useful on its
own, for instance it allows us to characterise those rings A for which Spec A is
connected. First we need a preliminary algebraic Lemma.

Lemma. Let A = A1 × A2. Then every prime ideal of A is of the form p× A2 or
A1 × q where p ⊆ A1 and q ⊆ A2 are prime ideals.

Proof. Every ideal of the claimed form is clearly prime, conversely if a ⊆ A is a
prime ideal then p1(a) ⊆ A1 and p2(a) ⊆ A2 are prime ideals (where pi is the
projection). Assume that both of them are proper and take elements a 6∈ p1(a)
and b 6∈ p2(a), then (a, 0) and (0, b) are not in a but their product is (it is in
fact the zero element of the ring). Therefore we can assume without loss of
generality that p2(a) = A2, and we have to prove that a is in fact p1(a)× A2.

We have the obvious inclusion a ⊆ p1(a)× A2, so we must show the con-
verse. If a ∈ p1(a) then there exists b ∈ A2 such that (a, b) ∈ a, write (a, b)
as (a, 1) · (1, b) and observe that (1, b) is not an element of a, so that (a, 1) is.
Now for any c ∈ A2 we have (a, c) = (a, 1) · (1, c), so that a = p1(a)× A2.

Proposition (Exercise I.22 in Atiyah and Macdonald, 1969). Let A be the direct
product of rings ∏n

i=1 Ai. Then Spec A is the disjoint union of open (and closed)
subspaces Xi, where Xi is canonically homeomorphic with Spec Ai.
Conversely, let A be any ring. Then the following statements are equivalent:

i) X = Spec A is disconnected.

ii) A ∼= A1 × A2 where neither of the rings A1, A2 is the zero ring.

iii) A contains an idempotent 6= 0, 1.

The same is Exercise II.2.19 in Hartshorne (1977), where iii) is more precise: there
exist non-zero elements e1, e2 ∈ A such that e1e2 = 0, e2

1 = e1, e2
2 = e2, e1 + e2 = 1

(these elements are called orthogonal idempotents).

Proof. Let pj : A → Aj be the projection. Since pj is surjective, the induced map
Spec pj is a homeomorphism of Spec Aj onto the closed subset Xj = V(ker pj)
of Spec A. Observe that ker pj = A1 × · · · × Aj−1 × {0} × Aj+1 × · · · × An,
and recall how prime ideals are made in A, which was discussed above, then:

• V(ker pj) = D(ej) where ej is the n-tuple (a1, . . . , an) with ai = 0 if i 6= j
and aj = 1. Hence Xj is open and closed in Spec A.

• Spec A = X1 ∪ . . . ∪ Xn.
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• Xi ∩ Xj = ∅. Indeed Xi ∩ Xj = V(ker pi) ∩ V(ker pj) = V(a) where a is
the ideal generated by ker pi ∪ ker pj. Note that the unit element of A is
contained in a.

To prove the equivalence of the three statements note first that ii) ⇒ i) is
the first part of the Proposition. Now assume iii) and let e be an idempotent
6= 0, 1, then (1− e) is idempotent as well and the two ideals eA and (1− e)A
are nonzero commutative rings with unit element (namely, their generator).
Observe that if ae = b(1− e) then b = (a + b)e; multiply by e and get ae = 0.
Hence eA ∩ (1− e)A = 0. Define

ϕ : eA× (1− e)A −→ A

sending (α, β) to α + β. This is a ring homomorphism that is an isomorphism;
indeed for all a ∈ A we can write a = ae + a(1− e), while if ae + b(1− e) =
ce + d(1− e) we get (a− c)e = (d− b)(1− e) from which follows ae = ce and
b(1− e) = d(1− e). This proves ii); it remains to prove i) ⇒ iii).

Let X = E1 ∪ E2 where Ei is both open and closed and E1 ∩ E2 = ∅. We
can write E1 = V(a) and E2 = V(b), so that E1 ∩ E2 = V(a + b). Since the
intersection is empty we have 1 ∈ a + b, that is 1 = a + b with a ∈ a and
b ∈ b. Note that for each α ∈ a it is D(α) ⊆ E2, indeed V(a) ⊆ V(α) hence
D(α) ⊆ X \ V(a) = E2. Assume D(a) ( E2. Let p ∈ E2 such that a ∈ p, then
since p ∈ E2 we have b ⊆ p, but since a = 1− b we have 1 ∈ p, which is a
contradiction. Then we have E2 = D(a) and E1 = D(b). Again the intersection
is empty, that is ab is nilpotent.

Let t > 0 be the least integer such that (ab)t = 0 and observe D(at) = E2
and D(bt) = E1. Again we have X = E1 ∪ E2 = D(at) ∪ D(bt) = X \ V(c)
where c is the ideal generated by at and bt. It follows that 1 ∈ c that is αat +
βbt = 1 for some α, β ∈ A. Let e1 = αat and e2 = βbt, then e1e2 = 0, e2

1 = e1,
e2

2 = e2, e1 + e2 = 1.

1.4.3 Locally Ringed Spaces Given a ring A we have endowed the topo-
logical space Spec A with a sheaf of rings, the complete construction is there-
fore giving rise to something more than simply a topological space. To inves-
tigate functorial properties we need a suitable category, which turns out to be
the category of locally ringed spaces.

Definition. “A ringed space is a pair (X, OX) consisting of a topological space
X and a sheaf of rings OX on X. A morphism of ringed spaces from (X, OX) to
(Y, OY) is a pair ( f , f #) of a continuous map f : X → Y and a map f # : OY →
f∗OX of sheaves of rings on Y.”

29



Marco Lo Giudice 1. Affine Varieties

“The ringed space (X, OX) is a locally ringed space (or also a geometric space)
if for each point x ∈ X, the stalk OX,x is a local ring. A morphism of locally
ringed spaces is a morphism ( f , f #) of ringed spaces, such that for each point
x ∈ X, the induced map (see below) of local rings f #

x : OY, f (x) → OX,x is a local
homomorphism of local rings.”

“We explain this last condition. First of all, given a point x ∈ X, the
morphism of sheaves f # : OY → f∗OX induces a homomorphism of rings
OY(V) → OX

(
f−1(V)

)
, for every open set V in Y. As V ranges over all open

neighborhoods of f (x), f−1(V) ranges over a subset of the neighborhoods of
x. Taking direct limits, we obtain a map

OY, f (x) = lim−→
f (x)∈V

OY(V) −→ lim−→
f (x)∈V

OX
(

f−1(V)
)
,

and the latter limit maps to the stalk OX,x. Thus we have an induced homo-
morphism f #

x : OY, f (x) → OX,x. We require that this be a local homomorphism.
If A and B are local rings with maximal ideals mA and mB respectively, a ho-
momorphism ϕ : A → B is called a local homomorphism if ϕ−1(mB) = mA (or
equivalently if ϕ(mA) ⊆ mB).”

taken from Hartshorne (1977, §II.2)

Not surprisingly the construction of a Locally Ringed Space from a Ring
turns out to be functorial, but in fact we have something more, this functor
is fully faithful. This means that if A and B are rings, and X = Spec B and
Y = Spec A are the corresponding locally ringed spaces then A and B are iso-
morphic if and only if so are X and Y. The precise statement is the following.

Proposition (II.2.3 in Hartshorne, 1977).

(a) If ϕ : A → B is a morphism of rings, then ϕ induces a natural morphism of
locally ringed spaces

( f , f #) : Spec B → Spec A

(b) If A and B are rings, then any morphism of locally ringed spaces from Spec B
to Spec A is induced by a homomorphism of rings ϕ : A → B as in (a).

1.4.4 The Induced Morphism of Sheaves The morphism ( f , f #) consists
of a continuous map f : X → Y which is the induced map Spec ϕ defined
above, and a sheaf homomorphism f # : OY → f∗OX. This homomorphism of
sheaves plays a very important role in the theory and should not be ignored,
it is defined by a ring homomorphism

f #
V : OY(V) −→ OX

(
f−1(V)

)
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for any open set V ⊆ Y. It is in other words a homomorphism of sheaves over
Y, and like any other homomorphism of sheaves it induces a morphism on the
stalks for any y ∈ Y

f #
y : OY,y −→ [ f∗OX]y

This should not be confused with the induced local homomorphism of local
rings, defined for any x ∈ X between stalks over Y and stalks over X

f #
x : OY, f (x) −→ OX,x

Further, when V is an open basic subset D(α) ⊆ Spec A for some α ∈ A, the
homomorphism f #

V is of the form

f #
α : OY

(
D(α)

) −→ OX
(

D
(

ϕ(α)
))

since f−1(D(α)
)

= D
(

ϕ(α)
)

(we have seen it in §1.4.1). But we know that
OY

(
D(α)

)
is given by the localised ring Aα, it is therefore reasonable to ask

whether f #
α is given by the localised homomorphism ϕα. The precise statement

is the following.

Proposition. Let ϕ : A → B be a morphism of rings, and let ( f , f #) be the corre-
sponding morphism of locally ringed spaces as above. Then the following statements
hold.

i) For any α ∈ A the homomorphism f #
α is given by the localised map

ϕα : Aα −→ Bϕ(α)

In particular, on global sections f # coincides with ϕ.

ii) For any x ∈ X let q be the corresponding prime ideal of B, then the homomor-
phism f #

x is given by the localised map

ϕq : Aϕ−1(q) −→ Bq

iii) For any y ∈ Y let p be the corresponding prime ideal of A, then the homomor-
phism f #

y is given by the localised map

ϕp : Ap −→ S−1B

where S = ϕ(A \ p).

Proof. We leave the reader to work out the proof on its own. In fact, depending
on the preferred point of view for the definition of the sheaf O statement i) is
either the definition of f # or an immediate consequence of Proposition II.2.2
in Hartshorne (1977).
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1.4.5 Basic Sets as Spectra We mentioned in §1.1.4 that open basic subsets
are again spectra of rings. This is true in the strongest sense, namely open ba-
sic subsets equipped with the obvious structure sheaf are locally ringed spaces
isomorphic to the spectrum of a ring.

Proposition. Let A be a ring. Then for any α ∈ A the distinguished open subset
D(α) of Spec A equipped with the restriction of the structure sheaf O |D(α) is isomor-
phic to the locally ringed space Spec Aα.

Proof. Let j : A → Aα be the localisation map. Then we have the induced
continuous function

Spec j : Spec Aα −→ Spec A

It is well known that for any multiplicatively closed subset S of A there is a
one-to-one correspondence between ideals of S−1A and ideals of A that don’t
meet S. In this case S is given by the powers of α, therefore any prime ideal
that doesn’t meet S also doesn’t contain α and viceversa. This proves that
Spec j is an injective function whose image is D(α). Moreover it is a closed
map; indeed if b ⊆ Aα is any ideal we have Spec j

( V(b)
)

= V(bc) ∩ D(α).
Hence Spec j : Spec Aα → D(α) is a homeomorphism.

Let now β ∈ A such that D(β) ⊆ D(α) and observe that, according to the
discussion above, the morphism of sheaves is given over D(β) by the homo-
morphism

Spec j#β : Aβ −→ (Aα)β/1

But in this case β ∈ √
(α) (we discussed this in §1.1.4) and therefore this ho-

momorphism is in fact an isomorphism.

1.4.6 Injective and Surjective Homomorphisms Let ϕ : A → B be a ho-
momorphism of rings, and let f : X → Y be the induced morphism of locally
ringed spaces. Any ideal of A defines a closed subset of Y, and we have seen in
§1.4.1 that when ϕ is surjective it induces the topological injection of V(ker ϕ).
The converse is not true, namely a homomorphism can induce a topological
injection of a closed subset without being surjective.

Example (In which f is a homeomorphism but ϕ is not surjective). We let Y be
the spectrum of the ring A = C[x, y]/(xy), that is the union of two lines, while
X will be the spectrum of B = C[s, t]/(s2). This is an affine scheme whose
underling topological space is a line, but among the global sections of the
structure sheaf there are nilpotent elements. Now we consider the following
homomorphism of k-algebras

ϕ : C[x, y]/(xy) −→ C[s, t]/(s2)
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defined by ϕ(x) = s2 and ϕ(y) = t. Then ϕ is not surjective, since s is not in
the image, but it defines a homeomorphism f : X → V(x2).

The problem here is that ϕ doesn’t induce an isomorphism of schemes be-
tween X and the spectrum of A/ ker ϕ. In fact, the main content of the next
result is that this happens if and only if the homomorphism is surjective.

Theorem (Exercise II.2.18 in Hartshorne, 1977). Let ϕ : A → B be a homomor-
phism of rings, and let f : X → Y be the induced morphism of locally ringed spaces.

(a) ϕ is injective if and only if the map of sheaves f # : OY → f∗OX is injective.
Furthermore in that case f is dominant, i.e. f (X) is dense in Y.

(b) If ϕ is surjective, then f is a homeomorphism of X onto a closed subset of Y,
and the morphism of sheaves f # : OY → f∗OX is surjective.

(c) The converse to (b) is also true, namely, if f : X → Y is a homeomorphism onto
a closed subset, and f # : OY → f∗OX is surjective, then ϕ is surjective.

Proof. Assume ϕ : A → B is injective. Let D(α) ⊆ Spec A be a basic open set,
and consider the map f #

α which is given as in §1.4.4 by

ϕα : Aα −→ Bϕ(α)

Let δ/αr ∈ Aα and assume ϕα (δ/αr) = ϕ(δ)/ϕ(α)r = 0. Then there exists
an integer t ∈ N such that ϕ(α)t ϕ(δ) = 0 that is ϕ(αtδ) = 0. Since ϕ is
injective this means αtδ = 0 and this is equivalent to say that δ/αr = 0 in Aα.
So f # is injective over the basic open sets. Now let V ⊆ Y be any open set,
let f #

V : OY(V) → f∗OX(V) and let s ∈ OY(V) such that f #
V( s ) = 0. Then for

any basic open set D(α) ⊆ V we have f #
α

(
s|D(α)

)
= f #

V( s )|D(α) = 0 and so

s|D(α) = 0. This is enough to say that s = 0 and hence that f # is injective.
The converse follow by the more general fact that if a map of sheaves is

injective then the induced map on global sections (that in our case is ϕ) is
injective. We have already seen that in this case f is dominant in §1.4.1.

In part (b) the only new result for us is that f # : OY → f∗OX is surjective.
In fact we have that f #

α : Aα −→ Bϕ(α) is surjective for any α ∈ A. To see it,
let b/ϕ(α)t ∈ Bϕ(α), then since ϕ is surjective, there exists γ ∈ A such that
b = ϕ(γ) and we have

b
ϕ(α)t =

ϕ(γ)
ϕ(αt)

= f #
α

( γ

αt

)

This is enough to say that f # induces surjective homomorphisms on the stalks,
and hence f # is surjective.
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To prove (c), consider the following commutative diagram

A
π

²²

ϕ
// B

A/ ker ϕ
ψ

::vvvvvvvvvv

It is well known that ϕ is surjective if and only if ψ is an isomorphism,
moreover ψ is an isomorphism if and only if it induces an isomorphism of
locally ringed spaces between X = Spec B and Y′ = Spec A/ ker ϕ. We will
prove that ψ induces an isomorphism. First consider the diagram induced on
topological spaces

X

g ÃÃ@
@@

@@
@@

f
// Y

Y′
p

OO

Since π is surjective, p is a homeomorphism onto V(ker π) = V(ker ϕ) and
this closed subset contains f (X), more precisely we have f (X) = V(ker ϕ) (see
§1.4.1). It follows that g is defined as the restriction of f to Y′, and therefore
it is a homeomorphism onto a closed subset of Y′. But since ψ is injective, by
part (a) of this theorem g is dominant, that is g(X) = Y′, hence g must be a
homeomorphism.

Consider now g# : OY′ → g∗OX; by part (a) of this theorem, since ψ is
injective, this is an injective morphism of sheaves. It remains to prove that it
is surjective. For any y ∈ Y, that is for any prime ideal p ⊆ A containing ker ϕ
we have the diagram

Ap

πp

²²

ϕp // S−1B

(A/ ker ϕ)p

ψp

88qqqqqqqqqq

where S = ϕ(A \ p). We know from §1.4.6 that for any y ∈ Y′ the morphism
g#

y is given by ψp and we are assuming ϕp to be surjective. Hence g#
y is also

surjective.
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Chapter 2

General Properties of Schemes

After the introduction to affine schemes of the first chapter, we are now going
to introduce schemes in general. The definition will appear at this stage ex-
tremely simple, but some of the properties we are going to describe can result
somewhat surprising. The very basic idea that we want to convey is the par-
allel with the classical construction of projective space. There are essentially
two possible ways to define Pn

k , we can glue together n + 1 copies of affine
n-space or we can start with a polynomial ring in n + 1 indeterminates and
regard it as a graded ring. Both this ideas are encoded in the theory of schemes,
the first is a fundamental tool called gluing Lemma, and the second is a general
construction analogous to Spec, the homogeneous spectrum of a graded ring.

Given the scheme theoretic definition of projective space, it will hopefully
be clear how special a scheme this is. Here we will concentrate on topological
properties, describing them in the greatest generality but always keeping in
mind that these are good characteristics shared by all our main examples. We
will meet again the duality between algebra and geometry, in the definition of
a Noetherian scheme as well as throughout the chapter.

2.1 Schemes

2.1.1 The Category of Schemes In analogy with the definition of a mani-
fold in Differential Geometry, a scheme will be given by gluing together sev-
eral “local” patches, or in other words it will be defined to have a distin-
guished open covering satisfying some basic properties. Affine algebraic va-
rieties, or more generally affine algebraic schemes, are the “local charts” of
Algebraic Geometry, but as before it is not necessary at this level to assume
our rings to be k-algebras therefore we drop the word “algebraic” and call
affine scheme the spectrum of any ring.
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Definition. “An affine scheme is a locally ringed space which is isomorphic (as
a locally ringed space) to the spectrum of a ring. A scheme is a locally ringed
space (X, OX) in which every point has an open neighborhood U such that
the topological space U, together with the restricted sheaf OX|U is an affine
scheme. We refer to the ringed space (U, OX|U) as an open affine subset of X. We
call X the underlying topological space of the scheme (X, OX), and OX its struc-
ture sheaf. By abuse of notation we will often write simply X for the scheme
(X, OX). If we wish to refer to the underlying topological space without its
scheme structure, we write sp(X), read “space of X”. A morphism of schemes
is a morphism as locally ringed spaces.”

taken from Hartshorne (1977, §II.2)

Remark (On the composition of morphisms). Starting with two morphisms of
schemes, ( f , f #) : X → Y and (g, g#) : Y → Z, we want to define another
morphism X → Z to be the composition of these two. On the underlying
topological spaces take

g ◦ f : sp(X) −→ sp(Z)

which is obviously a continuous map. Now we have to define a morphism of
sheaves

(g ◦ f )# : OZ −→ (g ◦ f )∗OX

using the two that are given

g# : OZ −→ g∗OY

f # : OY −→ f∗OX

there is only one thing we can do. For each open set W ⊆ Z define (g ◦ f )#
W as

the following composition

OZ(W)
g#

W−→ OY(g−1(W))
f #
V−→ OX

(
f−1(g−1(W)

))

where V = g−1(W), that is define (g ◦ f )#
W = f #

g−1(W) ◦ g#
W . Now it is not

difficult to check (essentially one has to verify that a big diagram commutes)
that for all x ∈ X we have

(g ◦ f )#
x : OZ,g f (x) −→ OX,x

is obtained by the composition f #
x ◦ g#

f (x) and it is in fact a local homomorphism
of local rings. All this discussion requires X, Y and Z to be locally ringed
spaces and nothing more, in accordance with the definition of a morphism of
schemes.
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2.1.2 Generic Points and Open Immersions If X is a scheme then sp(X) is
a T0-space, which means that if x, y are distinct points of X, then either there is
a neighborhood of x which does not contain y, or else there is a neighborhood
of y which does not contain x. Indeed we can cover X by affine open sets, then
either x and y are contained in the same affine subset of X or there is an open
affine neighborhood of x which does not contain y. Now we already know
that an affine scheme is a T0-space from §1.1.5.

Lemma (Exercise II.2.2 in Hartshorne, 1977). On any scheme X open affine sets
form a base for the topology. In particular for every open set U ⊆ X, the pair
(U, OX|U) is again a scheme.

Proof. Let U ⊆ X be any open set. For all x ∈ U there exists an open affine
neighborhood W of x. Then U ∩W is an open set of W in its induced topol-
ogy, and since (W, OX|W) is the spectrum of a ring we can cover U ∩W with
distinguished open sets, which are affine open sets (see §1.4.5). Doing this for
all x ∈ U we find an open covering of U consisting of affine open sets.

Definition. Let U ⊆ X be any open subset, we refer to (U, OX|U) as an open
subscheme of X. An open immersion is a morphism of schemes f : X → Y which
induces an isomorphism of X with an open subscheme of Y.

Example (In which there is an open subscheme of an affine scheme which is
not affine). Let k be an algebraically closed field and let X be the affine plane
A2

k = Spec k[x1, x2]. If we remove the origin from the plane we obtain a non-
affine scheme U = X \ V(x1, x2).

First we show that the restriction map

Γ(X, OX) = k[x1, x2] −→ OX(U)

is an isomorphism. Injectivity follows immediately, since k[x1, x2] is an inte-
gral domain. Now we take the open covering U = D(x1) ∪ D(x2) and an
element s ∈ OX(U). If s is given by β/xt

1 on D(x1) and by γ/xr
2 on D(x2)

we then have β/xt
1 = γ/xr

2 in D(x1x2), which means xr
2β = xt

1γ. This leads
eventually to the conclusion β = xt

1α and γ = xr
2α for some α ∈ k[x1, x2], that

is the restriction map is surjective.
Now the open set U cannot be affine, indeed if this was the case it would

be given by Spec OX(U) and the open immersion U → A2
k would be induced

by the restriction morphism above. But the restriction morphism above can
only induce an isomorphism while the open immersion is not even a bijection
of topological spaces.
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Proposition (Exercise II.2.9 in Hartshorne, 1977). If X is a topological space, and
Z an irreducible closed subset of X, a generic point for Z is a point ζ such that
Z = {ζ}−. If X is a scheme, every (nonempty) irreducible closed subset has a unique
generic point.

Proof. We first show that if such a point exists then it is necessarily unique.
Assume that there exists two different such points ζ1 and ζ2, since X is a T0-
space there exists an open set U such that ζ1 ∈ U and ζ2 6∈ U, which is absurd
for ζ1 ∈ {ζ2}− and hence every neighborhood of ζ1 must contain ζ2 also.

To prove the existence let X be affine first. Then Z = V(a) for some ideal
a ⊂ A, since it is closed. But Z is also irreducible, then

√
a = p is a prime

ideal. Since Z = V(p) we have p ∈ Z and Z = {p}−. Now let X be any
scheme. There exists an open affine set U ⊆ X such that Z ∩U 6= ∅. Hence
Z∩U is a closed and irreducible subset of the affine scheme U, and there exists
a point ζ ∈ Z ∩U such that the closure in U of the set {ζ} is Z ∩U. Consider
now {ζ}− in X, this is the intersection of all closed sets containing the point ζ,
in particular Z is one of those closed sets, hence {ζ}− ⊆ Z. Now observe that
we can write Z as the following union of closed subsets

Z = {ζ}− ∪ (
(X \U) ∩ Z

)

being Z irreducible, and different from
(
(X \U) ∩ Z

)
, we can conclude that

Z = {ζ}−.

2.1.3 Distinguished Open Subsets Let s be a global section of the sheaf
OX. The distinguished open subset of X defined by s, denoted Xs, is the subset
of points p ∈ X such that the stalk sp of s at p is not contained in the maximal
ideal mp of the local ring Op. Observe that when X is affine, say X = Spec A,
the global section s is just an element of the ring A and the distinguished open
subset of X defined by s is just D(s), thus the terminology is consistent. The
next result will clarify the reason why we call Xs open.

Proposition (Exercise II.2.16 in Hartshorne, 1977). If U = Spec B is an open
affine subscheme of X, and if s is the restriction of s to B = Γ(U, OX|U), then the
intersection U ∩ Xs = D(s). In particular Xs is an open subset of X.

Proof. Indeed each point of U is given by a prime ideal p in B, and the local
ring Op is isomorphic to the localisation Bp. Hence p ∈ U ∩ Xs if and only if
s 6∈ p, that is p ∈ D(s). In particular Xs ∩U is an open set in U, therefore in X
also, for any open affine subset of X. Recalling that open affine subsets form
a base for the topology in X we conclude that Xs is a union of open subsets
hence it is open.
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Definition. Let X be a scheme. For any x ∈ X let Ox be the local ring at x,
and mx its maximal ideal. We define the residue field of X on x to be the field
k(x) = Ox/mx.

Remark. With a section s ∈ Γ(X, OX) one can define a sort of function, sending
every point x ∈ X to the value sx of s in the residue field k(x) on x. Even if this
function takes values on fields that vary from point to point, we can still give
sense at least to the locus where it vanishes. The set Xs is the complement of
this locus, so what we have proved is that this locus is closed.

Lemma. Let ( f , f #) : X → Y be a morphism of schemes, and let σ ∈ Γ(Y, OY). Then
f−1(Yσ) = Xs where s = f #

Y(σ) is the image of σ on the global sections of OX.

Proof. For every x ∈ X we have the following commutative diagram

Γ(Y, OY)
f #
Y //

²²

Γ(X, OX)

²²
OY, f (x)

f #
x // OX,x

where vertical arrows are localisation maps. Now f (x) ∈ Yσ if and only if the
stalk σf (x) of σ at f (x) is not contained in the maximal ideal m f (x) of the local
ring OY, f (x). Since f #

x is a local homomorphism this is equivalent to say that
f #
x (σf (x)) = f #

Y(σ)x is not in mx, which is precisely the condition for x ∈ Xs.

2.1.4 The Adjoint Property of Spec In §1.4 we have already observed that
Spec defines a contravariant functor from the category of Commutative Rings
to the category of Schemes, now the reader can convince himself that taking
global sections defines a contravariant functor Γ going in the opposite direc-
tion, we call it the global sections functor. From this point of view, the next The-
orem asserts that Spec and Γ are adjoint functors (see Mac Lane, 1998, Ch.IV
for more information about adjoint functors).

Theorem (I-40 in Eisenbud and Harris, 2000). Let A be a ring and let (X, OX)
be a scheme. Given a morphism f : X → Spec A, we have an associated map f # on
sheaves. Taking global sections we obtain a homomorphism A → Γ(X, OX). Thus
there is a natural map

ε : HomSch(X, Spec A) −→ HomRings

(
A, Γ(X, OX)

)

This map ε is bijective.
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Proof. We describe the inverse association. Set Y = Spec A, and consider a
ring homomorphism ϕ : A → Γ(X, OX). If x ∈ sp(X) is a point, the preimage
of the maximal ideal under the composition A → Γ(X, OX) → OX,x is a prime
ideal, so that ϕ induces a map of sets

η[ϕ] : sp(X) −→ sp(Y),

For any α ∈ A the preimage η[ϕ]−1(D(α)
)

is the set Xϕ(α), which we have
seen above is open. Thus η[ϕ] is continuous. Next we have to define a map of
sheaves η[ϕ]# and we can do it over a base for the topology. So let U = D(α)
and define the ring homomorphism η[ϕ]#U : OY(U) → η[ϕ]∗OX(U) to be the
composition

Aα −→ Γ(X, OX)ϕ(α) −→ OX
(
η[ϕ]−1(U)

)

obtained by localising ϕ (note that, over OX(Xϕ(α)), ϕ(α) defines an invertible
element). Localising further, we see that if η[ϕ](x) = p, then η[ϕ]# defines a
local map of local rings Ap → OX,x, and thus (η[ϕ], η[ϕ]#) is a morphism of
schemes. Clearly, the induced map satisfies ε (η[ϕ]) = η[ϕ]#Y = ϕ (just set
α = 1), to complete the proof let f : X → Y be any morphism of schemes and
do the above construction with ϕ = f #

Y. We need to show that in this way we
find again the morphism f , in other words that η [ε( f )] = f . First let x ∈ X be
any point and let U be any affine neighborhood of x. We have the following
diagram (which commutes by definition)

A // Γ(X, OX) //

&&LLLLLLLLLL
OX(U)

²²
OX,x

Recalling how morphisms of affine schemes are defined we can conclude
that η [ε( f )] = f at least as continuous maps. Again we take α ∈ A and
consider U = D(α), since f # is a morphism of sheaves we have also the com-
mutative diagram

A
f #
Y=ϕ

//

rY
²²

Γ(X, OX)

rX
²²

Aα
f #
U // OX

(
f−1(U)

)

Hence η [ε( f )]#U = (rX ◦ f #
Y)α = (rX)ϕ(α) ◦ ( f #

Y)α = f #
U, and we are done.
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Example (Initial and final object). The scheme Spec Z is a final object for the
category of schemes. This follows from the Theorem, recalling that Z is an
initial object for the category of rings.

“This is very important because it shows us that every scheme X is a kind
of fibered object, with one fibre for each prime p, and one over the generic
point of Spec Z. More concretely, this fibering is given by the function

x Â // char k(x)

associating to each x the characteristic of its residue field.”
taken from Mumford (1999, §II.2)

The scheme Spec(0) is given by the empty set equipped with the sheaf 0
sending ∅ 7→ 0. This is an initial object for the category of schemes. Indeed
the empty set is an initial object for topological spaces, and the unique contin-
uous map i : ∅ → sp(X) is equipped with the unique morphism of sheaves
i# : OX → 0.

2.1.5 A Criterion for Affineness We devote this subsection to the proof of
the following theorem, it will establish a criterion to decide when a scheme X
is affine.

Theorem (Exercise II.2.17 in Hartshorne, 1977). A scheme X is affine if and only
if there exists a finite set of global sections s1 . . . , sr ∈ Γ(X, OX), which generates the
unit ideal, such that for each i = 1, . . . , r the distinguished open subset Xsi is affine.

Proof. We only need to prove the “if” part. By the adjointness of Spec and
global sections above, the identity map of A = Γ(X, OX), which for psycho-
logical reasons we will denote ϕ : A → Γ(X, OX), induces a morphism of sche-
mes

( f , f #) : (X, OX) −→ Spec A

for which f−1(D(s)
)

= Xs for any s ∈ A. Since s1 . . . , sr generate the unit
ideal we can conclude that Xs1 , . . . , Xsr cover X, further for each i = 1, . . . , r
we know that Xsi = Spec A(i) is affine. Let s be any element of Γ(X, OX) and
consider the localisation of the restriction map given by

ρs : Γ(X, OX)s −→ OX(Xs)

We want to prove that it is an isomorphism, remember that the intersection
Xs ∩ Spec A(i) is given by D(s) ⊆ Spec A(i). To check injectivity take any
global section a ∈ Γ(X, OX) and assume that ρs(a/1) = 0. The restriction of a
to Xs ∩ Spec A(i) vanishes, so that there exists an integer ti such that sti a = 0.
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If we now define t to be the greatest among t1, . . . , tr we can conclude that
sta = 0 in Γ(X, OX), that is a/1 = 0. To see that ρs is surjective take any b in
OX(Xs), and let bij be the restriction of b to Xs ∩ Spec A(i) ∩ Spec A(j), so that

bij = aij/st in A(i)
sjs

= A(j)
sis

where the integer t is fixed because the covering is

finite. In the same ring we then have stbij = aij, and by construction the family
aii ∈ OX(Xsi) is coherent, so that there exists an element a ∈ Γ(X, OX) such
that the restriction of a to Xsi is aii. Now b is given by ρs(a/st).

Observe now that f defines a morphism fi : Xsi −→ Spec Asi that is in-
duced by ρsi , hence it is an isomorphism, and this proves that f itself is an
isomorphism.

2.1.6 Closed Immersions A closed immersion is a morphism f : Z → X of
schemes such that f induces a homeomorphism of sp(Z) onto a closed subset
of sp(X), and furthermore the induced map f # : OX → f∗OZ of sheaves on X
is surjective. A closed subscheme of a scheme X is an equivalence class of closed
immersions, where we say f : Z → X and f ′ : Z′ → X are equivalent if there
is an isomorphism i : Z′ → Z such that f ′ = f ◦ i.

To better understand this definition we can look at the affine case, so let
X = Spec A and Z = Spec B be affine schemes, and f : Z → X be induced by a
morphism of rings ϕ : A → B. In this situation we have already seen in §1.4.6
that f is a closed immersion if and only if ϕ is surjective. This in particular
implies that for any ideal a of A, the projection π : A → A/a induces a closed
immersion and that furthermore any affine closed subscheme of X arises in
this way. However consider the situation in which f : Z → An

k is a closed
immersion, but we don’t have any further information on Z. We clearly expect
Z to be given by some ideal a ⊆ k[x1, . . . , xn], in particular we expect Z to be
affine, and this is the content of the next result.

Proposition (Exercise II.3.11 in Hartshorne, 1977). Let X = Spec A be affine,
and let Z be any scheme. If f : Z → Spec A is a closed immersion then Z is affine.

Proof. If U ⊆ Z is an open affine subset, say U = Spec B then, since f is a
homeomorphism, there exists an open set V ⊆ X such that f−1(V) = U. Let
D(s) be an open basic subset of X contained in V, then f−1(D(s)

) ⊆ U and as
in §2.1.3 it is given by the open basic subset of Spec B defined by the image of
s, in particular it is an affine open subset. Therefore we have proved the fol-
lowing: any open affine subset of Z contains another open affine subset which
is given by the preimage of a basic subset of X, in other words there exist an
open covering of Z given by open affine subsets of the form f−1(D(si)

)
.

By adding some more si with f−1(D(si)
)

= ∅ if necessary, we may as-
sume further that the D(si) cover Spec A, which is quasi-compact. Hence a
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finite number of these open subsets will be enough to cover both X and Z,
furthermore we know by §1.1.4 that the elements si ∈ A generate the unit
ideal.

By adjunction f is induced by ϕ : A → Γ(Z, OZ) and f−1(D(si)
)

= Zϕ(si),
hence we have a finite set of elements ϕ(si) in Γ(Z, OZ) that generates the unit
ideal and such that the open subsets Zϕ(si) are affine. Now we can apply the
criterion above.

2.2 The Projective Spectrum of a Graded Ring

We begin from the classic construction of projective space (over k), going back
for a moment to where we started. On the set of (n + 1)-tuples (a0, . . . , an) of
elements of k, not all zero, we define an equivalence relation ∼ by setting

(a0, . . . , an) ∼ (a′0, . . . , a′n)

if there is a nonzero element λ ∈ k such that (a0, . . . , an) = λ(a′0, . . . , a′n). The
set of equivalence classes of ∼ in kn+1 \ {0} is the space we are interested in,
this can be described more geometrically as the set of all the lines through
the origin in kn+1. In our setup a line is a closed irreducible subset of the
affine space An+1

k and the origin is the maximal ideal (x0, . . . , xn); every line
is uniquely determined by its generic point and the generic point of a line
through the origin is a prime ideal, contained in (x0, . . . , xn) and generated by
linear forms. In particular it is generated by homogeneous polynomials, it turns
out that this property is the right one to retain for this construction to give rise
to a scheme.

2.2.1 Definition of Proj – Zariski Topology A graded ring is a ring S, to-
gether with a decomposition S =

⊕
d≥0 Sd of S into a direct sum of abelian

groups Sd, such that for any d, e ≥ 0, SdSe ⊆ Sd+e. An element of Sd is
called homogeneous element of degree d. Thus every element of S can be writ-
ten uniquely as a finite sum of homogeneous elements. An ideal a ⊆ S is
called homogeneous ideal if a =

⊕
d≥0(a ∩ Sd). As an example the polynomial

ring Z[x1, . . . , xn] is a graded ring by taking Sd to be the set of all linear com-
binations of monomials of total weight d. If S is a graded ring we denote by
S+ the ideal

⊕
d>0 Sd, observe that it is a prime ideal.

We define the set Proj S to be the set of all homogeneous prime ideals p

which do not contain all of S+, and introduce in this set the topology induced
by the inclusion Proj S ⊂ Spec S. Thus a closed subset of Proj S will be given
by the intersection Vh(E) = V(E) ∩ Proj S, where E is any subset of S; in
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other words it will consists of homogeneous prime ideals containing the set
E. We can therefore assume any element of E to be homogeneous because, by
definition, if a homogeneous ideal contains an element then it contains all of
its homogeneous components.

Proposition. With notations and definitions as above, let E be any subset of S con-
sisting of homogeneous elements and let a be the homogeneous ideal generated by E.
Then

i) Vh(E) = Vh(a) = Vh(
√

a), moreover Vh(a) = Vh(a+) where a+ = a∩ S+

ii) Vh(0) = Proj S, Vh(S+) = ∅

iii) if (Ei)i∈I is any family of subsets of S as above, then Vh (
⋃

Ei) =
⋂Vh (Ei)

iv) Vh(a∩ b) = Vh(ab) = Vh(a) ∪ Vh(b) for any homogeneous ideals a, b of A.

Proof. Given the analogy with §1.1.3 we only have to show the second part of
statement i). Since a+ ⊆ a we have the inclusion Vh(a) ⊆ Vh(a+). It remains
to prove the other. Let p ∈ Proj S be a prime ideal that contains a+. There is
an element α in S+ such that α 6∈ p, therefore for any homogeneous element of
degree zero β ∈ a we have αβ ∈ a+ ⊆ p and we can conclude that β ∈ p. This
proves that a ⊆ p.

2.2.2 Homogeneous Basic Open Sets The open sets corresponding to sets
E with just one element again will play a special role, observe however that
by the Proposition above we can assume E to be contained in S+. So for any
homogeneous α ∈ S+, we define the distinguished (or basic) open subset Dh(α)
of X = Proj S associated with α to be D(α) ∩ Proj S or equivalently to be the
complement of Vh(α). The distinguished open sets form a base for the Zariski
topology in the sense that any open set is a union of distinguished ones.

U = X \ Vh(E) = X \
(

⋂

α∈E
Vh(α)

)
=

⋃

α∈E
Dh(α)

Proposition. For each homogeneous α ∈ S+, let Dh(α) denote the distinguished
open subset of X = Proj S associated with α. Then for any homogeneous α, β ∈ S+
we have the following.

(a) Dh(α) ∩ Dh(β) = Dh(αβ)

(b) Dh(α) = ∅⇔ α is nilpotent

(c) Dh(α) ⊆ Dh(β) ⇔ α ∈ √
(β)
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This result follows easily from the analog in §1.1.4, however it can be useful
to remind the reader the following purely algebraic result concerning homo-
geneous nilpotent elements.

Lemma. The nilradical Nil(S) of a graded ring is the intersection of all homoge-
neous prime ideals of S. In particular Nil(S) is a homogeneous ideal.

Proof. A nilpotent element of S is contained in every prime ideal of S, in par-
ticular in every homogeneous prime ideal. Conversely if α ∈ S is not nilpo-
tent we can find a homogeneous prime ideal that doesn’t contain it applying
Zorn’s Lemma to the inductively ordered set

Σ =
{

a ⊆ S
∣∣∣∣

a is a homogeneous ideal
αn 6∈ a ∀n ∈ N

}

Note that Σ is not empty for it contains the zero ideal, and that the union of a
chain of homogeneous ideals is again a homogeneous ideal.

2.2.3 Algebra vs Topology In general there is not an homogeneous element
α ∈ S+ such that Dh(α) = Proj S, in other words in general Proj S is not a basic
open set, but at least we can characterise when it is the empty set.

Proposition (Exercise II.2.14 in Hartshorne, 1977). Let a and b be homogeneous
ideals of a graded ring S, then the following properties hold.

• Vh(a) ⊆ Vh(b) if and only if b+ ⊆
√

a;

• Proj S = ∅ if and only if every element of S+ is nilpotent;

• Vh(a) = ∅ if and only if S+ ⊆
√

a.

In particular if E is any subset of S consisting of homogeneous elements and a is the
homogeneous ideal generated by E, we have

• ⋃
α∈E Dh(α) = Proj S if and only if S+ ⊆

√
a.

Proof. The first statement is a consequence of the Lemma above, more pre-
cisely we have √

a =
⋂ {

p ∈ Vh(a)
}

while the other two follow from taking into account that Vh(0) = Proj S and
Vh(S+) = ∅ as in §2.2.1. To obtain the final remark instead, just recall that⋃

α∈E Dh(α) = Proj S \ Vh(a).
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2.2.4 The Scheme Structure over Proj – Projective Space Our goal now is
to define the structure of a scheme over Proj S, to this purpose we will show
first that we have defined a topological space locally homeomorphic to the
spectrum of a ring. The precise statement is the following, where for any
homogeneous element α ∈ S+ we denote by S(α) the subring of elements of
degree zero in the localised ring Sα.

Lemma (II.3.36 in Liu, 2002). Let S be a graded ring and α ∈ S+ be a homogeneous
element of degree r. Then

(a) there exists a canonical homeomorphism θ : Dh(α) → Spec S(α);

(b) if Dh(β) ⊆ Dh(α) then θ
(

Dh(β)
)

= D(m) where m = βr/αdeg β ∈ S(α);

(c) the canonical homomorphism S(α) → S(β) induces an isomorphism between the
localised rings

(
S(α)

)
m
∼= S(β).

The proof of this Lemma is based on the following remark: Proj S is a sub-
set of Spec S and for any homogeneous α ∈ S+ the basic open subset Dh(α) is
equal to the intersection Proj S ∩ D(α). Therefore we can define a continuous
function θ : Dh(α) → Spec S(α) as the restriction of the canonical map induced
by the inclusion S(α) → Sα.

Definition. Let S be a graded ring and let T be a multiplicative system con-
sisting of homogeneous elements of S. We define the homogeneous localisation
of S in T as the subring of elements of degree zero in the localised ring T−1S.
For each p ∈ Proj S, we define the ring S(p) to be the homogeneous localisation
of S in the multiplicative system consisting of all homogeneous elements of S
which are not in p.

Proposition. Let S be a graded ring and let A be the degree zero part of S. Then the
following properties define on X = Proj S a unique sheaf of rings OX such that the
resulting ringed space (X, OX) is a scheme.

(a) For any homogeneous α ∈ S+, we have OX
(

Dh(α)
)

= S(α),

(b) For any p ∈ Proj S, the stalk OX,p is isomorphic to the local ring S(p).

Further the scheme Proj S comes endowed with a natural morphism X → Spec A.

Proof. Among our references we find again two different ways of constructing
OX. The direct approach in Liu (2002, Proposition II.3.38) consists in observ-
ing that property (a) above characterises a sheaf as we have seen in §1.3 (the
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Theorem in there), provided that the gluing condition is satisfied. The more
geometric definition of Hartshorne (1977) is instead the following.

For any open subset U ⊆ Proj S, we define O(U) to be the set of functions
s : U → äp∈U S(p), such that s(p) ∈ S(p) for each p and such that s is locally
a quotient of elements of S: for each p ∈ U, there is a neighborhood V of p,
contained in U, and elements α, β ∈ S, of the same degree, such that for all
q ∈ V we have that β 6∈ q, and s(q) = α/β in S(p).

Observe that elements of A give rise in a natural way to global sections
of OX, this defines a homomorphism A → Γ(X, OX) that in turns defines the
natural morphism X → Spec A by the adjunction of §2.1.4.

Let A be any ring, we define projective n-space over A to be the projective
spectrum of the ring of polynomials A[x0, . . . , xn], that is

Pn
A = Proj A[x0, . . . , xn]

In view of the Proposition there is a natural affine covering of Pn
A given by

n + 1 copies of affine n-space over A, as follows

Pn
A = Dh(x0) ∪ · · · ∪ Dh(xn)

Where for i = 0, . . . , n we have

Dh(xi) = Spec A
[
x0/xi, . . . , x̂i/xi, . . . , xn/xi

]

2.2.5 Functorial Properties of Proj Now that we have learned how to con-
struct a scheme from a graded ring we are going to investigate possible func-
torial properties. Let ϕ : S → T be a graded homomorphism of graded rings
(preserving degrees) and let U ⊆ Proj T be the set of all homogeneous prime
ideals in T that do not contain the whole of ϕ(S+). Note that U is the comple-
ment of Vh

(
ϕ(S+)

)
, in particular it is an open set of Proj T.

Proposition (Exercise II.2.14 in Hartshorne, 1977). With notations and defini-
tions as above, ϕ determines a natural morphism ( f , f #) : U → Proj S. Further the
continuous function f satisfies

i) If s ∈ S+ then f−1(Dh(s)
)

= Dh
(

ϕ(s)
)
.

ii) If a is an homogeneous ideal of S, then f−1(Vh(a)
)

= Vh(ae) ∩U.

Proof. We start with the continuous function g : Spec T → Spec S defined by ϕ
between the spectra, and observe that U is precisely the open set g−1(Proj S).
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Then we define f to be the restriction of g, from U to Proj S. For any homoge-
neous s ∈ S+ we have the obvious inclusion g−1(Dh(s)

) ⊆ U, therefore

f−1(Dh(s)
)

= g−1(D(s)
) ∩ Proj T = Dh

(
ϕ(s)

)

Now we have to define a morphism of sheaves f # : OY → f∗OX|U where
Y = Proj S and X = Proj T. For any homogeneous s ∈ S+ consider the basic
open set Dh(s) and using i) above define f #

s : S(s) → T(ϕ(s)) to be the localisa-
tion of ϕ.

Unfortunately Proj doesn’t satisfy all the good functorial properties of Spec,
it is already worrying that the induced morphism f is not defined on the whole
of Proj T but that’s not the only reason of concern. For instance f can be an iso-
morphism even when ϕ is not.

Lemma (Exercise II.2.14 in Hartshorne, 1977). Let S and T be two graded rings
and let ϕ : S → T be a graded homomorphism of graded rings (preserving degrees).
Assume that ϕd : Sd → Td is an isomorphism for all d ≥ d0, where d0 is an integer.
Then U = Proj T and the induced morphism f : Proj T → Proj S is an isomorphism.

Proof. The open set U is given by the complement of Vh
(

ϕ(S+)
)
, and ϕ(S+)

contains the ideal a =
⊕

d≥d0
Td. We know from §2.2.1 that Vh(a) is the same

as Vh(
√

a), but
√

a contains T+, indeed for any homogeneous t ∈ T+ there is
an integer n such that the degree of tn is greater than d0. In other words we
have the following, which proves that U = Proj T.

Vh
(

ϕ(S+)
) ⊆ Vh(a) = Vh(

√
a) ⊆ Vh(T+) = ∅

Now for any homogeneous s ∈ S+ we have seen in the Proposition above
that f−1(Dh(s)

)
= Dh

(
ϕ(s)

)
and the localisation of ϕ induces a morphism of

affine schemes, namely the restriction

f |Dh(s) : Spec T(ϕ(s)) −→ Spec S(s)

But in our hypotheses the localisation S(s) → T(ϕ(s)) is an isomorphism, there-
fore the restriction of f to any basic open set is an isomorphism, and so f itself
is an isomorphism.

2.2.6 Surjective Homomorphisms and Closed Immersions Let A be a ring
and let R = A[x0, . . . , xn]. Consider the case of a surjective homomorphism
of graded rings ϕ : R → R/I where I is a homogeneous ideal of R. People
working in Algebraic Geometry are mainly interested in objects like Proj R/I,
which are called projective schemes. The reason for the name is that the homo-
morphism ϕ induces a closed immersion into projective space. More precisely
we have the following result.
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Proposition (Exercise II.3.12 in Hartshorne, 1977). Let ϕ : S → T be a surjec-
tive graded homomorphism of graded rings (preserving degrees). Then the natural
morphism f : Proj T → Proj S determined by ϕ is a closed immersion.

Proof. We have seen how f is defined in §2.2.5 above, but clearly we have to
check that actually the open set U is the whole of Proj T. So let q ∈ Proj T,
then there exists an element t ∈ T+ such that t 6∈ q; since ϕ is surjective we
have t = ϕ(s) and this shows that ϕ(S+) * q, that is q ∈ U. Next we observe
that, with the same notations as in §2.2.5, g is a homeomorphism onto the
closed subset V(ker ϕ) of Spec T and since f is just the restriction of g we
can conclude immediately that f is bijective. Moreover for any homogeneous
ideal b ⊆ T we have

f
(Vh(b)

)
= g

(V(b)
) ∩ Proj S = V (

g−1(b)
) ∩ Proj S

which proves f is closed. Now we have to prove that the morphism of sche-
mes f # is surjective, but in fact for any s ∈ S we have f #

s : S(s) → T(ϕ(s)) is
surjective.

Remark (Projective Schemes and Homogeneous Ideals). According to the re-
sult just proved any homogeneous ideal I ⊆ A[x0, . . . , xn] defines a projective
scheme, but we have to be careful here because different homogeneous ideals
can give rise to the same projective scheme. If for example we define the ideal
I′ to be the sum

⊕
d≥d0

Id where d0 is an integer, the projection R/I′ → R/I
defines an isomorphism in all large enough degrees. We can then apply the
Lemma above and conclude that Proj R/I′ is in fact isomorphic to Proj R/I.

Let X = Proj T and Y = Proj S be projective schemes. We may ask under
which conditions a homomorphism of graded rings ϕ : S → T defines a mor-
phism of schemes f : X → Y on the whole of X. With the notations of §2.2.5
we are asking for U to be the whole of Proj T. We have seen above that this is
the case when ϕd is an isomorphism for all large enough d (in which case f is
an isomorphism), or also when ϕ is surjective (in which case f is a closed im-
mersion). Another obvious possibility is to have the homomorphism ϕd to be
surjective for all large enough d, in which case f will be a closed immersion.
Indeed we have the factorisation S → Im ϕ → T where the first homomor-
phism induces a closed immersion and the second an isomorphism. It turns
out that there are not so many other possibilities, we have in fact the following
characterisation.

Lemma. Let S and T be two graded rings, with T Noetherian, and let ϕ : S → T
be a graded homomorphism of graded rings (preserving degrees). Then the induced
morphism of schemes f is defined on the whole of Proj T if and only if T r

+ ⊆ S e
+ for

some integer r
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Proof. We only have to recall some earlier results. The morphism f is defined
on the whole of Proj T if and only if Vh

(
ϕ(S+)

)
= ∅, and this happens if and

only if T+ is contained in
√

a where a ⊆ T is the ideal generated by ϕ(S+).
Since T is Noetherian the latter is possible if and only if T r

+ ⊆ a for some
integer r.

2.3 Gluing Constructions

The idea of gluing together different schemes is very natural, after all by defi-
nition a scheme is obtained by gluing together affine schemes. Nevertheless it
turns out to be quite difficult to grasp, mainly because it involves a complete
change of point of view: so far we had a scheme and we gradually restricted
our attention to more specific subschemes, now we are “only” given the sub-
schemes. In other words it seems as we were neglecting to understand the
scheme as a whole. Of course this is not the case, but it will take some time for
the beginner to be aware of it, for now let him think through the definitions
and the constructions that we are about to describe. We need to be precise,
in particular we need a couple of general results to be applied in the greatest
possible variety of applications, so we take nothing for granted and we begin
with sheaves.

2.3.1 Gluing Sheaves Temporarily we let X be a topological space, we fix
an open covering {Ui} of X and we assume to be given for each i a sheaf Fi
on Ui, and for each i, j an isomorphism

ϕij : Fi|Ui∩Uj −→ Fj|Ui∩Uj

To fix notations we recall that ϕij is given by a collection of isomorphisms, one
for each open set W ⊆ Ui ∩Uj

ϕijW : Fi(W) −→ Fj(W)

therefore it makes sense to speak about the restriction of ϕij to the open set
Ui ∩Uj ∩Uk, this is given by the collection ϕijW for W ⊆ Ui ∩Uj ∩Uk. We will
denote it again with ϕij.

Now we need to make a couple of assumptions on the isomorphisms ϕij:
first we want ϕii to be the identity of the sheaf Fi for each i, and secondly on
the intersection to Ui ∩Uj ∩Uk, we want to have ϕik = ϕjk ◦ ϕij, for each i, j, k.
The latter is called cocycle condition, from cohomology theory, its meaning is
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better expressed by a diagram that we assume to be commutative

Fi|Ui∩Uj∩Uk

ϕik //

ϕij
²²

Fk|Ui∩Uj∩Uk

Fj|Ui∩Uj∩Uk

ϕjk

77ooooooooooo

Proposition (Exercise II.1.22 in Hartshorne, 1977). Let X be a topological space
and let {Ui} be an open covering of X. Assume that we are given for each i a sheaf Fi
on Ui, and for each i, j an isomorphism

ϕij : Fi|Ui∩Uj −→ Fj|Ui∩Uj

such that for each i, ϕii is the identity of the sheaf Fi and for each i, j, k, on the
intersection Ui ∩Uj ∩Uk we have ϕik = ϕjk ◦ ϕij.

Then there exists a unique sheaf F on X, together with isomorphisms

ψi : F |Ui → Fi

such that for each i, j, ψj = ϕij ◦ ψi on Ui ∩Uj. We say loosely that F is obtained by
gluing the sheaves Fi via the isomorphisms ϕij.

Proof. If such a sheaf exists it is necessarily unique up to isomorphism, in-
deed assume we have two such sheaves F and H , equipped with isomor-
phisms ψi : F |Ui → Fi and ηi : H |Ui → Fi, in order to define an isomorphism
θ : F → H we consider first the isomorphisms

θi = η−1
i ◦ ψi : F |Ui −→ H |Ui

now for any open subset U ⊆ X, and for any section s ∈ F (U), the family
{θiU∩Ui

(s|U∩Ui)} is a coherent family for the sheaf H and therefore it defines
a unique element θ(s) in H (U). To check coherence observe that on Ui ∩Uj
we have

θi = η−1
i ◦ ψi = η−1

i ◦ ϕ−1
ij ◦ ϕij ◦ ψi

= (ϕij ◦ ηi)−1 ◦ (ϕij ◦ ψi) = η−1
j ◦ ψj = θj

The morphism θ is in fact an isomorphism, indeed we can define its inverse
ρ : H → F simply considering the family of isomorphisms ρi = ψ−1

i ◦ ηi.

Now we come to the actual construction of a sheaf F . For each open subset
V ⊆ X, define F (V) as the following inverse limit

F (V) = lim←−
i

Fi(V ∩Ui)
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recall that this is defined to be the set of all the families (si) ∈ ∏i Fi(V ∩Ui)
such that

ϕijV∩Ui∩Uj
(si|V∩Ui∩Uj) = sj|V∩Ui∩Uj

It is straightforward to prove that F is a sheaf. Next for each open subset
V ⊆ Ui ⊆ X define ψiV : F (V) → Fi(V) as the natural projection map from
the inverse limit. It is clear that in this way we define a morphism of sheaves
ψi : F |Ui → Fi, and also that ψj = ϕij ◦ ψi on Ui ∩Uj. In order to show that
ψi is an isomorphism it is enough to prove that ψiV is an isomorphism, that is
injective and surjective. Take any section s ∈ Fi(V) = Fi(V ∩Ui) and define
the family (sj) ∈ ∏j Fj(V ∩Uj) as sj = ϕijV∩Uj

(s|V∩Uj); this is an element z

of F (V) such that ψiV(z) = s. Hence ψiV is surjective it remains to prove it is
injective. Let z = (sj) ∈ F (V) such that ψiV(z) = 0, that is si = 0. Then for
each j 6= i we have V ∩Ui ∩Uj = V ∩Uj, so that sj = ϕij(si) = ϕij(0) = 0,
hence z = 0.

The reader will have noticed that the process of gluing sheaves consists
almost exclusively in some clever use of the sheaf axiom. Bearing this in mind
will help to understand every gluing construction, since sheaves play a central
role in the theory of schemes.

2.3.2 Gluing Morphisms What we want to do now is to glue morphisms of
schemes. We start with a couple of trivial but really important remarks: given
a morphism of schemes f : X → Y, for any open set U of X we can define the
restriction of f simply as the composition

U Â Ä i // X
f

// Y

that is f |U = f ◦ i, where i is the open immersion of (U, OX|U) in (X, OX). This
is completely obvious when speaking about continuous functions, and the
reader may find it as well obvious in dealing with schemes, that is considering
the extra structure given by the sheaf of rings, but it is in fact really useful to
keep in mind.
There is also another way of restricting a function f , this time starting with
any open set V of Y. It is again trivial to observe that there exists a unique
function f |V : f−1(V) → V such that the following diagram commutes

f−1(V)
f |V

//
_Ä

i
²²

V_Ä

j
²²

X
f

// Y
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That is f | f−1(V) = j ◦ f |V . But again I would like to stress that we are deal-
ing with schemes, and invite the reader to think about what happens to the
structure sheaf.

Proposition. Let X and Y be schemes, and let {Ui} be an open covering of X. As-
sume to be given a family of morphisms fi : Ui → Y such that the restrictions of fi
and f j to Ui ∩Uj are the same for any i, j. Then there exists a unique morphism of
schemes f : X → Y such that f |Ui = fi.

Proof. We want to define a morphism ( f , f #) : X → Y such that the following
diagram is commutative

Ui
fi //

Ä _

si
²²

Y

X
f

??~
~

~
~

First define f : sp(X) → sp(Y) as follows: for any x ∈ X there exists i such
that x ∈ Ui, set f (x) = fi(x). This is the only possible definition compatible
with the diagram and in view of our assumptions f is in fact a well defined
continuous function.

For any open set W ⊆ Y we have now to define a ring homomorphism
f #
W : OY(W) → OX

(
f−1(W)

)
such that the induced diagram of sheaves over Y

is commutative

OY(W)
f #
W //____

fi
#
W

((PPPPPPPPPPPPP
OX

(
f−1(W)

)

si
#
f−1(W)

²²

OX( f−1(W) ∩Ui)

remember that si
#
f−1(W) is the restriction map, since si is an inclusion, and for

any i we have

fi
#
W : OY(W) −→ OX

(
f−1
i (W)

)
= OX

(
f−1(W) ∩Ui

)

Since the restrictions of fi and f j to Ui ∩Uj are the same for any i, j we have
the following commutative diagram of morphisms of schemes

Ui ∩Uj
Â Ä //

Ä _

²²

Ui

fi
²²

Uj
f j // Y
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which induces the following commutative diagram on sections of the struc-
ture sheaves

OY(W)
fi

#
W //

f j
#
W ²²

OX( f−1(W) ∩Ui)

res
²²

OX( f−1(W) ∩Uj)
res // OX( f−1(W) ∩Ui ∩Uj)

Therefore for any element s ∈ OY(W) the set
{

fi
#
W(s) ∈ OX( f−1(W) ∩Ui)

}

is a coherent family of sections and hence defines a unique element f #
W(s)

in OX
(

f−1(W)
)
. Again this is the only possible definition for f #

W compatible
with the diagram and it is now immediate to check that it produces in fact a
homomorphism.

Corollary. Let X and Y be schemes. Assume to be given a family of morphisms
fi : Ui → Vi such that

(1) {Ui} is an open covering of X and {Vi} is an open covering of Y;

(2) f−1
i (Vi ∩Vj) = Ui ∩Uj for any i and j;

(3) fi|Vi∩Vj = f j|Vi∩Vj .

Then there exists a unique morphism of schemes f : X → Y such that f |Vi = fi.

Proof. We want to define a morphism f : X → Y such that the following dia-
gram is commutative

Ui
fi //

Ä _

si
²²

ViÄ _
ri

²²
X

f
//___ Y

that is ri ◦ fi = f ◦ si = f |Ui , hence it is enough to glue together the morphisms
ri ◦ fi. We have to check that these morphisms agree on the overlaps Ui ∩Uj,
so consider the following diagram where g = fi|Vi∩Vj = f j|Vi∩Vj

Ui ∩Uj
Â Ä

αj //
_Ä

αi

²²

gÂÂ??
Uj f j

ÂÂ?
?

Vi ∩Vj
Â Ä

β j

//
_Ä

βi

²²

Vj
_Ä

rj

²²

Ui

fi
ÂÂ?

??

Vi
Â Ä ri // Y
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this is commutative by assumptions (2) and (3), hence

(ri ◦ fi)|Ui∩Uj = ri ◦ fi ◦ αi = rj ◦ f j ◦ αj = (rj ◦ f j)|Ui∩Uj

so the family of morphisms ri ◦ fi verifies the hypotheses of the Proposition
above.

2.3.3 The Gluing Lemma We are now arriving to the central construction,
the actual Gluing Lemma. We assume to be given a family of schemes {Xi}
(possible infinite) that we want to use to construct a scheme X, more precisely
we want each Xi to be identified with an open subscheme of X, in other words
we want an open immersion ψi : Xi → X for each i. First, we need to un-
derstand what this means in terms of topological spaces: since we want our
object to be endowed with a sort of injection maps we will have to consider
the sum of the topological spaces sp(Xi), that is the disjoint union äi sp(Xi).
This embeds each Xi as an open set but leaves them disjoint, while in general
we will want the image of Xi to intersect that of Xj. For this reason we will
need to know also something about the local structure on X, in other words
on each Xi we want to find an open set Uij to play in some sense the role of
Xi ∩ Xj.

Lemma (Exercise II.2.12 in Hartshorne, 1977). Let {Xi} be a family of schemes
(possible infinite). On any of these schemes Xi, suppose given for each j an open
subscheme Uij ⊆ Xi and an isomorphism of schemes ϕij : Uij → Uji such that

(a) Uii = Xi and ϕii is the identity morphism;

(b) for each i, j, ϕji = ϕ−1
ij ;

(c) for each i, j, k, ϕij(Uij ∩Uik) = Uji ∩Ujk;

(d) ϕik = ϕjk ◦ ϕij on Uij ∩Uik.

Then there exists a unique scheme X, equipped with an open immersion ψi : Xi → X
for each i, such that the open sets ψi(Xi) cover X, for any j the image ψi(Uij) is the
intersection ψi(Xi) ∩ ψj(Xj) and ψi = ψj ◦ ϕij on Uij.

We say that X is obtained by gluing the schemes Xi along the isomorphisms
ϕij.

Proof. First we prove that if such a scheme exists it is necessarily unique up to
isomorphism. So assume there exist two schemes X and Y, equipped with an
open immersion ψi : Xi → X and ξi : Xi → Y for each i. We restrict these two
immersions on the codomain to obtain two isomorphisms ψ̃i : Xi → Ui and
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ξ̃i : Xi → Vi where obviously we have denoted Ui = ψi(Xi) and Vi = ξi(Xi).
Now we define a family of isomorphisms fi : Ui → Vi as the composition

Ui
ψ̃i
−1

// Xi
ξ̃i // Vi

This family satisfies the hypotheses of the Corollary in §2.3.2 and therefore
glue together into an isomorphism f : X → Y. Indeed {Ui} is an open cover-
ing of X and {Vi} is an open covering of Y, further for any i and j we have

f−1
i (Vi ∩Vj) = f−1

i
(
ξi(Xi) ∩ ξ j(Xj)

)
= f−1

i
(
ξi(Uij)

)

= ψ̃i(Uij) = ψi(Xi) ∩ ψj(Xj) = Ui ∩Uj

now we know that on Uij we have both ψi = ψj ◦ ϕij and ξi = ξ j ◦ ϕij, hence
the following diagram is commutative

ψi(Xi) ∩ ψj(Xj)
ψ̃i
−1

//

ψ̃j
−1

²²

Uij

ξ̃i
²²

ϕij

uulllllllllllllllllll

Uji
ξ̃ j // ξi(Xi) ∩ ξ j(Xj)

And this is equivalent to say fi|Vi∩Vj = f j|Vi∩Vj .

Now we come to the actual construction of a scheme X such as in the state-
ment, at first we construct a topological space and then we endow it with a
sheaf of rings. So let Y be the disjoint union of the topological spaces Xi and
define on Y the equivalence relation

x ∼ y ⇐⇒ ϕij(x) = y

Let X be the quotient space Y/ ∼ and let π : Y → X be the projection. A
subset U ⊆ X is open if and only if π−1(U) is open in Y. Moreover π−1(U) is
open in Y if and only if π−1(U) ∩ Xi is open in Xi for all i. In particular π(Xi)
is an open set of X, since

π−1(π(Xi)
) ∩ Xj = Uji for all j

it follows that the composition of the natural injection of Xi in the disjoint
union Y with the projection to the quotient π is a homeomorphism of Xi into
an open subset of X, in other words we define ψi : Xi → X as

Xi
Â Ä // äj Xj

π // Y/ ∼
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In this way the open sets ψi(Xi) cover X, for any j the image ψi(Uij) is the
intersection ψi(Xi) ∩ ψj(Xj) and ψi = ψj ◦ ϕij on Uij.

Now we set Wi = ψi(Xi) and consider the homeomorphism ψ̃i : Xi → Wi.
We define a sheaf of rings Fi on Wi as ψ̃i∗OXi , in other words we define for
any U ⊆ Wi

Fi(U) = OXi

(
ψ−1

i (U)
)

For any open set V in Xj contained in Uji we have an isomorphism

ϕ#
ijV

: OXj(V) −→ OXi

(
ϕ−1

ij (V)
)

Observe that ψ̃j
−1(U) ⊆ Uji for any U ⊆ Wi ∩Wj, moreover we have

ϕ−1
ij

(
ψ̃j
−1(U)

)
= (ψ̃j ◦ ϕij)−1(U) = ψ̃i

−1(U)

hence for any U ⊆ Wi ∩Wj we have an isomorphism of rings

ϕ#
ijψ̃j

−1(U)
: OXj

(
ψ̃j
−1(U)

) −→ OXi

(
ψ̃i
−1(U)

)

So that ϕ#
ij induces an isomorphism of sheaves

σji : Fj|Wi∩Wj −→ Fi|Wi∩Wj

Now the isomorphisms σij satisfy the following properties: for each i, σii is
the identity because ϕ#

ii is the identity, and for any three indices i, j, k, on the
intersection Wi ∩Wj ∩Wk we have σik = σjk ◦ σij, that is for any open subset
U ⊆ Wi ∩Wj ∩Wk the following diagram is commutative

Fi(U)
σijV //

σikV $$JJJJJJJJJ
Fj(U)

σjkV
²²

Fk(U)

Indeed writing down what this means in terms of ϕij, and denoting by V the
open set ψ−1

i (U) we obtain the diagram

OXi

(
ψ−1

i (U)
) ϕ#

jiV //

ϕ#
kiV ''NNNNNNNNNNNNNN

OXj

(
ψ−1

j (U)
)

ϕ#
kj

²²

OXj

(
ϕ−1

ji
(
ψ−1

i (U)
))

OXk

(
ψ−1

k (U)
)

OXj

(
ϕ−1

ki

(
ψ−1

i (U)
))
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which is commutative since we are assuming ϕki = ϕji ◦ ϕkj as morphisms of
schemes; observe that ϕ#

kj is defined over ϕ−1
ji

(
ψ−1

i (U)
)
.

Thus the sheaves Fi verify the gluing conditions, and therefore there exists
a unique sheaf OX on X, together with isomorphisms ψ#

i : F |Ui → Fi, such
that for each i, j, ψ#

j = σij ◦ ψ#
i on Ui ∩Uj.

The locally ringed space (X, OX) is obviously a scheme (for any point there
is an open neighborhood which is a scheme) and moreover it is endowed with
an open immersion ψi : Xi → X for each i, such that the open sets ψi(Xi)
cover X, for any j the image ψi(Uij) is the intersection ψi(Xi) ∩ ψj(Xj) and
ψi = ψj ◦ ϕij on Uij.

2.3.4 Another construction of Projective Space Let k be an algebraically
closed field. We will construct the scheme Pn

k by means of a gluing argument.
Start with the ring k[x0, . . . , xn] and form the localisation

A = k[x0, x−1
0 , . . . , xn, x−1

n ]

Recall that the ring A has a natural grading, each grade being spanned by
monomial fractions of total degree n, we are interested only in the degree zero
part, that is we are interested in the subalgebra spanned by fractions of mono-
mials of the same degree, which we call B. Now we want to glue together
n + 1 copies of affine n-space, we will do it by taking n + 1 subalgebras of B,
each one given by a polynomial ring in n indeterminates.

For any i = 0, . . . , n consider the subalgebra Bi spanned by the monomials

x0/xi, . . . , x̂i/xi, . . . , xn/xi

where the hat denotes as usual an element omitted from the list. Then Bi is a
polynomial ring in n indeterminates and Spec Bi is affine n-space. Further for
i 6= j we have

Bi
[
(xj/xi)−1] = Bj

[
(xi/xj)−1]

as subsets of B. If we now use the identity maps as gluing maps the compat-
ibility conditions for the Gluing Lemma are obvious. We leave to the reader
to convince himself that this construction gives rise to the same scheme (up to
isomorphism) as in §2.2.4.

2.3.5 Gluing Affine Lines Let k be an algebraically closed field. We start
with two copies of the affine line A1

k, which we distinguish by setting X1 =
Spec k[ s ] and X2 = Spec k[ t ]. Let U12 ⊂ X1 be the basic open set D( s ) and
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let U21 ⊂ X2 be D( t ). Let ϕ12 : U12 → U21 be induced by the isomorphism of
rings

k[t, t−1] −→ k[s, s−1]

sending t to s, and let τ12 be induced by the isomorphism sending t to s−1.
We denote by X the scheme obtained by gluing together X1 and X2 along the
isomorphisms ϕij and Y the scheme obtained by gluing along τij instead.

By the Gluing Lemma these two schemes are equipped with open im-
mersions ψi : Xi → X and ξi : Xi → Y such that X = ψ1(X1) ∪ ψ2(X2) and
Y = ξ1(X1) ∪ ξ2(X2). They are not isomorphic, in fact Y is the projective line
P1

k while X is the affine line with a doubled origin.
To verify rigorously that X and Y are not isomorphic we compute the

global sections of their structure sheafs. An element α ∈ Γ(X, OX) is given
by a coherent family

{(
F( s ), ψ1(X1)

)
,
(
G( t ), ψ2(X2)

)}

where coherence means compatibility with the isomorphism ϕ12 above, so
that we must have G( s ) = F( s ). Therefore α is uniquely determined as a
polynomial in one variable, that is Γ(X, OX) ∼= k[ s ]. Analogously an element
β ∈ Γ(Y, OY) is given by two polynomials F and G, but this time we must
have G( s−1 ) = F( s ) and this is only possible if F and G are the same element
of k. Hence Γ(Y, OY) ∼= k.

X is the first example of a scheme which is not separated over k.

2.3.6 Gluing over a Base for the Topology In §2.3.2 we have learned how
to glue morphisms, we were given an open covering {Ui} of X and mor-
phisms fi : Ui → Y agreeing on the intersections Ui ∩ Uj. Nevertheless we
have also learned in §1.3 that on a scheme it is often possible to define struc-
tures starting with a base for the topology, only in this case agreement must
be required on every open basic set contained in the intersection. The next
results will clarify what we actually need.

Proposition. Let X and Y be schemes, and let B be a base for the topology on sp(X).
Assume to have a family of morphisms ϕ[U] : U → Y, one for each open basic set
U ∈ B, such that if V ∈ B is contained in U we have

ϕ[U]|V = ϕ[V].

Then there exists a unique morphism of schemes ϕ : X → Y such that ϕ|U = ϕ[U]
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Proof. On topological spaces define ϕ : sp(X) → sp(Y) as follows: for any
x ∈ X there exists an open neighborhood U ∈ B of x, set ϕ(x) = ϕ[U](x),
in view of our assumptions this definition makes sense and gives rise to a
continuous function.

We have now to define a morphism of sheaves ϕ# : OY → ϕ∗OX so let
W ⊆ Y be any open set, we are looking for a homomorphism

ϕ#
W : OY(W) −→ OX

(
ϕ−1(W)

)
.

For any basic open set U of X such that U ⊆ ϕ−1(W) we have a morphism

ϕ[U]
#
W

: OY(W) −→ OX|U
(

ϕ−1
[U](W)

)
= OX

(
ϕ−1(W) ∩U

)
= OX(U)

And any time V ⊆ U we have the following commutative diagram

OY(W)
ϕ[U]

#
W //

ϕ[V]
#
W %%KKKKKKKKK

OX(U)

res
²²

OX(V)

which is induced on sheaves by the relation ϕ[V] = ϕ[U]|V = ϕ[U] ◦ i[V], where
i[V] : V ↪→ U is the inclusion. Now for any element s ∈ OY(W) the family of
sections {

ϕ[U]
#
W

(s) ∈ OX(U)
∣∣ U ∈ B, U ⊆ ϕ−1(W)

}

defines a unique element of OX
(

ϕ−1(W)
)
. It is now immediate to check that

this definition is in fact a homomorphism.

Corollary. Let X and Y be schemes, let B be a base for the topology on sp(X) and
let {UW}W∈B be an open covering of Y such that UV ⊆ UW whenever V ⊆ W.
Assume to have a family of morphisms f[W] : W → UW , one for each open basic set
W ∈ B, such that if V ∈ B is contained in W we have

i) f−1
[W](UV) = V

ii) f[W]|UV = f[V]

Then there exists a unique morphism of schemes f : X → Y such that f |UW = f[W].

Proof. For any W ∈ B let iW denote the inclusion UW ↪→ Y. The reader should
convince himself that the family g[W] = iW ◦ f[W] satisfy the hypotheses of the
Proposition above.
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2.4 Reduced, Integral and Noetherian Schemes

2.4.1 Reduced Schemes A scheme (X, OX) is reduced if for every open set
U ⊆ X, the ring OX(U) is reduced, that is it has no nilpotent elements. We
want to prove that this is equivalent to the stalk OX,x being a reduced local
ring for any x ∈ X, but first we need to recall some commutative algebra.

Lemma. For a ring A, the following are equivalent

i) A is a reduced ring;

ii) Ap is a reduced ring for all prime ideal p ⊂ A;

iii) Am is a reduced ring for all maximal ideal m ⊂ A.

Proof. This is an immediate consequence of Corollary 3.12 in Atiyah and Mac-
donald (1969), which states that if Nil A is the nilradical of A, the nilradical of
S−1A is S−1 Nil A for any multiplicatively closed set S ⊂ A. Bearing in mind
this result there is only to prove that iii) implies i).

Let a ∈ A and let a = ann(a) = {x ∈ A | xa = 0}. Let m a maximal ideal
containing a and assume that an = 0 for some n. Then in Am we have that a
is nilpotent, that is a = 0. Hence there exist b 6∈ m such that ba = 0, but in
particular b 6∈ a and we can conclude a = 0.

Proposition (Exercise II.2.3 in Hartshorne, 1977). The scheme (X, OX) is reduced
if and only if for every x ∈ X, the local ring OX,x has no nilpotent elements.

Proof. First observe that if {Uα} is a base for the topology in X then (X, OX) is
reduced if and only if OX(Uα) is a reduced ring for all α. Now affine open sets
are a base for the topology of any scheme, hence (X, OX) is reduced if and only
if OX(U) is a reduced ring for any affine open set U and this, by the previous
lemma, happens if and only if OX,x is a reduced ring for every x ∈ U.

2.4.2 Associated Reduced Scheme To any scheme X we can associate a re-
duced scheme X̃, having the same underlying topological space, and equipped
with a closed immersion X̃ → X, we call it the reduced scheme associated to X.
For instance when X = Spec A is affine, we can consider X̃ = Spec A/ Nil A,
and the projection morphism A → A/ Nil A will define the required closed
immersion.

Proposition (Exercise II.2.3 in Hartshorne, 1977). Let X be any scheme. Then
there exists a reduced scheme X̃, having the same underlying topological space as
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X, equipped with a closed immersion r : X̃ → X and with the following universal
property

X̃
r

²²
W

f
//

θ

88

X

For any morphism f : W → X, with W reduced, there exists a unique morphism
θ : W → X̃ such that f is obtained by the composition r ◦ θ.

Proof. The construction goes as follows. On the topological space sp(X), let
OX̃ be the sheaf associated to the B-sheaf (U = Spec A) 7→ A/ Nil A, where
B is the base for the topology of X given by all the open affine subsets. Then
(sp(X), OX̃) is a scheme, indeed it is enough to observe that Spec A/ Nil A is
naturally homeomorphic to Spec A for any ring A. Observe now that the fam-
ily of morphisms defined on any open affine subset of sp(X) by the projection
A → A/ Nil A, satisfies the gluing hypotheses of §2.3.6 (the Corollary) and
therefore gives rise to a closed immersion r as required.

Given any morphism f : W → X we have for each open affine subset
U ⊆ X an induced homomorphism f #

U : OX(U) → OW
(

f−1(U)
)
, whose ker-

nel contains the nilradical of OX(U) since W is reduced. Hence there exist a
unique θ#

U such that

OX(U)

r#
U

²²

f #
U // OW

(
f−1(U)

)

OX̃(U)
θ#

U

88ppppppppppp

This defines a unique morphism of sheaves θ# and eventually a unique mor-
phism of schemes θ as required.

2.4.3 Reduced Induced Subscheme Structure Let (X, OX) be any scheme
and let Z ⊆ X be a closed subset. We can define over Z a sheaf of rings OZ
which makes it into a reduced scheme, moreover (Z, OZ) will come equipped
with a closed immersion c : Z → X, we call this the reduced induced subscheme
structure on Z. If X = Spec A is affine then Z = V(a) for some ideal a and
is naturally homeomorphic to Spec A/a (see §1.1.6), furthermore we can take
the ideal a to be the intersection of all the prime ideals contained in Z, which
we denote I(Z), as in §1.1.3. The affine scheme Spec A/ I(Y) is a reduced
scheme whose underlying topological space is Z, and it is endowed with a
closed immersion induced by the projection homomorphism A → A/ I(Y).
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Proposition (Exercise II.3.11 in Hartshorne, 1977). Let (X, OX) be any scheme
and let Z ⊆ X be a closed subset. Then there exists a sheaf of rings OZ over Z which
makes it into a reduced scheme, endowed with a closed immersion c : Z → X, and
satisfying the following universal property

(Z, F )

i
²²

Z c //

ξ
77

X

For any scheme (Z, F ), with underlying topological space Z, endowed with a closed
immersion i, there exists a unique closed immersion ξ such that iξ = c.

Proof. If X is any scheme we can repeat the previous construction on any open
affine subset Ui of X, this defines an affine scheme Zi = Z ∩Ui and there is
to prove that the schemes Zi glue together, which can be found in Hartshorne
(1977, Example II.3.2.6).

Observe now that when X = Spec A is affine, (Z, F ) is the spectrum of
A/a for some ideal a and Z = Spec A/

√
a, therefore ξ is necessarily induced

by the projection homomorphism A/a → A/
√

a. This proves in particular
that the reduced induced subscheme structure on Z coincides with the struc-
ture of reduced scheme associated to (Z, F ), and that ξ coincides with the
closed immersion r of the previous Proposition.

2.4.4 Integral Schemes A scheme X is integral if for every open set U ⊆ X,
the ring OX(U) is an integral domain, or equivalently if for every x ∈ X, the
local ring OX,x is an integral domain.

According to Hartshorne (1977, Proposition II.3.1) a scheme is integral if
and only if it is both reduced and irreducible, where we say X is irreducible
if its topological space is irreducible. We can then use the results in §2.1.2
to conclude that an integral scheme has a unique generic point ξ, this is a
point such that X = {ξ}−. For any other point x ∈ X there is a canonical
homomorphism OX,x → OX,ξ , which is given by the localisation in a prime
ideal. Indeed let U = Spec A be any open affine neighborhood of x, then U
contains ξ also and both the points correspond to prime ideals, pξ and px, of A
such that pξ ⊆ px.

Proposition (II.4.18 in Liu, 2002). Let X be an integral scheme. Then for any open
subset U of X, and for any point x ∈ U, the homomorphisms OX(U) → OX,x and
OX,x → OX,ξ are injective.
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Proof. Let s ∈ OX(U) be a section such that sx = 0. Then there exists an
open neighborhood W of x such that s|W = 0. For any open affine subset
V = Spec A of U consider the restriction s|V and let D(a) be any basic open set
contained in V ∩W, which is not empty because X is irreducible (see §1.2.1).
Now the restriction A → Aa is injective because A is an integral domain, hence
s|V = 0. This happens for any open affine subset of U, therefore s = 0. The
injectivity of OX,x → OX,ξ , results from the injectivity of the localisation of an
integral domain.

2.4.5 Field of Rational Functions The local ring Oξ of the generic point ξ
of an integral scheme X is a field. Indeed observe that Oξ is defined to be the
following direct limit

Oξ = lim−→
U⊂X

OX(U) = lim−→
U affine

OX(U)

If fξ ∈ Oξ , then fξ is the equivalence class of a couple (U, f ) where U is an
open affine set and f ∈ OX(U). Since OX(U) is an integral domain f defines a
non-empty distinguished open subset D( f ) of U. Now OX

(
D( f )

)
= OX(U) f ,

hence the couple
(

D( f ), f−1) represents the element f−1
ξ in Oξ .

Lemma (Exercise II.3.6 in Hartshorne, 1977). Let X be an integral scheme with
generic point ξ, and let U = Spec A be any open affine subset of X. Then the restric-
tion homomorphism OX(U) → OX,x induces an isomorphism Frac A ∼= OX,ξ .

Proof. The point ξ is also the generic point of U, and OX,ξ = OU,ξ . It is enough
now to observe that ξ corresponds to the zero ideal.

Proposition (II.4.18 in Liu, 2002). Let X be an integral scheme. Then by identifying
OX(U) and OX,x to sub-rings of OX,ξ , we have

OX(U) =
⋂

x∈U
OX,x

Proof. By covering U with affine open subsets, we may assume that U is affine,
say U = Spec A . Let γ ∈ Frac A be contained in all of the localisations Ap

for every p ∈ Spec A. Let I be the ideal {a ∈ A | aγ ∈ A}, then recalling the
definition of localisation for every p there exists a ∈ I \ p. But then I is not
contained in any prime ideal, and therefore it is the whole of A. In particular
1 ∈ I, so that γ ∈ A.

Definition. Let X be an integral scheme with generic point ξ. We denote the
field OX,ξ by K(X). An element of K(X) is called a rational function on X. We
call K(X) the field of rational functions or function field of X.
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We say that f ∈ K(X) is regular at x ∈ X if f ∈ OX,x. The Proposition
above affirms that a rational function which is regular at every point of U is
contained in OX(U).

Example (Rational functions on affine n-space). If k is algebraically closed then
An

k , affine n-space over k, is an integral affine scheme. Its generic point corre-
sponds to the zero ideal, its field of functions to the ring of polynomial frac-
tions. A rational function is thus given by the quotient of two polynomials, it
is regular on the whole space if and only if it is given by a single polynomial.

Example (Rational functions on Projective Space). Projective n-space Pn
k is an

integral scheme, its generic point corresponds to the zero ideal of any of the
n + 1 distinguished affine spaces

Dh(xi) = Spec k
[
x0/xi, . . . , x̂i/xi, . . . , xn/xi

]

The field of rational functions on Pn
k is given by the subalgebra of the field

Frac k[x0, . . . , xn] consisting of fractions of polynomials of the same degree. A
rational function is regular on the whole of Pn

k if and only if it is given by an
element of k.

2.4.6 Noetherian Schemes It is well known that the polynomial ring over
a field is a Noetherian ring, this is the famous Hilbert’s Basis Theorem which
you can find for instance in Atiyah and Macdonald (1969) as Theorem 7.5 or in
Chapter 2 of Cox, Little, and O’Shea (1997). The previous two very geometric
and familiar examples justify therefore the following definition.

Definition. A scheme X is locally Noetherian if it can be covered by open affine
subsets Spec Ai, where each Ai is a Noetherian ring. X is Noetherian if it is
locally Noetherian and quasi-compact. Equivalently, X is Noetherian if it can
be covered by a finite number of open affine subsets Spec Ai, with each Ai a
Noetherian ring.

“Note that in this definition we do not require that every open affine subset
be the spectrum of a Noetherian ring. So while it is obvious from the definition
that the spectrum of a Noetherian ring is a Noetherian sche-me, the converse
is not obvious. It is a question of showing that the Noetherian property is a
local property.”

taken from Hartshorne (1977, §II.3)
It turns out that in fact it is, for the proof see Hartshorne (1977, Proposi-
tion II.3.2).
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2.4.7 Zariski Spaces A topological space X is a Zariski space if it is Noe-
therian and every (nonempty) closed irreducible subset Z of X has a unique
generic point, that is a point ζ such that Z = {ζ}−.

If X is a Noetherian scheme then sp(X) is a Zariski space, this follows by
the discussion above and by §2.1.2. Any Zariski space satisfies the axiom T0,
indeed given two different points x, y ∈ X then the closures {x}− and {y}−
must be different, that is either x 6∈ {y}− or y 6∈ {x}−.

Proposition (Exercise II.3.17 in Hartshorne, 1977). Any minimal nonempty closed
subset of a Zariski space consists of one point. We call these closed points, if X is a
Noetherian scheme these are precisely the closed points of X.

Proof. It is clear that a minimal nonempty closed subset M is also irreducible,
then there exists a unique generic point ξ for M. Now let x ∈ M be any point,
so that {x}− ⊆ M. Since M is minimal this inclusion can’t be strict, hence
{x}− = {ξ}− and we can conclude x = ξ by the uniqueness of ξ.

Definition. If x0, x1 are points of a topological space X, and if x0 ∈ {x1}−, then
we say that x1 specialises to x0, written x1 Ã x0. We also say x0 is a specialisation
of x1, or that x1 is a generalisation of x0.

If X is a Zariski space then the minimal points, for the partial ordering
determined by setting x1 > x0 if x1 Ã x0, are closed points, and the maximal
points are the generic points of the irreducible components of X (see §1.2.3).
Further a closed subset contains every specialisation of any of its points (we
say closed subsets are stable under specialisation). Similarly, open sets are stable
under generalisation.
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Chapter 3

Attributes of Morphisms

By the end of this chapter we will have a definition of algebraic variety. As
a matter of fact it took us a long time to arrive at this stage, but after all we
started developing the theory from the very basic concepts. It is in fact true
that algebraic varieties are schemes, but this statement is as far away from
the real nature of varieties as in differential geometry is saying “manifolds
are topological spaces.” Starting from the main examples we have seen so
far, above all affine and projective space, we will now identify other special
properties that these have. The key step in here is the choice of a base, a fixed
scheme over which to state every result. This introduces a certain level of
relativity in the subject, a scheme will have a certain property over another
and there will be to check if the same property holds when the base changes.
For this we will need the powerful tool of fibered products, by means of which
we will be able to construct inverse images and fibres of a morphism as well
as products of varieties.

3.1 Schemes of Finite Type

3.1.1 The Category of Schemes over a Field In what follows S will be a
fixed scheme that we call the base scheme. We formally define a scheme over
S, or S-scheme, as a scheme X together with a structure morphism π : X → S.
When S = Spec A, we also say scheme over A, or A-scheme (instead of scheme
over S) and A is called base ring. A morphism of schemes over S will be a
commutative diagram

X
f

//

ÂÂ?
??

??
??

? Y

ÄÄ¡¡
¡¡

¡¡
¡

S
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As usual we will write simply f with this diagram understood. In this cat-
egory objects are couples (X, π) where X is a scheme and π is a morphism,
in particular any scheme X can be regarded as a scheme over S in as many
ways as the morphisms between X and S, and even S itself is not in general a
scheme over S in a unique way. Observe however that any scheme carries a
unique structure of Z-scheme.

Let now k be a field and let V be an affine variety, that is the spectrum of
a finitely generated k-algebra A = k[x1, . . . , xn]/p where p is a prime ideal.
Then the inclusion of k in A = Γ(X, OX) induces a morphism of schemes
V → Spec k. Similarly any homogeneous ideal I in k[x0, . . . , xn] defines a pro-
jective scheme W endowed with a natural morphism W → Spec k as in §2.2.4.
Slightly more generally if X is a scheme over k the structure morphism of X
will be induced by a homomorphism k → Γ(X, OX), so that we have the fol-
lowing characterisation.
Remark. X is a scheme over k if and only if OX(U) is a k-algebra (i.e. it contains
a field isomorphic to k) for any nonempty open subset U ⊆ X, and restriction
maps are morphisms of k-algebras (i.e. they are the identity over k). Moreover
the structure morphism is in this case induced by the inclusion of the field k
in Γ(X, OX).

3.1.2 Morphisms of Finite Type In the category of schemes over S proper-
ties of the structure morphism will reflect properties of the object, and vicev-
ersa the geometry of the object will help our understanding of the structure
morphism. If for instance we go back to the schemes V and W above, we see
that from an abstract point of view they are not merely schemes over k but
their structure is richer. The affine variety V is the spectrum of a finitely gen-
erated k-algebra and the projective scheme W has a finite covering consisting of
spectra of finitely generated k-algebras. To describe this situation we make a
general definition concerning morphisms of schemes.

Definition. Let f : X → Y be a morphism of schemes. We say that an affine
open subset V = Spec B of Y has the property (FG) if f−1(V) can be covered
by open affine subsets Uj = Spec Aj, where each Aj is a finitely generated B-
algebra. We say it has the property (FFG) if in addition f−1(V) can be covered
by a finite number of the Uj.

The morphism f is locally of finite type if there exist a covering of Y by open
affine subsets that have the property (FG). It is of finite type if the covering of Y
consists of open sets which have the property (FFG).

If S is a fixed scheme, a scheme X is locally of finite type over S, or of finite
type over S if it is an S-scheme and the structure morphism has the required
property.
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Observe that we have defined an attribute of the morphism f by means of
an open affine covering of Y. This is a typical situation, we have a property
P that in general applies whenever Y is affine but we require it to hold over
an open covering only. The attribute of f will then be called local on the base
if P holds for every open affine subset of Y. The word base here refers to Y,
indeed in principle every morphism of schemes is a structure morphism, in
other words given f : X → Y we can always regard X as a scheme over Y. In
the rest of this section we are going to prove that for a morphism to be of finite
type is local on the base, we begin with morphisms locally of finite type.

Proposition (Exercise II.3.1 in Hartshorne, 1977). A morphism f : X → Y is
locally of finite type if and only if for every open affine subset V = Spec B of Y,
f−1(V) can be covered by open affine subsets Uj = Spec Aj, where each Aj is a
finitely generated B-algebra.

Proof. The “if” part follows from the definition, so assuming f is locally of
finite type we have to prove that every open affine subset V = Spec B of Y has
the property (FG). First note that if Y = Spec B is affine and has the property
(FG) then every distinguished open subset of Y has the property (FG). Indeed
we can cover X by open affine subsets that are spectra of finitely generated
B-algebras, and f−1(D(b)

)
= Xb for any b ∈ B. Let U = Spec R be any of the

affine open sets that cover X, then U ∩ f−1(D(b)
)

= Spec Rβ where β is the
restriction of b to the open set U, in other words β is the image of b under the
morphism which makes R into a B-algebra. Since R was a finitely generated
B-algebra we have that Rβ is now a finitely generated Bb-algebra. This proves
that we can cover f−1(D(b)

)
with affine open sets that are spectra of finitely

generated Bb-algebras, that is D(b) has the property (FG).
Going back to the general case we can say that there is a base for the topol-

ogy of Y consisting of open affine sets with the property (FG). So we have re-
duced to proving the following statement: let Y = Spec B be an affine scheme,
which can be covered by open affine subsets that have the property (FG); then
Y has the property (FG).

Let V = Spec A be an open affine subset of Y with the property (FG). Then
Yb ⊆ V for some b ∈ B, and Yb ∩ V = D(a) where a is the restriction of b to
A = OY(V); in particular Aa ∼= Bb. By the previous discussion D(a) has the
property (FG), which means that we can cover f−1(D(a)

)
= f−1(Yb ∩V) with

open affine subsets of X that are spectra of finitely generated Aa-algebras, i.e.
Bb-algebras. Note now that Bb is a finitely generated B-algebra, it is in fact
isomorphic to the quotient B[x]/(bx − 1), hence we can cover f−1(D(a)

)
=

f−1(Yb ∩V) with open affine subsets of X that are spectra of finitely generated
B-algebras. We can do this construction over an affine open covering of Y, so

69



Marco Lo Giudice 3. Attributes of Morphisms

we can conclude that Y has the property (FG).

Lemma (Exercise II.3.3 in Hartshorne, 1977). The morphism f is locally of finite
type, if and only if for every open affine subset V = Spec B ⊆ Y, and every open
affine subset U = Spec A ⊆ f−1(V), A is a finitely generated B-algebra.

Proof. Again the “if” part follows from the definition. Moreover, in view of the
previous Proposition we can assume Y to be affine, say Y = Spec B. By defin-
ition we can cover X by open affine sets that are spectra of finitely generated
B-algebras.

Note that if A is a finitely generated B-algebra, then for any s ∈ A the
ring As is again a finitely generated B-algebra. Now we have a base for the
topology of X consisting of spectra of finitely generated B-algebras.

So we have reduced to proving the following: let X = Spec A be an affine
scheme, which can be covered by open subsets that are spectra of finitely gen-
erated B-algebras. Then A is a finitely generated B-algebra. Let U = Spec R be
an open subset of X, with R a finitely generated B-algebra. With the same no-
tations as in §2.1.3 we have that for some s ∈ A, Xs ⊆ U. Let r be the restriction
of s to R = OX(U), then Xs = U∩Xs = D(r). In particular As = OX(Xs) ∼= Rr,
hence it is a finitely generated B-algebra. So we can cover X by open subsets
Xs ∼= Spec As with As a finitely generated B-algebra. Since X is quasi-compact,
a finite number will do.

Now we have reduced to a purely algebraic problem: A is a ring, f1, . . . , fr
are a finite number of elements of A, which generate the unit ideal, and each
localisation A fi is a finitely generated B-algebra. We have to show A is a fi-
nitely generated B-algebra.

Since f1, . . . , fr generate the unit ideal we have 1 = ∑ ci fi then we can say

1 =
r

∑
i=1

hi f α
i for any α ∈ N

where hi is a polynomial in c1, . . . , cr, f1, . . . , fr (one can prove it by induction).
We have also that each localisation A fi is a finitely generated B-algebra, which
means that for any i = 1, . . . , r

A fi
∼= B

[
(xi1/ f βi1

i ), . . . , (xisi / f
βisi
i )

]

Let g ∈ A, then for any i = 1, . . . , r in the ring A fi we have g = gi/ f γi
i ,

where gi is a polynomial in xi1, . . . xisi . This means that in A we have

f αi
i g− f δi

i gi = 0 for some integers αi, δi ∈ N
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Without loss of generality we can assume αi = α, independent from i. Then
we have the following relation in A.

r

∑
i=1

hi

(
f α
i g− f δi

i gi

)
= 0

that is

g =
r

∑
i=1

gihi f δi
i

where on the right-hand side we have a polynomial in a finite set of elements
of A, and this finite set doesn’t depend on g. Thus A is a finitely generated
B-algebra.

3.1.3 Quasi-compact Morphisms We are now almost ready to prove that
for a morphism being of finite type is a local property. We just need a prelim-
inary result about quasi-compactness. A morphism f : X → Y of schemes is
quasi-compact if there is a covering of Y by open affine sets Vi such that f−1(Vi)
is quasi-compact for each i. Also this attribute is local on the base.

Lemma (Exercise II.3.2 in Hartshorne, 1977). A morphism f is quasi-compact if
and only if for every open affine subset V ⊆ Y, f−1(V) is quasi-compact.

Proof. First note that if X is quasi-compact then Xs is quasi-compact for any
s ∈ Γ(X, OX). Indeed we can cover X by a finite number of affine sets, so that
if U is one of these the intersection Xs ∩U is affine as in §2.1.3, and Xs will be
therefore a finite union of affine sets.

It follows that if Y = Spec B is affine and X is quasi-compact then the
preimage f−1(D(b)

)
is quasi compact for any b ∈ B; to check this recall that

f−1(D(b)
)

= Xb where b is the image of b on the global sections of OX. Thus
we have a base for the topology in Y consisting of affine subsets Vi such that
f−1(Vi) is quasi-compact for each i.

So we have reduced to prove the following: if Y is affine and it can be
covered by affine open sets Vi such that f−1(Vi) is quasi-compact for each i
then f−1(Y) = X is quasi-compact. Since Y is affine it is quasi-compact, hence
we can find a finite sub-covering of Y, this means that X can be covered by a
finite number of quasi-compact sets, that is X is quasi-compact.

Proposition (Exercise II.3.3 in Hartshorne, 1977). A morphism f : X → Y is of
finite type if and only if it is locally of finite type and quasi-compact. In particular f
is of finite type if and only if every open affine subset V ⊆ Y has the property (FFG).
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Proof. It is enough to observe that an affine open subset V of Y has the prop-
erty (FFG) if and only if it has (FG) and f−1(V) is quasi-compact. Now the
result follows from the analogue for morphisms locally of finite type (§3.1.2)
and the previous Lemma.

3.1.4 Properties of Morphisms of Finite Type A closed immersion is a
morphism of finite type. To see this let f : X → Y be a closed immersion
and assume first X and Y to be affine. In this case f is given by a surjective
morphism of rings ϕ : A → A/a where A/a is a finitely generated A-algebra,
in fact a finite A-algebra. In the general case for any open affine set U ⊆ Y
the restriction f−1(U) → U is a closed immersion, hence f−1(U) is also affine
(this proves more, namely that a closed immersion is a finite morphism).

Proposition (Exercise II.3.13 in Hartshorne, 1977). Properties of morphisms of
finite type.

(a) A quasi-compact open immersion is of finite type.

(b) A composition of two morphisms of finite type is of finite type.

(c) If f : X → Y is a morphism of finite type, and if Y is Noetherian, then X is
Noetherian.

Proof. Let f be a quasi compact open immersion, by the Proposition above we
only need to prove that it is locally of finite type. Since it is an open immersion
X is isomorphic to (U, OY|U) where U is an open set of Y. Now if Spec B ⊆ Y
is an open affine subset of Y we can cover U ∩ Spec B with open basic sets, that
will be Spec Bα for some α ∈ B, and Bα = B[ x ]/(αx− 1) is a finitely generated
B-algebra.

To prove (b) consider the composition X → Y → Z and observe that it
is enough to consider Z to be affine. Assuming Z = Spec C we have a finite
covering of Y by open affine sets Spec Bi where Bi is a finitely generated C-
algebra. Now for any i we have a finite covering of f−1(Spec Bi) by open
affine sets Spec Aij where Aij is a finitely generated Bi-algebra. Putting all
things together we obtain a finite covering of X by open affine sets that are
spectra of finitely generated C-algebras.

Statement (c) is immediate: we can cover Y by a finite number of open
affine sets that are spectra of Noetherian rings, so we can cover X by a finite
number of spectra of finitely generated algebras over Noetherian rings, that
are Noetherian rings by Hilbert’s basis Theorem.

72



3.2 Product of Schemes Marco Lo Giudice

Lemma (Exercise II.3.13 in Hartshorne, 1977). Let f : X → Y and g : Y → Z be
morphisms of schemes. If g ◦ f is of finite type and f is quasi compact then f is of
finite type.

Proof. We look at the affine case first, so let A → B → C be a composition of
morphisms of rings such that C is a finitely generated A-algebra. Then there
exists a finite set of elements x1, . . . , xn ∈ C such that any c ∈ C can be written
as a polynomial in x1, . . . , xn with coefficients in A, in fact in the image of A
via the composition of morphisms above, hence the same expression can be
regarded as having coefficients in B that is C is a finitely generated B-algebra.

If now the composition X
f−→ Y

g−→ Z is of finite type, we have to find
a covering of Y consisting of open affine sets with the property (FFG), this is
the case if we can find such a covering for g−1(U) for any open affine subset
U ⊆ Z. Hence we have reduced to prove the statement assuming Z = Spec C
affine. Since f is quasi compact, for any open affine subset V = Spec B of Y
we can cover f−1(V) with a finite number of open affine subsets Spec Ai of X.
Since the composition g ◦ f is of finite type, each ring Ai is a finitely generated
C-algebra as in §3.1.2, and we are again in the affine case.

If X is a scheme of finite type over k then there is a finite covering of X con-
sisting of open affine subsets that are spectra of finitely generated k-algebras.
Note that in particular X is Noetherian. In view of all the previous results we
have the following characterisation.

Remark. X is a scheme of finite type over k if and only if X is quasi-compact,
OX(U) is a finitely generated k-algebra for any nonempty open affine set U of
X and restriction maps are morphisms of k-algebras. Moreover the structure
morphism is in this case induced by the inclusion of the field k in Γ(X, OX).

Let X and Y be schemes of finite type over k. Then every morphism of
schemes f : X → Y is quasi-compact. Indeed sp(X) is a Noetherian topo-
logical space, so that every open subset U ⊆ X is quasi compact (see §1.2.5).
Therefore every morphism of schemes over k from X to Y is a morphism of
finite type, by the Lemma above.

3.2 Product of Schemes

3.2.1 Fibered Product The most useful construction one can do with sche-
mes is probably the less intuitive. The beginner will face some difficulty in
accepting the idea of a product which doesn’t seem to behave like a product,
and indeed is not! The main Theorem we are about to describe asserts in fact
that the category of schemes has pull-backs, the reason why we call product a

73



Marco Lo Giudice 3. Attributes of Morphisms

pull-back is mainly because this construction allows us to define the product
of varieties, which is notoriously difficult to define unambiguously. On the
other hand with the same construction we can pull-back families along a mor-
phism or give sense to the expression base extension. All these different aspects
are discussed in the literature, in fact fibered products are to be found in every
book about schemes, here we will follow Eisenbud and Harris (2000, §I.3).

Definition. Let ϕ : X → S and ψ : Y → S be morphisms of schemes. The fibered
product of X and Y with respect to S is a scheme X ×S Y equipped with two
morphisms p1 : X×S Y → X and p2 : X×S Y → Y which make a commutative
diagram with the given morphisms and with the following universal property

Z

g

ÂÂ

f

&&
θ

##
X×S Y

p2
²²

p1
// X
ϕ

²²
Y

ψ
// S

For any scheme Z equipped with morphisms f and g which make a commu-
tative diagram with ϕ and ψ, there exists a unique morphism θ : Z → X ×S Y
such that the diagram above is commutative.

“There is one exceedingly important and very elementary existence theo-
rem in the category of schemes. This asserts that arbitrary fibered products
exist.”

taken from Mumford (1999, §II.2)
This theorem is stated in any book about schemes, the proof is a gluing ar-
gument which is often left to the reader, but the whole of it can be found in
Hartshorne (1977, Theorem II.3.3). If all the schemes involved are affine, say
X = Spec A, Y = Spec B and S = Spec R, the fibered product is also affine and
is given by

X×S Y = Spec A⊗R B

Further in the general case the following statements are also true, they are an
almost immediate consequence of the definition.

(1). Let U ⊆ X and V ⊆ Y be open sets then

U ×S V ∼= p−1
1 (U) ∩ p−1

2 (V)

that is the open subscheme Z ⊆ X ×S Y defined as Z = p−1
1 (U) ∩ p−1

2 (V) is
isomorphic to the product of U and V over S.
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(2). Let W ⊆ S and define U = ϕ−1(W), V = ψ−1(W) then

U ×W V ∼= p−1
1

(
ϕ−1(W)

)
= p−1

2
(
ψ−1(W)

)

that is the product of U and V over W is isomorphic to the open subscheme of
X×S Y defined as p−1

1

(
ϕ−1(W)

)
.

(3). The two projection maps p1 and p2 are globally monic, which means that if
Z is any scheme and f , g : Z → X×S Y is a couple of parallel morphisms such
that p1 f = p1g and p2 f = p2g then f = g. To be precise we have the equality
( f , f #) = (g, g#), in particular this implies that p1 and p2 are globally monic as
continuous maps.

3.2.2 Product of Morphisms We can use the fibered product to define an
absolute product by taking S to be Spec Z, that is the terminal object in the
category of schemes. This makes sense in every context, but this high level of
generality loses us some geometric intuition.
Example (In which the absolute product of nonempty sets is empty).

Spec Z/(m)× Spec Z/(n)

This is defined to be the spectrum of Z/(m)⊗Z/(n) = Z/(m, n), hence when
(m, n) = 1 the absolute product is empty.

If however we work in the category of schemes over a field k these prob-
lems do not arise. Here the absolute product will be the fibered product over
Spec k, and since a k-algebra always contains a field isomorphic to k, the prod-
uct of two nonempty schemes over k will always be nonempty.

More generally, if S is a fixed scheme, in the category of schemes over S
we have a terminal object given by S itself and it is therefore very natural to
define an absolute product as the fibered product over S. Here we are also
able to construct the product of morphisms. Let f : X → Z and g : Y → H be
morphisms of S-schemes, then we have the following commutative diagram

X×Y
p1 //

p2

²²

ÂÂ
X f

ÂÂ?
??

Z× H π1
//

π2

²²

Z

²²
Y

g ÂÂ?
??

H // S

The morphisms f p1 and gp2 make a commutative diagram with Z → S and
H → S, hence by the universal property of Z × H there exists a unique mor-
phism f × g such that π1 ◦ f × g = f p1 and π2 ◦ f × g = gp2.
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3.2.3 Base Extensions If we have a morphism S′ → S we can define a base
extension, that is a functor from the category of schemes over S to the category
of schemes over S′, by pull-back. The situation is the following:

X

²²
S′ // S

note that in case S and S′ were spectra of fields k and k′ respectively, this
configuration is possible if and only if k′ is a field extension of k. For any S-
scheme X we define a scheme over S′ as X ×S S′, and for any morphism of
S-schemes f : X → Z we define a morphism of S′-schemes as f × idS′ . It is an
easy exercise (that we leave to the reader) to check that in this way we obtain
in fact a functor.

Definition. Let P be a property of morphisms. We say that P is stable under
base extension if any pull-back of any morphism satisfying P satisfies P . This
amounts to saying the following, let ϕ : X → S and ψ : S′ → S be morphisms
of schemes and construct their fibered product

X×S S′

p2
²²

p1 // X
ϕ

²²
S′

ψ
// S

then P is stable under base extension if and only if p2 satisfies P whenever
ϕ does.

We would like to prove now that closed immersions are stable under base
extension, before doing so however we need a preliminary lemma.

Lemma (Exercise III.3.1 in Liu, 2002). Let f : Z → X be a morphism of schemes.
Let {Ui}i∈I be an open covering of X. For each i consider the morphism obtained by
f by restriction as follows

fi : f−1(Ui) −→ Ui

then f is a closed immersion if and only if fi is a closed immersion for all i.

Proof. First the topological statement: f is a homeomorphism onto a closed
subset of X if and only if fi is a homeomorphism onto a closed subset of Ui for
all i. We only need to prove one implication, so assume that fi is a homeomor-
phism onto a closed subset of Ui, then clearly f is injective. Moreover f (Z) is
a closed subset of X, indeed

X \ f (Z) =
⋃

i

(
Ui \ Im fi

)
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that is X \ f (Z) is a union of open subsets, hence it is open. The continuous
function f is then a homeomorphism onto f (Z) because for any open subset
U ⊆ Z we have f (U) =

⋃
i fi(U ∩Ui) is open in f (Z).

Next we look at the induced morphism of sheaves. We have the following
equality

fi∗
(
OZ

∣∣∣ f−1(Ui)

)
= ( f∗OZ)

∣∣Ui

which proves that f∗ is surjective if and only if fi∗ is surjective for all i.

Proposition (Exercise II.3.11 in Hartshorne, 1977). Closed immersions are stable
under base extension.

Proof. With reference to the previews diagram assume all the schemes in-
volved are affine, so let S = Spec R, S′ = Spec R′ and X = Spec A. In this case
that diagram is induced by the following diagram of ring homomorphisms

R
ϕ

²²

ψ
// R′

p2
²²

A
p1 // A⊗R R′

What we have to prove is that if ϕ is surjective then p2 is surjective also
(follows from §1.4.6). Let therefore ϕ be the projection to a quotient, that is
A = R/a for some ideal a ⊆ R, then the fibered product is given by the prime
spectrum of R′ ⊗R R/a = R′/ae where the extension of a is made via ψ. The
commutativity of the diagram now ensure us that p2 is also the canonical pro-
jection.

Assume now only S to be affine, then if ϕ is a closed immersion X also is
affine (we proved this in §2.1.6). We can then cover S′ by open affine subsets
and use the previous Lemma to check that p2 is therefore a closed immersion.
The general case, when all the three schemes are not assumed to be affine,
follows by covering S by open affine sets.

3.2.4 Inverse Image Scheme Let f : X → Y be a morphism of schemes and
let i : C → Y be a closed immersion. The previous proposition allows us to
define the inverse image scheme of C, which will be a closed subscheme of X,
indeed we can pull-back the closed immersion i along f and we will have in
this way a closed immersion j : Z → X. We only need to prove the following
result.

Lemma. The underlying topological space of Z is homeomorphic to the closed subset
f−1(C) of X.

77



Marco Lo Giudice 3. Attributes of Morphisms

Proof. It is enough to consider the affine case, the general case will then follow
by means of open affine coverings. The situation is the following

X×Y C
j

²²

p1 // C

i
²²

X
f

// Y

where X ×Y C is the scheme Z and since closed immersions are stable under
base extension j is a closed immersion. In the affine case this diagram is in-
duced by the following diagram of homomorphisms of rings

A
π

²²

ϕ
// B

p
²²

A/a
ϕ

// B/ae

where ϕ : A → B induces f . In §1.4.1 we have seen that the closed subset
f−1(C) of X is given by V(ae), hence the conclusion.

This is perhaps the most misleading case, to call product an inverse image
is indeed not intuitive at all, but nonetheless the construction is by means of
what we have agreed to call fibered product. To add some confusion observe
that open immersions too are stable under base extension, indeed the usual
diagram

f−1(U)
_Ä

²²

f |U
// U_Ä

²²
X

f
// Y

verifies the universal property of a fibered product, that is f−1(U) ∼= X×Y U.

3.2.5 Fibers of a Morphism Another very important application of fibered
products is the definition of fibers of a morphism. If y ∈ Y is a closed point we
can of course define the fiber of f over y as above, but we want to be able to
consider any point so we need the following result.

Lemma (Exercise II.2.7 in Hartshorne, 1977). Let K be any field. To give a mor-
phism of Spec K to X it is equivalent to give a point x ∈ X and an inclusion map
k(x) → K.
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Proof. Let f : Spec K → X. Since Spec K is made up by a single point we see
that, as a morphism of topological spaces, this is equivalent to give a point x
of sp(X). The sheaf f∗(OSpec K) is a skyscraper sheaf, and on the stalk at x the
map f # : Ox → K is a local homomorphism, hence it induces an inclusion map
k(x) → K. Conversely such an inclusion map is always induced by a local
homomorphism on the stalk at x, and this defines a morphism of sheaves
from OX to the skyscraper sheaf whose stalk at x is K.

Let now y ∈ Y be any point (not necessarily closed), k(y) be the residue
field of y, and let Spec k(y) → Y be the natural morphism of the Lemma. Then
we define the fiber of the morphism f over the point y to be the scheme

Xy = X×Y Spec k(y)

We want to prove that this definition coincides with the purely topological
one.

Proposition (Exercise II.3.10 in Hartshorne, 1977). If f : X → Y is a morphism
of schemes, and y ∈ Y is a point, then sp(Xy) is homeomorphic to f−1(y) with the
induced topology.

Proof. It is enough to consider the affine case, the general case will then follow
by means of open affine coverings. The situation is the following

A

²²

ϕ
// B

²²
Frac(A/p) // B⊗A Frac(A/p)

where ϕ : A → B induces f , and p is the prime ideal of A corresponding to y.
In this case we have the following canonical isomorphisms of A-modules

B⊗A Frac(A/p) ∼= B⊗A Ap/pAp
∼= Bp/pBp

∼= S−1(B/pe)

Note that Bp is given by S−1B where S is the multiplicatively closed subset
ϕ(A \ p); besides the submodule pBp happen to be an ideal of the ring Bp.
Now f−1(y) is given by the set of prime ideals q ⊆ B such that ϕ−1(q) = p,
and this is precisely the set of prime ideals such that q∩ S = ∅ and pe ⊆ q.

3.2.6 Further Properties of Morphisms of Finite Type Fibered products
are actually another general tool to construct schemes, therefore properties
of schemes that are preserved by this construction will be always desirable.
In here we examine the behaviour of morphisms of finite type, carry on the
account in §3.1.4.
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Proposition (Exercise II.3.13 in Hartshorne, 1977). The following are properties
of morphisms of finite type.

(a) Morphisms of finite type are stable under base extension.

(b) The product of two morphisms of finite type is of finite type.

(c) If X and Y are schemes of finite type over S, then the product X×S Y is a scheme
of finite type over S.

Proof. Let f : X → S be any morphism of finite type and let g : S′ → S be any
base extension, then construct the pull-back of f along g

X×S S′

p2
²²

p1 // X
f

²²
S′

g
// S

Let U ⊆ S be an open affine set, say U = Spec R. Then the diagram restricts
to the following

f−1(U)×U g−1(U)

p2
²²

p1 // f−1(U)

f
²²

g−1(U)
g

// U

For each V ⊆ g−1(U) open affine set, say V = Spec B, we can shrink more and
get the following

f−1(U)×U V
p2

²²

p1 // f−1(U)
f

²²
V

g
// U

Now there is a finite covering of f−1(U) by affine open subsets of the form
Spec Ai with Ai a finitely generated R-algebra. Hence f−1(U) ×U V can be
covered by open affine sets of the form Spec Ai ⊗R B and each one of these
rings is a finitely generated B-algebra.

Let now f : X → Z and g : Y → H be morphisms of schemes over S, in
order to produce a covering of Z × H consisting of open affine sets with the
property (FFG) take affine open sets U ⊆ Z and V ⊆ H, and construct the
products U × V. Now ( f × g)−1(U × V) will be covered by a finite number
of affine open subsets, namely the products of the existing finite coverings
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of f−1(U) and g−1(V). Now observe the following: let A and B be two R-
algebras, C be a finitely generated A-algebra and D be a finitely generated
B-algebra, then C⊗R D is a finitely generated algebra over A⊗R B.

Part (c) follows immediately by part (a) once we recall that the composition
of two morphisms of finite type is of finite type.

3.3 Separated and Proper Morphisms

3.3.1 Separated Morphisms “Many techniques of geometry yield the most
complete results when applied to compact Hausdorff spaces. Although affine
schemes are quasi-compact in the Zariski topology, they do not share the good
properties of compact spaces in other theories because the Zariski topology is
not Hausdorff.”

taken from Eisenbud and Harris (2000, §III.1.2)
As a result given two parallel morphisms of schemes f , g : X → Y, the

set where they are equal may not be closed. For example let Y be the affine
line with a doubled origin defined in §2.3.5, and consider the two parallel
morphisms given by the two inclusions A1

k → Y. The set where they coincide
is the open subset of A1

k given by the complement of the origin, in particular
it is not a closed subset (the affine line is connected).

“Such a pathology cannot happen, however, if Y is an affine scheme; nor, it
turns out, can it happen when Y is a projective scheme. The desirable property
that these schemes have, which is one of the most important consequences of
the Hausdorff property for manifolds, is expressed by saying that Y is separated
as a scheme over k.”

taken from Eisenbud and Harris (2000, §III.1.2)

Definition. Let f : X → S be a morphism of schemes. The diagonal morphism
is the unique morphism of schemes ∆ : X → X×S X whose composition with
both the projection maps p1, p2 : X×S X → X is the identity map of X:

X

idX

ÂÂ

idX

&&
∆

##
X×S X

p2
²²

p1
// X
f

²²
X

f
// S

The morphism f is separated if the diagonal morphism ∆ is a closed immersion.
In that case we also say X is separated over S.
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Important results to keep in mind are the following, both of them to be
found in Hartshorne (1977). The first is really an immediate consequence of
the definition, and it is indeed proposed as an exercise in Eisenbud and Harris
(2000), while the second is less immediate although not very difficult.

Proposition (II.4.1 in Hartshorne, 1977). If f : X → S is any morphism of affine
schemes, then f is separated.

Corollary (II.4.2 in Hartshorne, 1977). An arbitrary morphism f : X → S is sepa-
rated if and only if the image of the diagonal morphism is a closed subset of X×S X

3.3.2 Separated Schemes The first result we are going to prove is the evi-
dence that we have indeed defined the property we were looking for. Namely
we want to check that when Y is separated, given two parallel morphisms of
schemes f , g : X → Y, the set where they are equal is a closed subset of X.

Proposition (Exercise III-2 in Eisenbud and Harris, 2000). If Y is a separated
scheme over S, then for any couple of parallel S-morphisms f , g : X → Y the set
Z ⊆ X consisting of x ∈ X with f (x) = g(x) is closed.

Proof. What we are actually going to prove is a more general result, which
shows that Z is always defined via the diagonal morphism. We want to see
that with respect to the following diagram we have Z = h−1(∆(Y)

)
.

X

g

ÂÂ

f

%%
h

##
Y×S Y

p2
²²

p1
// Y

²²
Y // S

“⊇” let x ∈ h−1(∆(Y)
)

then h(x) = ∆(y) for some y ∈ Y. This implies
f (x) = p1

(
h(x)

)
= p1

(
∆(y)

)
= y and analogously g(x) = y i.e. x ∈ Z.

“⊆” let x ∈ Z then f (x) = g(x) = y. This implies p1
(
∆(y)

)
= y = f (x) =

p1
(
h(x)

)
and analogously p2

(
∆(y)

)
= p2

(
h(x)

)
, being p1 and p2 glob-

ally monic we can conclude ∆(y) = h(x) i.e. x ∈ h−1(∆(Y)
)
.

Now Y is separated, so ∆(Y) is a closed subset of Y×S Y, and h is continuous
so Z is a closed subset of X.

82



3.3 Separated and Proper Morphisms Marco Lo Giudice

A Valuative Criterion of Separation exists (see for example Hartshorne, 1977,
Theorem II.4.3), it is undoubtedly useful but in my experience at this stage is
too difficult. To grasp its meaning the reader should be familiar with valua-
tion rings, for which he will need to read Atiyah and Macdonald (1969, §V).
To check separation of a scheme X over an affine scheme S = Spec B there is
Proposition 2 in Shafarevich (1994b, §V.4.3), involving only the sheaf of struc-
ture of the scheme X. It is stated as a sufficient condition but Proposition III.3.6
in Liu (2002) is in fact the proof that it is an equivalence and besides a local
property. The basic fact behind this result is the following.

Lemma (Exercise II.4.3 in Hartshorne, 1977). Let X be a separated scheme over an
affine scheme S. Let U and V be open affine subsets of X. Then U ∩V is also affine.

Proof. Indeed U ∩ V = ∆−1(U × V). If U and V are affine then so is U × V,
and if X is separated then ∆ is a closed immersion, and hence U ∩V is a closed
subscheme of an affine scheme. This is affine, as we have proved in §2.1.6. This
proof was taken from Shafarevich (1994b, §V.4.3, Proposition 3)

3.3.3 Properties of Separated Morphisms An algebraic variety is an integral
separated scheme of finite type over an algebraically closed field k (often C).
Just like manifolds are Hausdorff by definition varieties are separated, and
this property is central in the theory. Every morphism of varieties is sepa-
rated, and every construction we can do with varieties gives rise to separated
schemes or morphisms, by virtue of the following result.

Proposition (Corollary II.4.6 in Hartshorne, 1977). Assume that all schemes are
Noetherian in the following statements.

(a) Open and closed immersions are separated.

(b) A composition of two separated morphisms is separated.

(c) Separated morphisms are stable under base extension.

(d) The product of two separated morphisms is separated.

(e) If f : X → Y and g : Y → Z are two morphisms such that g ◦ f is separated
then f is separated.

( f ) A morphism f : X → Y is separated if and only if Y can be covered by open
subsets Vi such that the restriction f−1(Vi) → Vi is separated for all i.
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A very similar statement is Proposition III.3.9 Liu (2002), which shows that
you can prove many of these results without using the Valuative Criterion in
Hartshorne (1977). It can be useful to observe that in the case of open and
closed immersions the diagonal morphism is in fact an isomorphism, this is
once again in contrast with the intuitive idea of product but nonetheless it is
very useful when thinking about this construction as a pull-back.

3.3.4 Graph of a Morphism If f : X → Y is a morphism of varieties, we
can construct the graph of f with the fibered product, in fact this construction
makes sense in the category of schemes over S as follows.

X

f

ÂÂ

idX

&&
Γ

##
X×S Y

p2
²²

p1
// X

²²
Y // S

For varieties Γ has the good and desirable property to be a closed immersion.
Again this is true more generally whenever Y is separated over S, and now
we are going to prove it. It should be said that this result is in fact an hint to
Exercise II.4.8 in Hartshorne (1977).

Proposition (Exercise II.4.8 in Hartshorne, 1977). Let f : X → Y be a morphism
of schemes over S, and assume Y is separated. Then the graph morphism Γ defined
above is a closed immersion. More precisely, it is obtained by the diagonal morphism
over Y, ∆ : Y → Y×S Y, by base extension.

Proof. The proof is all about showing that the following diagram is in fact a
fibered product

X

Γ
²²

f
// Y

∆
²²

X×S Y
fY // Y×S Y

where fY is the product of f and the identity of Y. Depending on your skills
in drawing commutative diagrams, this can be either obvious or a nightmare,
I suggest to proceed as follows. Draw the diagrams about the construction
of ∆ and the construction of fY, being careful to call in the same way maps
which are the same. Then the diagram above will be commutative because
the projections of Y×S Y are globally monic. To check the universal property,
let a : W → X and b : W → X×S Y be two morphisms such that ∆ ◦ a = fY ◦ b,
then p1 ◦ b is the unique morphism you want to construct.
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3.3.5 Morphisms of Varieties Another good property of varieties which is
a consequence of them being separated is the following: if f and g are two
morphisms of varieties from X to Y which agree on an open dense subset of
X, then f = g. We know already that f = g as continuous functions (§3.3.2),
but we want to prove something more, namely that the morphisms of sheaves
f # and g# are also equal. In fact, we want to solve Exercise II.4.2 in Hartshorne
(1977) which is stated for more general schemes than varieties.
Remark. Let X be a reduced scheme and let f : X → Spec A be a morphism
of schemes. Then f is induced by the ring homomorphism ϕ : A → Γ(X, OX)
defined on global sections by f # (adjunction §2.1.4). We have

Im f = V(ker ϕ)

that is, the closure of the image of f is the closed subset defined by the kernel
of ϕ.

We denote rx : Γ(X, OX) → OX,P the localisation map of the structure sheaf
on X. The image of f is given by the following set

Im f =
{

p ∈ Spec A | p = ϕ−1(r−1
x (mx)

)
for some x ∈ X

}

Clearly every such prime ideal contains ker ϕ so that Im f ⊆ V(ker ϕ). We
need to show the converse, that is for each p ∈ V(ker ϕ) every open neighbor-
hood of p intersects Im f . As usual we can restrict ourselves to basic open sets,
so let p ∈ D(a) that is let a ∈ A be such that a 6∈ p. In particular a 6∈ ker ϕ so
that ϕ(a) 6= 0. We claim that there is a point x ∈ X such that f (x) ∈ D(a), that
is rx

(
ϕ(a)

) 6∈ mx. Indeed if this was not the case then the open set Xϕ(a) was
empty, and since X is reduced this implies ϕ(a) = 0, a contradiction. A little
more of explanation is perhaps needed: for any open affine subset Spec B ⊆ X
the intersection Xϕ(a) ∩ Spec B is given by the distinguished open subset of
Spec B defined by rB

(
ϕ(a)

)
, and this is empty if and only if rB

(
ϕ(a)

)
= 0,

since X is reduced.

Lemma. Let X be a reduced scheme and let U ⊆ X be an open dense subset. Then for
any open set W ⊆ X the restriction map rW : OX(W) → OX(W ∩U) is injective.

Proof. Assume W to be affine first, so that iW : W ∩U → W is an open immer-
sion of a reduced scheme into an affine scheme. This immersion is induced by
rW , and by the remark above we have Im iW = V(ker rW). Since Im iW = W
we have the inclusion ker rW ⊆ Nil

(
OX(W)

)
and since X is reduced this nil-

radical is trivial, hence ker rW = 0.
If now W is any open subset the conclusion follows immediately by covering
W with open affine subsets.
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Proposition (Exercise II.4.2 in Hartshorne, 1977). Let S be a scheme, let X be a
reduced scheme over S, and let Y be a separated scheme over S. Let f and g be two
S-morphisms of X to Y which agree on an open dense subset of X. Then f = g.

Proof. We already know that the set Z ⊆ X consisting of those x ∈ X such that
f (x) = g(x) is closed (§3.3.2 above), clearly it contains U and since U is dense
we can conclude that Z = X, that is f and g consist of the same continuous
map. We have to prove that the morphisms of sheaves f # : OY → f∗OX and
g# : OY → g∗OX are equal, knowing that the restrictions

(
f |U

)# and
(

g|U
)#

are equal. Observe also that the sheaves f∗OX and g∗OX are the same. The
morphism of sheaves

( f |U)# : OY −→ ( f |U)∗OX

is defined on any open set V ⊆ Y by the ring homomorphism

OY(V) −→ OX

(
f−1(V) ∩U

)

We call this homomorphism ψ, since it is the same when induced by f or by g.
Then we have the following diagram for any V ⊆ Y

OY(V)
f #
V //

g#
V

//

ψ ))SSSSSSSSSSSSSSSS OX( f−1(V))

res
²²

OX( f−1(V) ∩U)

Now X is reduced and U is a dense subset, so by the Lemma the restriction
map is injective, and hence f #

V = g#
V for any open subset V ⊆ Y, that is the

two morphisms of sheaves are the same.

3.3.6 Proper Morphisms “If ϕ : X → Y is a map of projective varieties, then
indeed ϕ maps closed subvarieties of X to closed subvarieties of Y. Somewhat
more generally, if we take the product of such a map with an arbitrary variety
Z, to get

ψ = ϕ× idZ : X× Z −→ Y× Z

then ψ maps closed subvarieties of X × Z to closed subvarieties of Y × Z. It
turns out that this, with the separation property, is the central property of projective
varieties that makes them so useful. But it is a property satisfied by a slightly
larger class of varieties than the projective ones, and it is a property that is
sometimes easier to verify than projectivity, so it is of great importance to
make a general definition.”

taken from Eisenbud and Harris (2000, §III.1.2)
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Definition. A morphism f : X → S is proper if it is separated, of finite type, and
universally closed. Here we say that a morphism is closed if it carries closed
subsets of X into closed subsets of S, it is universally closed if any pull-back of it
along any base extension is closed. This means that for any morphism S′ → S
in the diagram below

X×S S′

p2
²²

p1 // X
f

²²
S′ // S

the projection p2 is a closed morphism. A scheme over S is proper if its struc-
tural morphism X → S is proper.

A similar result to the one in §3.3.3 about properties of separated mor-
phisms holds for proper morphisms. In Hartshorne (1977) it is given as a
corollary to the Valuative Criterion of Properness, which is as difficult as the Val-
uative Criterion of Separation. However Proposition III.3.16 in Liu (2002) is
the evidence that some properties can be shown without it.

Proposition (Corollary II.4.8 in Hartshorne, 1977). Assume that all schemes are
Noetherian in the following statements.

(a) Closed immersions are proper.

(b) A composition of two proper morphisms is proper.

(c) Proper morphisms are stable under base extension.

(d) The product of two proper morphisms is proper.

(e) If f : X → Y and g : Y → Z are two morphisms, if g ◦ f is proper and g is
separated, then f is proper.

( f ) A morphism f : X → Y is proper if and only if Y can be covered by open subsets
Vi such that the restriction f−1(Vi) → Vi is proper for all i.

The first three statements all follows from properties of morphisms of finite
type (see §3.1.4 and §3.2.6) and properties of separated morphisms. Each time
there is only to check that the relevant map is universally closed, which is
an easy exercise useful to familiarise with the definition. The rest follows by
applying the more general result below.
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3.3.7 The Fundamental Lemma about Attributes of Morphisms We de-
vote this subsection to the proof of probably the most important result of this
chapter. It applies to almost every construction in the category of schemes,
and it allows us to derive properties of the constructed object.

Lemma (Exercise II.4.8 in Hartshorne, 1977). Let P be an attribute of morphisms
of schemes such that

• a closed immersion has P .

• the composition of two morphisms having P has P .

• P is stable under base extension.

Then the following holds

i) the product of two morphisms having P has P .

ii) If f : X → Y and g : Y → Z are two morphisms, if g ◦ f has P and g is
separated, then f has P .

iii) If f : X → Y has P , then f̃ : X̃ → Ỹ has P . Where X̃ denotes the reduced
scheme associated to X.

Proof. Let f : X → Z and g : Y → H be morphisms of schemes over S, we
rewrite the diagram about the construction of their product as follows

X×Y
h1 //

h2
²²

f×g
((

X× (Z× H)
τ1 //

τ2
²²

X

f
²²

Y× (Z× H) σ2
//

σ1
²²

Z× H π1
//

π2
²²

Z

²²
Y

g
// H // S

where h1 is the unique morphism such that τ1h1 is the first projection of X×Y
and h2 is the unique morphism such that σ1h2 is the second projection. In this
diagram every square is a fibered product, although you may want to check
that this is true also for the top left corner one, so f × g has the property P by
base extension and composition.

For statement ii) we can regard X and Y as schemes over Z, with Y sep-
arated, and construct the graph of f over Z; this is a closed immersion as in
§3.3.4, hence it has the property P . Now f has P by base extension and com-
position.
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Given f : X → Y we construct f̃ as follows. First we consider the com-
position of f with the closed immersion jX : X̃ → X, then there is a unique
morphism f̃ such that the following diagram is commutative (see §2.4.2)

X̃
jX //

f̃
²²

X
f

²²
Ỹ

jY // Y

Now observe that since jX and jY are closed immersions, they satisfy P and
also they are separated. So jY f̃ satisfies P , and since jY is separated f̃ satisfies
P too.

3.4 Finite Morphisms

Definition. A morphism f : X → Y is called finite if for every point y ∈ Y
there is an open affine neighborhood V = Spec B ⊆ Y such that the inverse
image f−1(V) is affine and equal to Spec A, where A is a finite B-algebra, that
is a B-algebra which is also a finitely generated B-module.

3.4.1 Finite is Local on the Base In particular a finite morphism is a mor-
phism of finite type, but this definition is much more restrictive. For instance
an open immersion need not be finite, let Y = A2

k and let X be the complement
of the closed point (0, 0). A closed immersion instead is a finite morphism as
we have seen in §3.1.4. The first result we are now going to prove is that this
is an attribute local on the base.

Proposition (Exercise II.3.4 in Hartshorne, 1977). A morphism f : X → Y is
finite if and only if for every open affine subset V = Spec B of Y, the inverse image
f−1(V) is affine and equal to Spec A, where A is a finite B-algebra.

Proof. To simplify the argument, we say that an open affine subset V = Spec B
of Y has the property (F) if the inverse image f−1(V) is affine and equal to
Spec A, where A is a finite B-algebra. We have to show that if Y can be covered
by open affine subsets with the property (F) then every affine subset of Y has
the property (F).

First note that if Y = Spec B is affine and has the property (F) then every
distinguished open subset of Y has the property (F). Indeed in that case X is
affine and equal to Spec A, where A is a finite B-algebra. Then for any b ∈ B we
have f−1(D(b)

)
= Xb where Xb = Spec Ab, and Ab is a finite Bb-algebra. Back
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to the general case, we have a base for the topology in Y consisting of affine
subsets with the property (F). So we have reduced to prove the following: if
Y is affine and it can be covered by affine open sets that have the property (F)
then Y has the property (F).

Let Y = Spec B and let V be an affine open subset with the property (F).
Then for any b ∈ B such that Yb ⊆ V, Yb has the property (F). Indeed f−1(Yb)
is a basic open set of f−1(V) and hence is a finite Bb-algebra. So we have
reduced to prove the following: if Y is affine and it can be covered by basic
open sets with the property (F) then Y has the property (F).

Since Y is affine it is quasi-compact, hence a finite covering will do. So
let b1, . . . , br be a finite number of elements of B such that they generate the
unit ideal and each D(bi) has the property (F). Let A = Γ(X, OX) and consider
f # : B → A. We have a finite number of elements f #(b1), . . . , f #(br) ∈ A such
that the open subsets X f #(bi) = f−1(D(bi)

)
are affine and f #(b1), . . . , f #(br)

generate the unit ideal in A. By the affineness criterion of §2.1.5 this is enough
to say X is affine, say X = Spec A. We have to prove A is a finite B-algebra.

This is a purely algebraic problem: A is a B-algebra, b1, . . . , br are a finite
number of elements of B, which generate the unit ideal, and each localisation
Abi is a finite Bbi-algebra. We have to prove A is a finite B-algebra. Since
b1, . . . , br generate the unit ideal we can say 1 = ∑r

i=1 hibα
i for any α ∈ N

where hi ∈ B. For each i = 1, . . . , r let the algebra Abi be generated by

(xi1/bβi1
i ), . . . , (xisi /b

βisi
i )

Let g ∈ A, then for any i = 1, . . . , r in the ring Abi we have g = gi/bγi
i , where

gi is a B-linear expression in xi1, . . . xisi . This means that in A we have

bαi
i g− bδi

i gi = 0 for some integers αi, δi ∈ N

Without loss of generality we can assume αi = α, independent from i. Then
we have the following relation in A.

r

∑
i=1

hi

(
bα

i g− bδi
i gi

)
= 0

that is

g =
r

∑
i=1

hib
δi
i gi

where on the right side we have a B-linear expression in a finite set of elements
of A and this finite set doesn’t depend on g. Thus A is a finite B-algebra.
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We can use this result to show that the composition of two finite mor-
phisms is finite, as follows. Let f : X → Y and g : Y → Z be finite morphisms,
then for any open affine subset W = Spec R of Z the inverse image g−1(W) is
affine and equal to Spec B, where B is a finite R-algebra, while the inverse im-
age f−1(g−1(W)

)
is affine and equal to Spec A, where A is a finite B-algebra.

Thus A is a finite R-algebra and g ◦ f is finite.

3.4.2 Properties of Finite Morphisms We are now going to prove that finite
morphisms are stable under base extension, so that we can apply the funda-
mental Lemma about attributes of morphisms. This in particular means that
products of finite morphisms are finite, further if f : X → Y and g : Y → Z are
two morphisms, with g ◦ f finite and g separated, then f is finite.

Proposition (Exercise III.3.17 in Liu, 2002). Finite morphisms are stable under
base extension.

Proof. Let f : X → S be a finite morphism and let g : S′ → S be any morphism
of schemes. Consider the product of X and S′ with respect to S, that is the
following commutative diagram

X×S S′

p2
²²

p1 // X
f

²²
S′

g
// S

We have to show that p2 is finite. To this purpose it is enough to assume S
to be affine, in which case also X should be affine. So let X = Spec A and
S = Spec R, and let U = Spec B be any open affine set of S′. Then p−1

2 (U) =
Spec A⊗R B and we know that A is a finitely generated module over R. Now
if {ai} is a system of generators for A over R then {ai ⊗ 1} is a system of
generators for A⊗R B over B, and we are done.

Let f : X → Y be a finite morphism of schemes. For any y ∈ Y we look at
the fiber Xy of f over y, which in this generality is just a scheme. Nevertheless
without any other hypothesis we are able to prove that sp(Xy) is a finite set, in
fact it will soon be clear also that the dimension of Xy is zero, which is a rather
strong result

Corollary (Exercise II.3.5 in Hartshorne, 1977). The fibers of a finite morphism
are affine schemes whose underlying topological spaces are finite and consist of closed
points only.
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Proof. We start with a fibered product diagram, if y ∈ Y is any point then the
fiber Xy is given by the following

Xy

p2
²²

p1 // X

f
²²

Spec k(y) Â Ä // Y

Since finite morphisms are stable under base extension, Xy is an affine scheme
finite over k(y), which means Xy = Spec A where A is a finite dimensional
vector space over k(y). In particular by Proposition 6.10 in Atiyah and Mac-
donald (1969) A will be an Artin ring, therefore Spec A will consist of a finite
number of maximal ideals only.

3.4.3 Integral Morphisms A morphism f : X → Y is called integral if for
every point y ∈ Y there is an open neighborhood V = Spec B ⊆ Y such that
the inverse image f−1(V) is affine and equal to Spec A, where A is an integral
B-algebra.

The reader may want to learn something about integral dependence in
Atiyah and Macdonald (1969, Chapter 5) or Eisenbud (1995, Chapter 4). Ac-
cording to Liu (2002, Exercise III.3.15) this is a local property, but we are not
going to describe it in this generality. In fact, the next result will clarify in
which sense finite and integral morphisms are the same.

Proposition. Let f : X → Y be a morphism of finite type. Then f is finite if and only
if it is integral.

Observe that we are not claiming that finite and integral morphisms are
always the same, but only that they are the same among morphisms of finite
type. The proof of the proposition reduces to a purely algebraic argument that
we describe next.

Lemma (1 in Lecture 10 of Dolgachev, nd). Assume that B is a finitely generated
A-algebra. Then B is integral over A if and only if B is a finitely generated module
over A (i.e. B is a finite A-algebra).

Proof. Only slight modifications have been made to the original argument in
Dolgachev (nd). Assume B is integral over A. Let x1, . . . , xn be generators
of B as an A-algebra, i.e. for any element b ∈ B there exists a polynomial
F ∈ A[Z1, . . . , Zn] such that b = F(x1, . . . , xn). Since each xi is integral over A,
there exists some integer n(i) such that xn(i)

i can be written as a linear combi-
nation of lower powers of xi with coefficients in A. Hence every power of xi
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can be expressed as a linear combination of powers of xi of degree less than
n(i). Thus there exist a number N > 0 such that every b ∈ B can be written
as a polynomial in x1, . . . , xn of degree < N. This shows that a finite set of
monomials in x1, . . . , xn generate B as an A-module.

Conversely, assume that B is a finite A-algebra. Then every b ∈ B can be
written as a linear combination b = a1b1 + . . . + arbr where b1, . . . , br is a fixed
set of elements in B and ai ∈ A. We can assume also b1 = 1. Multiplying both
sides by bi and expressing each product bibj as a linear combination of bi we
get

bbi = ∑
j

aijbj, aij ∈ A

This shows that the vector b = (b1, . . . , br)T satisfies the linear equation
(bIr − M)b = 0, where M = (aij). Let D = det(bIr − M) and observe that this
is a monic polynomial in b with coefficients in A. Now consider the following
block matrix with coefficients in B

W =
(

b1 0
b′ Ir−1

)

where b′ is the vector (b2, . . . , br). Since in the product matrix (bIr − M)W the
first column is zero we have det ((bIr − M)W) = 0, while det W = b1 = 1.
Using Binet’s Theorem we conclude D = 0 which is a monic equation for b
with coefficients in A.

Example (A morphism of affine varieties which is not finite). Project the hyper-
bola xy = 1 onto the x-axis. This map has finite fibers but is not finite. Indeed
it is induced by

k[x] Â
Ä // k[x, y]/(xy− 1)

and k[x, y]/(xy− 1) is not a finite k[x]-algebra, because in it y is not the root of
a monic polynomial with coefficients in k[x]. Observe that if we take the same
projection but onto the x-axis without the origin this morphism is finite.

3.4.4 Properness of Finite Morphisms We have seen that finite morphisms
have finite fibers, and in what follows we are going to prove that a finite mor-
phism is proper. “A deep result, due to Chevalley, asserts that when Y is a sep-
arated Noetherian scheme then conversely every proper morphism f : X → Y
with finite fibers is a finite morphism”

taken from Mumford (1999, §II.7)

Proposition (Exercise II.3.5 in Hartshorne, 1977). A finite morphism is closed.
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Proof. It is clearly enough to prove the statement in the affine case only, so
let ϕ : B → A be a ring homomorphism inducing f : Spec A → Spec B, such
that A is a finite B-algebra. Let a ⊆ A be any ideal, we know from §1.4.1 that
f
(V(a)

)
= V(ac) so we have to show the inclusion V(ac) ⊆ f

(V(a)
)
, which

means
V(ac) ⊆

{
q ∈ Spec B | q = ϕ−1(p) with p ∈ V(a)

}

In other words for any q ∈ V(ac) we have to show that there exists a prime
ideal p ∈ V(a) such that q = pc. Now it is enough to consider the quotient
map ϕa : B/ac → A/a and apply the following

(Atiyah and Macdonald, 1969, Theorem 5.10) Let B ⊆ A be rings,
A integral over B, and let p be a prime ideal of B. Then there exists
a prime ideal q of A such that p = qc.

Note that A/a is a finite algebra over B/ac, hence it is integral (see §3.4.3
above).

Corollary (Exercise II.4.1 in Hartshorne, 1977). A finite morphism is proper.

Proof. We have already observed that a finite morphism is of finite type, more-
over since finite morphisms are stable under base extension and are closed
they are also universally closed. So we only need to prove that a finite mor-
phism is separated, but this is true more generally for affine morphisms.

A morphism of schemes f : E → X is affine if there is an open affine cov-
ering {Ui} of X such that f−1(Ui) is affine for each i. In §3.4.1 we have shown
among other things that this is a local property, that is the morphism f : E → X
is affine if and only if f−1(U) is affine for every open affine subset U of X.

Proposition (Exercise II.5.17 in Hartshorne, 1977). Every affine morphism of sche-
mes f : E → X is separated.

Proof. For any open affine subset U ⊆ X the restricted morphism

f |U : f−1(U) −→ U

is a morphism of affine schemes. Therefore it is separated, which means that
the diagonal morphism

f−1(U) −→ f−1(U)×U f−1(U)

is a closed immersion. Observe that this is the restriction of the diagonal
∆ : E → E ×X E to a subset VU of the product E ×X E, and that sets of the
form VU cover the product as U varies over all affine subsets of X. Now use
the Lemma in §3.2.3.
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Chapter 4

Basic Algebraic Geometry

For the first time in these notes we are going to see some geometry as it is
meant to be. The main part of this chapter is dedicated to understand what is
the dimension of a variety, it contains a lengthy discussion which will hope-
fully clarify how difficult a concept this is. There will be also a general dis-
cussion about Hilbert’s Nullstellensatz in his most abstract formulation. We
are not going to prove it, but in here the reader will find a geometric inter-
pretation. In the process we will also look more deeply to the structure of
algebraic schemes, gaining a better idea about the “shape” of the set of closed
points inside a scheme. Finally thinking about morphisms in Algebraic Geom-
etry we arrive to the definition of rational map, which is the weaker idea of
a morphism characteristic of the subject. In Hartshorne (1977) this is defined
without the machinery of schemes, so that by comparison the reader will be
able to see how natural it is to work in the environment of schemes.

4.1 Algebraic Varieties

4.1.1 The Category of Algebraic Varieties An Algebraic Scheme is a sepa-
rated scheme of finite type over a field k. We don’t make any assumption
on the base field k, assuming that whether it will be algebraically closed or
not will depend on the context. An Algebraic Variety is an integral algebraic
scheme. If a variety is proper over k, we also say it is complete. An affine va-
riety is an affine scheme which is a variety, that is the spectrum of a finitely
generated domain over k, which we usually call affine domain.

A morphism of varieties is a morphism of schemes over k, and every such
morphism is of finite type and separated (this is in general a consequence of
the fundamental Lemma about attributes of morphisms, see §3.3.7). Observe
that an affine variety X is by definition given by the spectrum of a quotient
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k[x1, . . . , xn]/p, where p is a prime ideal, in particular it is always endowed
with a closed immersion X → An

k . Looking back at what we proved about
closed immersions in §2.1.6 the converse is also true, namely if there exists a
closed immersion from a variety X in affine n-space then X is affine.
Example (Exercise I.1.1 in Hartshorne, 1977). Let Y be the plane curve y = x2,
that is Y is the affine scheme given by the spectrum of the ring k[x, y]/(y− x2),
and let Z be the plane curve xy = 1. Then we have the canonical isomor-
phisms

k[x, y]/(y− x2) ∼= k[x] and k[x, y]/(xy− 1) ∼= k[x, x−1]

In particular Y and Z are not isomorphic, indeed any morphism Y → Z is
induced by a ring homomorphism ϕ : k[x, x−1] → k[x] which necessarily sat-
isfies ϕ(x) ∈ k. Now it is a well known result that whenever F is any irre-
ducible quadratic polynomial in k[x, y], the plane curve defined by F = 0 is
isomorphic to either Y or Z, see for example Audin (2003, §VI).

Definition. Let C be a category. A morphism m : X → Y is a monomorphism
(or monic) in C when for any two parallel arrows f , g : W → X the equality
m f = mg implies f = g; in other words m is a monomorphism if it can always
be cancelled on the left (is left cancellable). A morphism ϕ : A → B is an epimor-
phism (or epi) in C when for any two parallel arrows ψ, ξ : B → R the equality
ψϕ = ξϕ implies ψ = ξ; in other words ϕ is an epimorphism when it is right
cancellable.

For instance in the category of sets epimorphisms are surjective functions
while monomorphisms are injective, but in the category of algebraic varieties
these properties don’t seem to be fully characterised. This is partly due to
the fact that they are not really well characterised in the category of rings, for
instance a surjective ring homomorphism and a localisation homomorphism
are both epi. Nevertheless we are able to prove that at least those morphisms
that we call immersions are monic.

Proposition. In the category of schemes open and closed immersions are monic.

Proof. The case of open immersions is obvious, while for closed immersions
we have to be slightly more careful. So let m : Z → X be a closed immersion,
and let a, b : W → Z be two morphisms such that ma = mb. When X is affine,
this situation is adjoint in the category of rings to the following

A
γ // A/a

α //

β
// Γ(W, OW)

where γ is surjective and therefore epi. In the general case, for any open affine
subset U ⊆ X we can repeat this argument to find a|U∩Z = b|U∩Z, and con-
clude a = b.
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4.1.2 The Image of a Morphism If f : X → Y is any continuous map, we
can factor it through the closed subset f (X) of Y as a dominant morphism
followed by a closed immersion. The same factorisation is possible in the set-
up of schemes, although not in complete generality. For instance if X and Y
are affine schemes, f is induced by a ring homomorphism ϕ : B → A which
will factor through the sub-ring of A given by the image of ϕ as follows

B −→ Im ϕ −→ A

where B → Im ϕ is surjective, and Im ϕ → A is injective. This purely algebraic
configuration corresponds precisely to the geometric one, indeed injective ho-
momorphisms induce dominant maps and surjective homomorphisms induce
closed immersions (see §1.4.6). We call Spec Im ϕ the scheme-theoretic image of
f , and we denote it f (X) in analogy with the topological construction.

Theorem (Exercise II.3.17 in Liu, 2002). Let f : X → Y be a quasi-compact mor-
phism of schemes. Then there exists a scheme f (X), endowed with a closed immersion
j : f (X) → Y and a dominant morphism g : X → f (X) such that f = jg and with
the following universal property

X

g

­­··
··
··
··
··
··

h

ºº/
//

//
//

//
//

//
//

//
// f

**TTTTTTTTTTTTT

Y

f (X)

j ooooooo

77ooooooooo

θ ** W

i

JJ·············

for every other scheme W endowed with a closed immersion i and a morphism h such
that f = ih there exists a unique closed immersion θ such that iθ = j.

Furthermore, for every open subset U ⊆ Y we have the following commutative
diagram, where Z′ = f

(
f−1(U)

)
and vertical arrows are open immersions

Z′

²²

j′

''OOOOOOO

f−1(U) //

g′ 77ooooo

²²

U

²²
f (X) j

''OOOOOO

X
f

//

g 77oooooo
Y

That is, the scheme-theoretic image of the restricted morphism f |U is naturally en-
dowed with an open immersion in the scheme-theoretic image of f .
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Proof. If f is a morphism of affine schemes the above argument completes the
proof, the universal property being easily checked (note that W is necessar-
ily affine). If Y = Spec A is affine, then f is adjoint to the homomorphism
f #
Y : A → Γ(X, OX) and if such a scheme exists it must be affine. Since f is

quasi-compact, X can be covered by a finite number of open affine subsets
(see §3.1.3), say Vi = Spec Bi; the composition Vi → X → A is induced by
the composition of ring homomorphisms ri ◦ f #

Y where ri : Γ(X, OX) → Bi is
the restriction of the sheaf OX, let ai be its kernel and let a be the sum of the
ai. Now the affine scheme Spec A/a comes endowed with a closed immersion
and a dominant morphism as required, and the universal property is easily
checked (again W is necessarily affine).

Let U = D(α) be an open basic subset of Y, which we still assume to be
affine, then as in §2.1.3 f−1(U) = Xα and for each i Xα ∩Vi is affine and given
by Spec Biα. This proves that, when Y is affine and U is an open basic subset of
Y, there exists an open immersion Z′ → f (X) as in the statement. If now we
let U to be any open affine subset of Y, we can cover U by basic open sets—
which will be basic open sets for both Y and U—and construct a collection of
open immersions for both f (X) and Z′, indexed on the open covering of U
and therefore covering Z′. Thus we construct the open immersion Z′ → f (X)
by a gluing argument like the one in §2.3.2.

To complete the proof we need another gluing argument. When X and
Y are not affine, we take an open affine covering {Ui} of Y and construct the
family of schemes

{
(Zi, gi, ci)

}
given by the scheme-theoretic images of the re-

strictions f |Ui , where gi is a dominant morphism and ci is a closed immersion.
In order to apply the Gluing Lemma on any of these schemes Zi we define
for each j the open subscheme Zij ⊆ Zi as c−1

i (Ui ∩Uj). For any open affine
subset of Ui ∩Uj we construct the scheme-theoretic image of the restriction of
f and obtain an open immersion in both Zij and Zji, defining eventually an
isomorphism.

Since any morphism of varieties is of finite type, and any morphism of fi-
nite type is quasi-compact, this construction makes perfect sense for any mor-
phism between algebraic varieties. Quite surprisingly however we can prove
something more, namely the image of a variety is again a variety.

Corollary. Let f : X → Y be a quasi-compact morphism of schemes. When X is
reduced the scheme-theoretic image of f is a reduced scheme, while when X is an
integral scheme it is integral.

Proof. Let Z be the scheme-theoretic image of f as in the Theorem, and let
Z̃ be the reduced scheme associated to Z (see §2.4.2) with closed immersion
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r : Z̃ → Z. Since X is reduced, there exists a unique morphism h : X → Z̃ such
that rh = g, and if we let i = jr we obtain ih = jrh = jg = f . Therefore
by the universal property of Z there exists a unique θ such that iθ = j, which
means jrθ = j. Since closed immersions are monic this implies rθ = idZ.
Viceversa we have jrθr = iθr = jr therefore rθr = r which implies θr = idZ̃.
In conclusion Z is isomorphic to Z̃, hence it is a reduced scheme.

Assume now X is an integral scheme, then all the restriction homomor-
phisms of OX are injective. Therefore with reference to the proof of the The-
orem when Y = Spec A is affine the scheme theoretic image of f is given by
Spec A/a where a is the kernel of the morphism A → Γ(X, OX) inducing f .
The ring Γ(X, OX) is a domain, therefore the scheme theoretic image is an in-
tegral scheme.

Example (The Twisted Cubic Curve). This is Exercise I.1.2 in Hartshorne (1977).
Consider the morphism of affine varieties given by the following morphism
of rings

ϕ : k[x, y, z] → k[ t ]

defined by ϕ(x) = t, ϕ(y) = t2 and ϕ(z) = t3. This is a surjective morphism,
hence it gives rise to a closed immersion Y ⊆ A3

k into the affine space. The
image is an affine variety isomorphic to A1

k and given by the spectrum of
the quotient k[x, y, z]/ ker ϕ. Easy considerations bring to the conclusion that
ker ϕ = (y− x2, z− x3). We say that Y is given by the parametric representation
ϕ.

4.1.3 Product of Algebraic Varieties If X and Y are algebraic varieties, we
define their product to be the fibered product X ×k Y in the category of sche-
mes over k. But there is a tricky subtlety here, indeed from what we have seen
so far we can conclude that X ×k Y is a separated scheme of finite type over k
but not that it is a variety. In other words we have to show that it is an integral
scheme. Given the local nature of the question it is clear that we can assume
X and Y to be affine, so we can reduce to prove a purely algebraic result: the
tensor product

k[x1, . . . , xn]/p⊗k k[y1, . . . , ym]/q

where p and q are prime ideals, is a domain. In what follows we are going
to prove something more, providing a precise description of the product. In
fact everything we are going to say can be found in Zariski and Samuel (1958,
§III.14).

Let C be a finitely generated k-algebra. Two sub-algebras L and L′ of C are
said to be linearly disjoint over k if the following condition is satisfied: when-
ever x1, x2, . . . , xn are elements of L which are linearly independent over k and
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x′1, x′2, . . . , x′n are elements of L′ which are linearly independent over k, then
the products xix′j are also linearly independent over k. Let now A and B be fi-
nitely generated k-algebras, we denote by ϕ : A → A⊗k B the homomorphism
a 7→ a⊗ 1 and by ψ : B → A⊗k B the homomorphism b 7→ 1⊗ b.

Lemma. Let A and B be finitely generated k-algebras as above. Then inside the tensor
product, the rings ϕ(A) and ψ(B) are linearly disjoint over k.

Proof. The key fact in here is that any finitely generated k-algebra admits a
vector basis over k. The argument goes like this: we can assume the algebra
to be the quotient C = k[x1, . . . , xn]/a, therefore the set M of all (equivalence
classes of) monomials is a system of generators for C as a vector space. Assum-
ing C to be non-trivial, thus different both from 0 and k, and n to be minimal,
thus the ideal a not to contain polynomials of degree one, there exists a subset
T ⊆ M consisting of linearly independent elements, for instance consider the
set {1, x1}. Then we can order these subsets by inclusion and conclude using
Zorn’s Lemma that M contains a vector basis of C over k. Let now {xα} be a
vector basis of A over k and let {yβ} be a vector basis of B over k, then the set
of all products xα ⊗ yβ is by definition a vector basis for A⊗k B over k. Now
the property above is immediate.

Observe that this Lemma implies in particular that ϕ and ψ are injective
homomorphisms. To see this choose a vector basis {xi} for A over k and write
any element a ∈ A as a linear combination, to get ϕ(a) = ∑i λixi ⊗ 1 where
λi ∈ k. Then ϕ(a) = 0 if and only if λi = 0 for each i that is if and only if a = 0.
Now we can proceed to study zero-divisors inside the tensor product.

Proposition. Let A and B be finitely generated k-algebras as above. If an element of
A is not a zero-divisor in A, then it is not a zero-divisor in the tensor product A⊗k B

Proof. If we have aξ = 0, where ξ ∈ A⊗k B we can write ξ in the form ξ =
∑i ai ⊗ bi, where the ai are in A and the bi are elements of B which are linearly
independent over k (and hence also over A). From ∑i(aai) ⊗ bi = 0 follows
aai = 0 and then ai = 0 because a is not a zero-divisor, therefore ξ = 0.

Corollary. Let A and B be affine domains over k. Then the tensor product A⊗k B is
also an affine domain.

Proof. Observe that (a⊗ b)(c⊗k d) = 0 if and only if (ac⊗k 1)(1⊗k bd) = 0.
But since A and B are domains by virtue of the previous Proposition this can
only happen when ac = 0 or bd = 0, which is equivalent to having a⊗ b = 0
or c⊗ d = 0.
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Let A and B be finitely generated k-algebras as above, and let a be an ideal
of A and b an ideal of B. We shall denote by (a, b) the ideal generated by
ϕ(a) and ψ(b) inside the tensor product A⊗k B. In geometric terms we have
two affine schemes X = Spec A and Y = Spec B and two closed subschemes
V(a) ⊆ X and V(b) ⊆ Y, we are going to prove that the product V(a)×k V(b)
is given by the ideal (a, b) inside A⊗k B.

Theorem. Let a ⊆ A and b ⊆ B be ideals inside finitely generated k-algebras as
above. Then there is a canonical isomorphism

τ : (A⊗k B)/(a, b) '−→ A/a⊗k B/b

Proof. We define τ as follows: we take the tensor product of the two canon-
ical projections, A → A/a and B → B/b, and observe that by construction
the ideal (a, b) is contained in the kernel. Then we consider the composition
A → A ⊗k B → (A ⊗k B)/(a, b) and since the kernel contains a, we define
α : A/a → (A⊗k B)/(a, b). Now we have a commutative diagram

A/a

**UUUUUUUUUUUUUUUUUUUU

α
²²

(A⊗k B)/(a, b) τ // A/a⊗k B/b

which shows that the composition τα is injective, therefore α is injective. Sim-
ilarly there exists an injective homomorphism β : B/b → (A⊗k B)/(a, b). The
diagram also proves that the composition τ ◦ (α ⊗ β) is the identity, more-
over the homomorphism α ⊗ β is surjective, because every element in the
quotient (A ⊗k B)/(a, b) can be written as a linear combination of products
(a⊗ 1)(1⊗ b) with a ∈ A and b ∈ B.

4.2 Hilbert’s Nullstellensatz

Our goal will be now to understand the most general form of Hilbert’s Null-
stellensatz as it is formulated in Eisenbud (1995, Theorem 4.19). Since that
statement is purely algebraic we need first to familiarise ourselves with the ba-
sic concepts, in particular with their geometric meaning. We focus our atten-
tion on the subset U of closed points of a scheme X: in general we cannot say
that much about it, for instance U is closed in Spec k[ x ](x) where it consists of
only one point, but it is not closed in Spec Z or in Spec k[ x ], where in fact it is
dense. If A is any ring the nilradical Nil(A) of A is the intersection of all prime
ideals while the Jacobson radical Jac(A) of A is the intersection of all maximal
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ideals, observe that Nil(A) ⊆ Jac(A). If X = Spec A then X = V (
Nil(A)

)

while the closure U of the set of closed points of X is V (
Jac(A)

)
. Thus U is

dense in X if and only if Nil(A) = Jac(A).

Proposition (Exercise V.23 in Atiyah and Macdonald, 1969). A ring A is called
a Jacobson ring when it satisfies one of the following equivalent properties.

i) Every prime ideal in A is an intersection of maximal ideals.

ii) In every homomorphic image of A the nilradical is equal to the Jacobson radical.

iii) Every prime ideal in A which is not maximal is equal to the intersection of the
prime ideals which contain it strictly.

Proof. Observe first that condition ii) is equivalent to the following: for any
ideal a of A in the quotient A/a the nilradical is equal to the Jacobson radical.
Now observe that most of the implications are trivial, indeed iii) is a conse-
quence of i) and i) a consequence of ii). To see that i) in fact implies ii) take
any ideal a in A and write Jac(A/a) as the following

Jac(A/a) =

(
⋂

a⊆m

m

) /
a
⊆ ⋂

a⊆p

(
⋂

p⊆m

m

) /
a

= Nil(A/a)

Now we prove iii) ⇒ i). Suppose i) false, then there is a prime ideal which
is not an intersection of maximal ideals. Passing to the quotient ring, we may
assume that A is an integral domain whose Jacobson radical is not zero. Let
f be a non-zero element of Jac(A). Then A f 6= 0, hence A f has a maximal
ideal, whose contraction in A is a prime ideal p such that f 6∈ p, and which is
maximal with respect to this property. Then p is not maximal and is not equal
to the intersection of the prime ideals strictly containing p.

Every field is a Jacobson ring. Z is a Jacobson ring, the unique prime ideal
which is not maximal (0) being the intersection of the maximal ideals (p) of
Z, where p runs through the set of prime numbers. Let A be a Jacobson ring
and let a be an ideal of A. Then A/a is a Jacobson ring.

Lemma (Exercise V.24 in Atiyah and Macdonald, 1969). Let A be a Jacobson ring
and B an A-algebra integral over A. Then B is a Jacobson ring.

Proof. Replacing A by its canonical image in B, we may assume that A ⊆ B.
Let p′ be a prime ideal of B, and let p = A∩ p′. Since A is a Jacobson ring there
exists a family (mλ)λ∈L of maximal ideals of A whose intersection is equal to
p. For all λ ∈ L there exists a maximal ideal m′

λ of B lying above mλ and
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containing p′ (“Going-up Theorem,” see for example Atiyah and Macdonald,
1969, Theorem 5.11). If we write q′ =

⋂
λ∈L m′

λ then

q′ ∩ A =
⋂

λ∈L

mλ = p

and q′ ⊇ p′, whence q′ = p′ (Atiyah and Macdonald, 1969, Corollary 5.8).

The real importance of Jacobson rings is contained in Hilbert’s Nullstel-
lensatz, as formulated in Eisenbud (1995, Theorem 4.19). It is a difficult and
purely algebraic result, but to justify its name in Chapter 4 of Eisenbud (1995)
the usual statement of Hilbert’s Theorem is proved after this.

Theorem (Nullstellensatz - General Form). Let A be a Jacobson ring. If B is a
finitely generated A-algebra, then B is a Jacobson ring. Further, if n ⊆ B is a maximal
ideal, then m = n ∩ A is a maximal ideal of A, and B/n is a finite extension field of
A/m.

An immediate consequence of this Theorem is the following. If X is a
scheme of finite type over Spec A, where A is a Jacobson ring, then the subset
U of closed points is dense in X. However this is not completely satisfactory,
as the general formulation of the Nullstellensatz remains in this way in the
realm of abstract algebra. The following result will reconcile geometry with it.

Theorem (Nullstellensatz - Geometric Form). Let f : X → Y be a morphism of
schemes of finite type over a Jacobson ring R. Then for any closed point x ∈ X the
image f (x) is a closed point in Y, and the local homomorphism f #

x : OY, f (x) → OX,x

induces a finite field extension k(x) : k
(

f (x)
)
.

Proof. This is nothing but a reformulation of Theorem 4.19 in Eisenbud (1995)
in the language of geometry. Since it is a local statement we can assume every-
thing to be affine, so f will be induced by a homomorphism of finitely gener-
ated R-algebras ϕ : A → B. It is easy to see that the morphism f is of finite
type (apply the Proposition in §1.2.5 and the Lemma in §3.1.4), hence B will be
a finitely generated algebra over A/ ker(ϕ), which is a Jacobson ring.

4.3 Rational Maps

Definition. Let X and Y be algebraic varieties. A rational map from X to Y,
denoted by X 99K Y, is an equivalence class of morphisms of varieties from a
non-empty open subscheme of X to Y. Two such morphisms U → Y, V → Y
are called equivalent if they coincide on the intersection U ∩V.
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It is an exercise to show that in the definition we have in fact described
an equivalence relation, only one has to bear in mind that two morphisms of
varieties which agree on a nonempty open subset are equal (see §3.3.5).

Proposition (Exercise III.3.13 in Liu, 2002). In every equivalence class, there exists
a unique element f : U → Y such that U is maximal for the inclusion relation, and
that every element g : V → Y of the class verifies g = f |V .

This result follows at once by a gluing argument on morphisms as in §2.3.2.
We call U the domain of definition of X 99K Y. We then denote the rational map
by f : X 99K Y. Observe that the generic point of X is always contained in the
domain of f .

Let Y = Spec A be affine, and let V = Spec B be any open affine subset of
X. Let β ∈ B be any element such that the distinguished open subset D(β) is
contained in the domain of the rational map f . Hence f |D(β) is a morphisms of
affine varieties and as such it is induced by a ring homomorphism ϕ : A → Bβ.
The rings A and B are actually affine domains, so in particular we have a
morphism

ϕ : k[x1, . . . , xn]/p −→ k[y1, . . . , ym]F/q

where F is a polynomial, p and q prime ideals, and ϕ is the identity on k. In
accordance with the definition given for instance in Shafarevich (1994a), such
a morphism is uniquely determined by the image of the indeterminates ϕ(xi),
which is an m-tuple of rational functions over Y.

A rational map f : X 99K Y is dominant if the corresponding morphism
U → Y is dominant, where U is the domain of definition of f . If g : Y 99K Z
is another rational map with domain V ⊆ Y, then f−1(V) is a nonempty open
subset of U and we can shrink to define the morphism

f−1(V)
f |V

// V
g

// Z

which defines a rational map from X to Z that we call the composition g ◦ f . This
proves that we can consider the category of varieties and dominant rational
maps. An isomorphism in this category is called a birational map.

Definition. A birational map f : X 99K Y is a rational map which admits an
inverse, namely a rational map g : Y 99K X such that g ◦ f = idX and f ◦ g =
idY as rational maps. If there is a birational map from X to Y, we say that X
and Y are birationally equivalent or simply birational.

The main result of this section is that the category of varieties and dom-
inant rational maps is equivalent to the category of finitely generated field
extensions of k, with arrows reversed. But first we need a preliminary result
about morphisms of varieties.
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Lemma. Let X and Y be two varieties with generic point η and ζ respectively, and let
f : X → Y be a morphism of varieties. Then f is dominant if and only if the morphism
of sheaves f # is injective, further in this case f (η) = ζ.

Proof. For any V = Spec A open affine subset of Y, let U = Spec B be any
open affine subset of X contained in f−1(V). Then the restriction f |VU : U → V
is induced by the composition of homomorphisms

OY(V)
f #
V // OX

(
f−1(V)

) res // OX(U)

The morphism f is dominant if and only if so is this restriction for any V and
U. Indeed the restriction is given by the composition f |V ◦ iU where iU is
the inclusion of U in f−1(V) and is therefore dominant. Maybe it is easier to
understand the argument from the purely topological point of view: we have
two morphisms ϕ : S1 → S2 and ψ : S2 → S3 such that ϕ is dominant, hence
we have

ψ
(

ϕ(S1)
)

= ψ
(

ϕ(S1)
)

= ψ(S2)

therefore ψ ◦ ϕ is dominant if and only if ψ is.
Now since A = OY(V) is an integral domain, the morphism of affine sche-

mes f |VU is dominant if and only if the homomorphism above is injective (see
§1.4.1). Recall now that in §2.4.4 we have seen that the restrictions of OX are
injective and the proof is complete. Observe in particular that η corresponds
to the zero ideal in B = OX(U), while ζ to the zero ideal in A therefore when
f is dominant we have also f (η) = ζ.

Let X and Y be two varieties with generic point η and ζ respectively, and
let f : X 99K Y be a dominant rational map. Then any morphism U → Y
representing f is dominant, and applying the Lemma induces an injective ho-
momorphism of k-algebras from K(Y) = OY,ζ to K(X) = OX,η. Observe how-
ever that this field extension depends only on f and not on the choice of the
morphism representing it.

Theorem (I.4.4 in Hartshorne, 1977). For any two varieties X and Y, the above
construction gives a bijection between

i) the set of dominant rational maps from X to Y, and

ii) the set of k-algebra homomorphisms from K(Y) to K(X).

Furthermore, this correspondence gives an arrow-reversing equivalence of categories.
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Proof. The construction described above associates a homomorphism of k-
algebras to any dominant rational map, here we will describe its inverse. Let
θ : K(Y) → K(X) be a homomorphism of k-algebras, we want to define a ra-
tional map from X to Y. By a gluing argument we can assume Y = Spec A
to be affine, then A will be an affine domain say generated by y1, . . . , yn.
Let U be the maximal open subset of X on which the n rational functions
θ(y1), . . . , θ(yn) are regular, observe incidentally that for any open affine sub-
set W = Spec B of X the intersection U∩W is given by the open basic subset of
Spec B defined by the denominators of the rational functions. Thus θ restricts
to an injective k-algebra homomorphism A → OX(U), which by adjunction
(§2.1.4) defines a morphism of varieties U → Y, such that the corresponding
morphism of sheaves is injective hence by the previous Lemma it is a domi-
nant morphism of varieties.

Corollary (I.4.5 in Hartshorne, 1977). For any two varieties X and Y, the following
conditions are equivalent

i) X and Y are birationally equivalent;

ii) there are open subsets U ⊆ X and V ⊆ Y with U isomorphic to V;

iii) the fields of rational functions K(X) and K(Y) are isomorphic k-algebras.

Proof. Observe first that iii) follows from ii) by the definition of function field,
while i) follows from iii) by the Theorem, therefore there is only to prove that
i) implies ii). Let f : X 99K Y and g : Y 99K X be rational maps which are
inverse to each other. Let U be the domain of f and V be the domain of g
and take f−1(g−1(U)

)
as the open subset of X and g−1( f−1(V)

)
as the open

subset of Y.

“In Algebraic Geometry we work with two different equivalence relations
between varieties, isomorphism and birational equivalence. Birational equiv-
alence is clearly a coarser equivalence relation than isomorphism; in other
words, two varieties can be birational without being isomorphic. Thus it of-
ten turns out that the classification of varieties up to birational equivalence is
simpler and more transparent than the classification up to isomorphism. Since
it is defined at every point, isomorphism is closer to geometric notions such
as homeomorphism and diffeomorphism, and so more convenient. Under-
standing the relation between these two equivalence relations is an important
problem; the question is to understand how much coarser birational equiv-
alence is compared to isomorphism, or in other words, how many varieties
are distinct from the point of view of isomorphism but the same from that of
birational equivalence.”

taken from Shafarevich (1994a, §I.3.3)
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4.4 Dimension

4.4.1 Topological Definition If X is a topological space, we define the di-
mension of X (denoted dim X) to be the supremum of all integers n such that
there exists a chain Z0  Z1  . . .  Zn of distinct irreducible closed subsets
of X. Observe that a Hausdorff space is zero-dimensional, indeed we have
already observed that points are the only irreducible subsets of a Hausdorff
space.

Proposition (Exercise I.1.10 in Hartshorne, 1977).

(a) If Y is any subset of a topological space X, then dim Y ≤ dim X.

(b) If X is a topological space which is covered by a family of open subsets {Ui},
then dim X = sup dim Ui.

(c) If Y is a closed subset of an irreducible finite-dimensional topological space X,
and if dim Y = dim X, then Y = X.

Proof. Part (a) follows immediately from the following remark: if Y0  Y1  
Y2  . . . is an ascending chain of distinct irreducible closed subsets of Y then
Y0  Y1  Y2  . . . is an ascending chain of distinct irreducible closed subsets
of X. Where Yi denotes closure in X.

Let now {Ui} be an open covering of X and observe that by part (a) we
have dim X ≥ dim Ui for all i, hence dim X ≥ sup dim Ui. Conversely let Z0  
Z1  Z2  . . . be an ascending chain of distinct irreducible closed subsets of
X and let Ui0 be such that Ui0 ∩ Z0 6= ∅, hence the chain (Z0 ∩Ui0) ⊆ (Z1 ∩
Ui0) ⊆ (Z2 ∩Ui0) ⊆ . . . is an ascending chain of irreducible closed subsets of
Ui0 . Note that this chain is strictly increasing in fact if (Zk ∩Ui0) = (Zk+1∩Ui0)
then

Zk+1 = (Zk+1 ∩Ui0) ∪
(
Zk+1 ∩ (X \Ui0)

)
= Zk ∪

(
Zk+1 ∩ (X \Ui0)

)

since Zk+1 is irreducible and Zk  Zk+1 we can conclude that Zk+1 doesn’t
meet Ui0 , but this is impossible since Ui0 ∩ Z0 ⊆ Zk+1. In this way we have
proved that for any chain of irreducible closed subsets of X, of any length,
there is an open subset in the family {Ui} of dimension greater or equal than
the length of the chain. By definition of dimension we can now say dim X ≤
sup dim Ui and conclude.

To prove (c) let Y0  Y1  · · ·  Yn be a maximal chain of irreducible
closed subsets of Y. Since Y is closed, this is also a chain of irreducible closed
subsets of X, and hence is maximal in X also for dim Y = dim X. If we assume
now Y  X we can add to the chain X itself since it is irreducible and since
Yn ⊆ Y  X, contradicting the maximality of the chain.
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Remark (Dimension and coverings). In part (b) of the Proposition above we
proved that dim X = sup dim Ui for any open covering {Ui} of a topological
space X. If we drop the hypothesis of the covering being open this is no longer
true, indeed a quadric cone is a union of lines each one being of dimension 1
while the quadric cone is clearly of dimension 2. However if we cover X by
closed subsets {Zi} a similar result holds provided the covering is locally finite,
that is every point x admits an open neighborhood U which meets only a finite
number of Zi.

4.4.2 Local Definition Let X be a topological space. Let x ∈ X. We define
the dimension of X at x to be

dimx X = inf
{

dim U
∣∣ U open neighborhood of x

}

Proposition (II.5.5 in Liu, 2002). Let X be a topological space. Then we have the
equality dim X = sup{dimx X | x ∈ X}

Proof. Statement (b) of the previous Proposition is in fact a corollary of this
result, it is not surprising therefore that the proof is almost the same. We only
need to prove the inequality dim X ≤ sup{dimx X | x ∈ X}, to this purpose
take any chain of distinct irreducible closed subsets Z0  Z1  Z2  . . . and
let x ∈ Z0. Let U be any open neighborhood of x and repeat the argument in
the Proposition above.

Corollary (Exercise II.5.1 in Liu, 2002). Let X be a topological space. Let Yi be a
locally finite covering of X by closed subsets. Then dim X = sup dim Yi.

Proof. First we prove the following. Let U be a topological space which is the
union of a finite number of closed subsets U = Y1 ∪ · · · ∪ Yn then dim U =
max{dim Y1, . . . , dim Yn}. This follows immediately once we observe that if Z
is an irreducible subset of U then it is contained in one of the Yi. To convince
yourself that this is true write Z as follows

Z = (Z ∩Y1) ∪

Z ∩




n⋃

j=2

Yj







since Z is irreducible is either contained in Y1 or in the union of all the others,
now conclude inductively. This implies that any chain Z0  Z1  . . .  Zn
of distinct irreducible closed subsets of U, is contained in some of the Yi and
eventually that dim U = max{dim Y1, . . . , dim Yn}.
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Now we have an open covering U of X made by open sets U that meet
only a finite number of the given closed subsets Yi, hence

dim X = sup{dim U |U ∈ U }
= sup

{
max

{
dim(YU,1 ∩U), . . . , dim(YU,N(U) ∩U)

} ∣∣∣ U ∈ U
}

≤ sup
{

max{dim YU,1, . . . , dim YU,N(U)}
∣∣ U ∈ U

}

therefore dim X ≤ sup dim Yi

4.4.3 The Dimension of a Scheme To help the reader gain confidence with
the abstract notion of dimension, but at the same time to warn him from being
too much confident, we collect in this subsection some pathological examples.

Example (In which there is a dense open subset of strictly smaller dimension).
Take the real line and identify points in the open interval (0, 1). Call ε the
open point in X = R/ ∼ that is the quotient of the interval. The closure ε, of
the set {ε} is the irreducible closed subset {0, ε, 1}. So in X there is the chain
{0}  ε, and dim X = 1. The set X \ {0, 1} is open and dense, moreover zero
dimensional, since it is Hausdorff.

Example (In which there is a Noetherian space of infinite dimension). As a
set X = N \ {0}, we define a topology on X setting Cn = {1, 2, . . . , n} to be
closed for all n, with C0 = ∅ and C∞ = X. It is clear that Cn is irreducible for
all n 6= 0, so that C1  C2  . . . is an infinite ascending chain of irreducible
closed subsets of X, and hence X is infinite dimensional. On the other hand
every descending chain of closed subsets is of the form Ci0 ⊇ Ci1 ⊇ Ci2 ⊇ . . .,
where I = {i0, i1, i2 . . .} ⊆ N and i0 ≥ i1 ≥ i2 ≥ . . .. Then there exists α = inf I
and N ∈ N such that for each j ≥ N we have ij = α, i.e. the chain is stationary
and X is Noetherian.

Definition. The dimension of a scheme X, denoted dim X, is its dimension as a
topological space. That is the supremum of all integers n such that there exists
a chain Z0 ( Z1 ( . . . ( Zn of distinct irreducible closed subsets of X.

Recall that for a ring A the Krull dimension is defined to be the supremum of
all integers n such that there exists a chain of prime ideals pn ) pn−1 ) . . . ) p0
of length n. It is obvious from the definition that the dimension of an affine
scheme coincides with the Krull dimension of the ring.

“Of course, not every topological space has finite dimension. This is false
in general for Spec A even if A is Noetherian. Nevertheless there is a series of
important types of rings for which the dimension of Spec A is finite.”

taken from Shafarevich (1994b, §V.1.4)
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Example (In which there is a Noetherian ring of infinite dimension). Let R be
the algebra C[{xij | i ≤ j}] and let S be the multiplicatively closed subset

S =
⋂

j≥0

(
R \ (x0j, . . . , xjj)

)
= R \ ⋃

j≥0

(x0j, . . . , xjj)

Each polynomial F ∈ R such that F 6∈ S is contained in (x0j, . . . , xjj) for
finitely many j only. More precisely for (x0j, . . . , xjj) to contain F it is necessary
and sufficient that it contains all of the monomials in F. We consider the ring
S−1R, it is clear that for any n ∈ N there exists a chain of prime ideals of
length n, namely (x0n) ( (x1n) ( . . . ( (x0n, . . . , xnn), so that S−1R has infinite
dimension. The difficult part is to prove that S−1R is Noetherian.

Let S−1a be an ideal of S−1R, where a is an ideal of R such that a ∩ S is
empty. Then a ⊆ (x0j, . . . , xjj) for some j, indeed assume this is not the case,
let F ∈ a be any polynomial and let j1, . . . , jq be the finite set of indices above,
then a is not contained in the union of the ideals (x0j, . . . , xjj) for j ∈ {j1, . . . , jq}
(otherwise a would be contained in one of them, see Atiyah and Macdonald,
1969, Proposition 1.11) and there exists G ∈ a that avoids this union. Then
the sum F + G is not contained in the ideal (x0j, . . . , xjj), for j ∈ {j1, . . . , jq}
because otherwise G would be contained in it, for any other j because there is
some monomial of F which is not contained in it. Therefore F + G ∈ S which
is a contradiction.

Since any ideal in S−1R is of the form S−1a for some a as above, we con-
clude that the set of maximal ideals in S−1R is given by ideals of the form
mj = S−1(x0j, . . . , xjj). If we localise S−1R in one of its maximal ideals we
obtain

[S−1R]mh = R(x0h,...,xhh)
∼= F[x0h, . . . , xhh](x0h,...,xhh)

Where F = Frac
(
C

[{
xij | i ≤ j, j 6= h}]) . Hence for any maximal ideal mj the

ring [S−1R]mj is a localisation of a Noetherian ring and therefore it is Noether-
ian (see Atiyah and Macdonald, 1969, Proposition 7.3). Now we can conclude
that S−1R is Noetherian by the following Lemma.

Lemma (9.4 in Eisenbud, 1995). Let A be a ring such that for every maximal ideal
m ⊂ A the local ring Am is Noetherian. If for every nonzero element s ∈ A there are
only finitely many maximal ideals containing s, then A is Noetherian.

Proof. Let a0 ⊆ a1 ⊆ a2 ⊆ . . . be any ascending chain of ideals of A. For any
maximal ideal m there exists an integer i(m) such that for all j > i ≥ i(m) we
have ae

j = ae
i , where the extension is made in the localisation Rm.

Since the sequence is increasing we have the following inclusion between fi-
nite sets

{m ⊆ A | ai ⊆ m} ⊆ {m ⊆ A | a0 ⊆ m} = {m1, . . . , mq}
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Let now i0 = max{i(m1), . . . , i(mq)} and j > i ≥ i0. Take F ∈ aj, we will prove
that F ∈ ai. For all k = 1, . . . , q we have ae

j = ae
i in Rmk , in particular F ∈ ae

i i.e.

F
1

=
Gk
Hk

where Gk ∈ ai and Hk 6∈ mk, this means that there exists Tk 6∈ mk such that

TkHkF = TkGk

Now the ideal generated by ai and T1H1, . . . , TqHq is the unit ideal, indeed it
is not contained in any maximal ideal, so there is an expression of the form
1 = a + ∑

q
k=1 αkTkHk, where a ∈ ai. Hence

F = Fa +
q

∑
k=1

αkTkHkF = Fa +
q

∑
k=1

αkTkGk

where the right-hand side is an element of ai.

4.4.4 Codimension Let X be a topological space. If Z is an irreducible
closed subset of X, we define the codimension of Z in X, denoted codim(Z, X)
to be the supremum of integers n such that there exists a chain Z  Z1  . . .  
Zn of distinct irreducible closed subsets of X, beginning with Z.

Proposition (Exercise II.5.2 in Liu, 2002). Let X be a scheme and x ∈ X be any
point. Then we have the equality dim OX,x = codim

({x}−, X
)
.

Proof. Take any chain {x}−  Z1  . . .  Zn of distinct irreducible closed
subsets of X, beginning with {x}−, then for any open neighborhood U of x
the generic points ξ1, . . . , ξn of the Zi are contained in U. Thus if U = Spec A
is any open affine neighborhood of x these generic points correspond to prime
ideals px ) p1 ) · · · ) pn of A.

4.4.5 Zero Dimensional Schemes In our intuition a geometric space of di-
mension zero is the same as a finite set, and we would be very surprised to call
Geometry any theory where this is not the case. The next result prevents Alge-
braic Geometry from upsetting us, but further comments will be required.

Proposition (Lemma I.1.10 in Iitaka, 1982). Let X be a Noetherian T0 topological
space. Then dim X = 0 if and only if X is a finite set consisting of closed points.
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If X = Spec A is the spectrum of a Noetherian ring this proposition is
a well known result, it is Theorem 8.5 Atiyah and Macdonald (1969) which
asserts that a ring is Noetherian of dimension zero if and only if it is Artin.
Observe that we require X to be not just a finite set but consisting of closed
points, indeed it is easy to find a Noetherian ring of dimension 1 with only a
finite set of prime ideals, for instance k[ x ] localised in the maximal ideal ( x )
which consists of two points only one of which is closed.

The Noetherian hypothesis is necessary, indeed if X is any scheme then the
dimension of X is zero if and only if dim U = 0 for any open affine subset U
of X (it follows from §4.4.1). Therefore a zero-dimensional scheme will always
consist of closed points, for in a ring A with Krull dimension zero every prime
ideal is maximal. But this set can be infinite, already in the affine case.

Example (Zero dimensional schemes with an infinite number of points). A ring
A is Boolean if x2 = x for any x ∈ A. According to Atiyah and Macdonald
(1969, Exercise I.11) the dimension of a Boolean Ring is always zero, and by
Exercise I.24 in there we can give a structure of Boolean ring to the set of all
subsets of a set Σ, which we denote with R(Σ). The product in R(Σ) will
be given by intersection in Σ. Now let e ∈ Σ be any element, let E be the
subset Σ \ {e} and let M be the ideal generated by E in R(Σ). Unravelling the
definitions we have

A ∈ M ⇐⇒ e 6∈ A

From which it follows immediately that M is prime. Therefore the ring R(Σ)
contains a set of prime ideals in one-to-one correspondence with elements of
Σ, and if Σ is an infinite set R(Σ) contains infinitely many prime ideals.

4.4.6 The Dimension of a Variety “Be careful in applying the concepts of
dimension and codimension to arbitrary schemes. Our intuition is derived
from working with schemes of finite type over a field, where these notions are
well-behaved. [. . .] But in arbitrary (even Noetherian) schemes, funny things
can happen.”

taken from Hartshorne (1977, Caution II.3.2.8)
There are essentially two key algebraic results that we need, although both

of them can be derived from the celebrated Noether Normalisation Theorem. In
Chapter 13 of Eisenbud (1995) everything is explained in details, so we can just
state what we need, remember that by affine ring we mean finitely generated
k-algebra.

Theorem. If R is an affine domain over a field k (not necessarily algebraically closed),
then

dim R = tr. degk R,
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and this number is the length of every maximal chain of primes in R.

By tr. degk R here we mean the transcendence degree of the field Frac R
over k, while the dimension of a ring is always the Krull dimension. If p is a
prime ideal then the codimension, or height of p, is by definition the dimension
of the local ring Rp. Equivalently, it is the supremum of lengths of chains of
primes descending from p. If a is any ideal then codim a is the minimum of
the codimensions of primes containing a.

Corollary. If R is an affine domain over a field k (not necessarily algebraically closed),
and a ⊆ R is an ideal, then

dim R/a + codim a = dim R

Definition. Let X be a topological space. If Z is an irreducible closed subset of
X, we define the codimension of Z in X, denoted codim(Z, X) to be the supre-
mum of integers n such that there exists a chain Z  Z1  . . .  Zn of distinct
irreducible closed subsets of X, beginning with Z. If Y is any closed subset of
X, we define

codim(Y, X) = inf
Z⊆Y

codim(Z, X)

where the infimum is taken over all closed irreducible subsets of Y. Equiva-
lently we can take the infimum over the irreducible components of Y (defined
in §1.2.3).

Proposition (Exercise II.3.20 in Hartshorne, 1977). Let X be an integral sche-me of
finite type over a field k (not necessarily algebraically closed). Then for any nonempty
open subset U ⊆ X

dim U = dim X = tr. degk K(X)

Further dim X = dim OX,x for any closed point x ∈ X, and if Y is a closed subset of
X then

codim(Y, X) = inf{dim OX,x | x ∈ Y}
dim Y + codim(Y, X) = dim X

Proof. The dimension of X is given by the supremum of the dimensions of
open affine subsets of X as in §4.4.1, but by §2.4.5 (Lemma) combined with the
theorem above for any open affine subset U = Spec A of X the dimension of
U is given by tr. degk K(X).

Further for any closed point x in X the dimension of the local ring OX,x is
the dimension of Am where U = Spec A is any open affine neighborhood of
x and m is a maximal ideal of A. By the theorem above, dim A is the length
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of every maximal chain of primes in A, in particular it is the length of those
maximal chains contained in m which is dim Am.

From §4.4.4 it follows that the dimension of the local rings OX,x, when x
varies in a closed subset Y of X, is the same as the codimension of the irre-
ducible subsets {x}−, which are all the closed irreducible subsets of Y.

Now let Z be any irreducible closed subset of X. For any open subset U of
X such that U ∩ Z 6= ∅ we then have the following

dim Z = dim Z ∩U
codim(Z, X) = codim(Z ∩U, U)

Once we observe that the reduced induced closed subscheme structure on Z
makes it into an integral scheme of finite type over k, the first of these equali-
ties follows by the previous discussion while the second by §4.4.4. Now take
U to be any open affine subset of X and apply the corollary above to conclude
that the last formula in the statement holds for any irreducible closed subset
of X.

Since sp(X) is Noetherian Y has only a finite number of irreducible compo-
nents Z1, . . . , Zr, therefore using the Corollary in §4.4.2 we can conclude that
there exists i such that dim Zi = dim Y. Moreover the codimension of Y is
given by definition by the least codimension of its irreducible components,
that is there exists j such that codim(Zj, X) = codim(Y, X). Now we can use
the formula on irreducible closed subsets to conclude that i = j and eventually
that the same formula holds for any closed subset.

Corollary. Let X and Y be integral schemes of finite type over k. Then the product
X×k Y is an integral scheme of finite type over k and

dim X×k Y = dim X + dim Y

Proof. We have proved already in §4.1.3 that the product is an integral scheme
of finite type over k. The dimension of X ×k Y is given by the dimension of
any open subset, in particular by the dimension of Spec A⊗k B where U =
Spec A is a subset of X and V = Spec B a subset of Y, and this dimension is
given by the transcendence degree of A ⊗k B over k, which is given by the
sum tr. degk A + tr. degk B. You may wish to solve Exercise 13.13 Eisenbud
(1995).
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Chapter 5

Sheaves over Schemes

In order to deepen our understanding of varieties we need to define coherent
and quasi-coherent sheaves and describe how these are related with vector
bundles, divisors, differential forms and so on. We will see later that tangent
and normal bundles, morphisms to projective space, and even subvarieties
can be defined in terms of sheaves, preparing the ground for the introduction
of Homological Algebra (Gelfand and Manin, 2003). Historically the material
was covered in the long article by Serre (1955), but the beginner may want to
read more recent accounts such as Liu (2002) or Ueno (2001). Not surprisingly
some of the concepts involved are better understood when we refer to Com-
mutative Algebra, especially to Eisenbud (1995) whose complete title, “with a
view toward Algebraic Geometry,” appears to be particularly appropriate in
this context. But the subject is so broad that it also concerns other disciplines,
sheaves of modules for instance are covered in standard books of sheaf theory
such as Tennison (1975).

5.1 Sheaves of Modules

5.1.1 Abstract Definitions Let X be a ringed space with structure sheaf OX.
A sheaf of OX-modules (or simply an OX-module) is a sheaf F on X, such that

i) for each open set U ⊆ X, the group F (U) is an OX(U)-module, and

ii) for each inclusion of open sets V ⊆ U, the restriction homomorphism
F (U) → F (V) is compatible with the module structures via the ring
homomorphism OX(U) → OX(V).

A morphism F → G of sheaves of OX-modules is a morphism of sheaves, such
that for each open set U ⊆ X, the map F (U) → G (U) is a homomorphism of
OX(U)-modules.
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Note that to satisfy properties i) and ii) it is not necessary for F to be
a sheaf. For some purposes it is better to bear in mind that an OX-module
is a sheaf, but dealing with presheaves can make life easier, especially in the
moment you have to verify certain properties. The following proposition is
the missing link.

Proposition. Let F be a presheaf on a ringed space X which satisfies the require-
ments to be an OX-module, that is properties i) and ii) above. Then the sheaf F+

associated to F carries a natural structure of OX-module.

Proof. To see this recall the definition of F+, we will recall here the one given
in Hartshorne (1977), but the reader can refer to his favorite construction. For
any open set U, F+(U) is the set of functions s from U to the union

⋃
x∈U Fx

of the stalks of F over points of U, such that

(1) for each x ∈ U, s(x) ∈ Fx, and

(2) for each x ∈ U, there is a neighborhood V of x, contained in U, and an
element t ∈ F (V), such that for all x′ ∈ V, the germ tx′ of t at x′ is equal
to s(x′).

One sees immediately from this definition that F+(U) is an OX(U)-module
in the same way it is a group, with operations defined pointwise and this
structure is clearly compatible with restriction homomorphisms.

In view of the previous Proposition it is clear that the kernel, cokernel,
and image of a morphism of OX-modules are again OX-modules. If F ′ is a
subsheaf of OX-modules of an OX-module F , then the quotient sheaf F /F ′
is an OX-module. Any direct sum, direct product, direct limit, or inverse limit
of OX-modules is an OX-module.

A sequence of OX-modules and morphisms is exact if it is exact as a se-
quence of sheaves of abelian groups. A sheaf of ideals on X is a sheaf of mod-
ules I which is a subsheaf of OX. In other words, for every open set U, I (U)
is an ideal of OX(U).

5.1.2 Hom and Tensor Product Given two sheaves of OX-modules F and
G we can define the tensor product as the sheaf associated to the presheaf

U Â // F (U)⊗OX(U) G (U) .

It is clear that this presheaf satisfies properties i) and ii) above, hence it de-
fines an OX-module which is denoted F ⊗OX G or simply F ⊗ G , with OX
understood.
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Proposition (§IV.4.9 in Tennison, 1975). Let F and G be sheaves of OX-modules
and let F ⊗OX G be their tensor product. Then on the stalks we have a canonical
identification

(F ⊗OX G )x = Fx ⊗OX,x Gx

“Tensor product of OX-modules inherits many of the properties of tensor prod-
uct of modules; for instance, tensor product with a fixed OX-module F gives
a right exact covariant functor

F ⊗− : (Modules/OX) −→ (Modules/OX)

where with (Modules/OX) we denote the category of OX-modules.”
taken from Tennison (1975, §IV.4.10)

The definition of the sheaf H om requires more details. Again F and G are
sheaves of OX-modules, and for any open set U ⊆ X we define

U Â // HomOX |U(F |U, G |U) ,

that is we consider the set of morphisms of sheaves of OX|U-modules from
F |U to G |U. Now we want to define a structure of OX(U)-module on the set
HomOX |U(F |U, G |U), and since we are considering morphisms of restricted
sheaves it is clear that there is no loss of generality in treating the global sec-
tions case only. So we want to define a structure of Γ(X, OX)-module on the set
HomOX(F , G ). First of all we need it to be an abelian group and we proceed
as follows: define the sum of two morphisms of sheaves ϕ and ψ as ϕU + ψU
on any open set U, that is set

(ϕ + ψ)U := ϕU + ψU.

This is a collection of group homomorphisms, one for each open set U ⊆ X.
Now let s ∈ F (U) and look at the following diagram chase, where vertical
arrows are restrictions

s

²²
s|V // ϕV(s|V) + ψV(s|V)

s // ϕU(s) + ψU(s)

²²(
ϕU(s) + ψU(s)

)|V
The two paths coincide because of the following equalities, where we use that
restriction maps of G are group homomorphisms, and ϕ and ψ are morphisms
of sheaves

(
ϕU(s) + ψU(s)

)|V = ϕU(s)|V + ψU(s)|V = ϕV(s|V) + ψV(s|V)
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Note that, when ϕ and ψ are morphisms of OX-modules, the sum ϕ + ψ is
again a morphism of OX-modules. Now we have to define the product of a
morphism ϕ ∈ HomOX(F , G ) with a section α ∈ Γ(X, OX), and for any open
set U ⊆ X we put

(αϕ)U := resX
U(α)ϕU

This defines a morphism of OX(U)-modules for each U, and again we take a
section s ∈ F (U) and look at a diagram chase

s

²²
s|V // resX

V(α)ϕV(s|V)

s // resX
U(α)ϕU(s)

²²(
resX

U(α)ϕU(s)
)|V

The two paths coincide because of the following equalities, where we use that
G is an OX-module and in particular it satisfies property ii), and ϕ is a mor-
phism of sheaves

(
resX

U(α)ϕU(s)
)|V = resX

U(α)|V ϕU(s)|V = resX
V(α)ϕV(s|V)

Setting U 7→ HomOX |U(F |U, G |U) we have defined a presheaf, which sat-
isfies properties i) and ii) above. We claim that this presheaf is already a sheaf.

Indeed let {Ui} be an open covering of X and let ϕi be a section in
HomOX |Ui

(F |Ui , G |Ui) such that ϕi|Ui∩Uj = ϕj|Ui∩Uj . Define the sec-
tion ϕ ∈ HomOX(F , G ) as the unique morphism of sheaves such
that ϕV |V∩Ui = ϕi|V∩Ui for every open set V ⊆ X.

This is called the sheaf of local morphisms of F into G , and usually denoted
H omOX(F , G ) or simply H om(F , G ) if the structure sheaf is understood.

Proposition (Exercise II.5.1 in Hartshorne, 1977). Let E be an OX-module. Then
for any OX-modules F and G we have the following isomorphism of modules over
Γ(X, OX)

HomOX(E ⊗F , G ) ∼= HomOX

(
F , H omOX(E , G )

)

that is the functor E ⊗− is left adjoint to the functor H om(E ,−).

Proof. In analogy with the case of modules over a ring, given a morphism of
sheaves of OX-modules ϕ : E ⊗F → G , for any open set U ⊆ X we define

γ(ϕ)U : F (U) −→ HomOX |U(E |U, G |U)

s 7→ (
α(s) : E |U → G |U

)
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where α(s) is a morphism of sheaves, and for any V ⊆ U open set in X

α
(s)
V : E (V) −→ G (V)

t 7→ ϕV(t⊗ s|V)

the reader can check that γ is a homomorphism of Γ(X, OX)-modules. To see
that this is in fact an isomorphism we should check injectivity and surjectivity,
but in this case it is far quicker to construct the inverse. Again we are led by
the analogy with the case of modules over a ring, and for any open set U ⊆ X
we define

δ(ψ)U : E (U)⊗F (U) −→ G (U)
t⊗ s 7→ [ψU(s)]U (t)

where ψU(s) : E |U → G |U is a morphism of sheaves. In the same way as γ
before, δ is a homomorphism of Γ(X, OX)-modules, and it is immediate to
check that γ

(
δ(ψ)

)
= ψ for any ψ and δ

(
γ(ϕ)

)
= ϕ for any ϕ.

5.1.3 Pull-backs – Adjunction Let f : (X, OX) → (Y, OY) be a morphism of
ringed spaces. If F is an OX-module then the direct image sheaf f∗F is an
f∗OX-module, but since we have the morphism f # : OY → f∗OX of sheaves of
rings on Y, this gives f∗F a natural structure of OY-module also. In this way
we have defined the push-forward of OX-modules, while to define the right
operation of pull-back we need a little bit more of explanation.

Definition. Let f : X → Y be a continuous map of topological spaces. For
any sheaf G on Y, we define the inverse image sheaf f−1G on X to be the sheaf
associated to the presheaf which sends an open set U ⊆ X to

f−1G (U) = lim−→
V⊃ f (U)

G (V),

where the limit is taken over all open sets V of Y containing f (U).

“Note that f∗ is a functor from the category (Sheaves/X) of sheaves on X to
the category (Sheaves/Y) of sheaves on Y. Similarly, f−1 is a functor from
(Sheaves/Y) to (Sheaves/X).”

taken from Hartshorne (1977, §II.1)

Lemma (Exercise II.1.18 in Hartshorne, 1977). The functor f−1 is left adjoint to
the functor f∗, that is for any sheaf F on X and any sheaf G on Y there is a natural
bijection of sets

HomX( f−1G , F ) ←→ HomY(G , f∗F )
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Proof. In Smith (2002) the reader will find a good explanation of all the con-
cepts involved: “there are natural maps G → f∗ f−1G of sheaves on Y and
f−1 f∗F → F of sheaves on X. These maps are little more than glorified
restriction maps, and defining them is just a matter of unravelling the defini-
tions.”

If G is an OY-module it is not true that f−1G is an OX-module, so we can-
not use the inverse image operation alone. Anyway observe that f−1G is an
f−1OY-module. Because of the adjointness between f−1 and f∗ the morphism
f # : OY → f∗OX naturally defines a morphism f−1OY → OX of sheaves of
rings on X. Therefore also the sheaf of structure OX is an f−1OY-module. We
define the pull-back of G as the sheaf of OX-modules

f ∗G = f−1G ⊗ f−1OY
OX

Observe that f ∗OY = OX. For any x ∈ X it is obvious that the stalk on X of
the inverse image f−1G over x is given by the stalk on Y of G over f (x), that
is f−1Gx = G f (x), so we have also the following equality

f ∗Gx = G f (x) ⊗OY, f (x)
OX,x

Proposition (Exercise 6 in Smith, 2002). The functor f ∗ is left adjoint to f∗, that
is for any OX-module F and any OY-module G there is a natural bijection of sets

HomOX( f ∗G , F ) ←→ HomOY(G , f∗F )

Proof. We start observing that the adjunction of the previous Lemma respects
the module structure in that it defines the following natural bijection between
homomorphisms of OY-modules and homomorphisms of f−1OY-modules

Hom f−1OY
( f−1G , F ) ←→ HomOY(G , f∗F )

Tensoring out with OX over f−1OY we can also define a bijection

HomOX( f ∗G , F ⊗ f−1OY
OX) ←→ Hom f−1OY

( f−1G , F )

Now observe that F ⊗ f−1OY
OX is canonically isomorphic to F .

5.2 Locally Free Sheaves and the Picard Group

5.2.1 Locally Free Sheaves Let X be a ringed space with structure sheaf OX.
A sheaf of OX-modules E is free if it is isomorphic to a direct sum of copies of
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OX. It is locally free if there exists a trivialising covering of X for E , that is if
X can be covered by open sets Ui for which E |Ui is a free OX|Ui-module. It is
clear that any refinement of the trivialising covering {Ui} is again a trivialising
covering, moreover we can also assume {Ui} to be a base for the topology on X,
indeed given a base B for the topology on X we can consider the refinement
of the given covering {Ui} made by every open set V ∈ B that is contained in
some Ui. Clearly every open set in X is a union of subsets of this kind.

The rank of E on any open set of the trivialising covering is the number
of copies of the structure sheaf needed (finite or infinite). If X is connected,
the rank of a locally free sheaf is the same everywhere, however it is often
convenient to let X be possibly disconnected but work anyway with locally free
sheaves of finite rank, meaning that we require the rank to be at least everywhere
finite, if we want it to be also constant we will specify of rank n.

Given a locally free OX-module of finite rank E , we define the dual of E , de-
noted E ∨, to be the sheaf H om(E , OX). Observe that E ∨ is again a locally free
OX-module, of the same rank as E . Indeed for all members U of a sufficiently
fine open covering of X we have

E ∨|U = H omOX(E , OX)|U = H omOX |U(E |U, OX|U)
∼= H omOX |U(O n

X |U, OX|U)

Now it is enough to apply the following result.

Lemma. Let (X, OX) be a ringed space, then there is a natural isomorphism

ϕ : O n
X −→ H omOX(O n

X , OX)

Proof. Recall first that the direct sum of two sheaves F and G is defined sim-
ply by assigning U 7→ F (U)⊕ G (U) as in §B.2.2. Now it is enough to observe
that the global sections e1, . . . , en in Γ(X, OX)n define by restriction a base for
any module O n

X (U) = OX(U)n, so for any sheaf of OX-modules F every mor-
phism ψ : O n

X → F is uniquely determined by the n-tuple ψX(e1), . . . , ψX(en)
of global sections of F .

5.2.2 Two Canonical Isomorphisms We present here two important canon-
ical isomorphisms, the reader will recognise the statements as they are very
well known results in commutative algebra about modules over a ring. What
makes them special in this case is that they still hold for sheaves.

Proposition (Exercise II.5.1 in Hartshorne, 1977). Let E be a locally free sheaf of
OX-modules of finite rank. Then

E ∼= (
E ∨

)∨.
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Proof. We begin recalling some commutative algebra: if M is any module over
a ring R we have a homomorphism M → HomR

(
HomR(M, R), R

)
defined

by the action of the elements of M on HomR(M, R). If M is free of finite rank,
after choosing a base on M one shows that this homomorphism is in fact an
isomorphism with easy arguments of linear algebra. Going back to the set up
on sheaves if E is any OX-module we define a morphism

Φ : E −→ H om
(
H om(E , OX), OX

)

as follows

ΦU : E (U) −→ HomOX |U
(
H omOX |U(E |U, OX|U), OX|U

)

s 7→ (
ψ(s) : H omOX |U(E |U, OX|U) → OX|U

)

where ψ(s) is a morphism of sheaves defined for any open set V ⊆ U in X as

ψ
(s)
V : HomOX |V (E |V , OX|V) −→ OX(V)(

α : E |V → OX|V
) 7→ αV(s|V)

When E is locally free of finite rank we can assume U to be a trivialising open
set, so s is an n-tuple (s1, . . . , sn) in OX(U)n and the morphism α is uniquely
determined by an n-tuple of global sections. Therefore with easy considera-
tions of linear algebra we can conclude that ΦU is an isomorphism.

Proposition (Exercise II.5.1 in Hartshorne, 1977). Let E be a locally free sheaf of
OX-modules of finite rank. Then for any OX-module F we have

E ∨ ⊗F ∼= H om(E , F )

Proof. We begin recalling some commutative algebra: if M and N are mod-
ules over a ring R we have a morphism Hom(M, R) ⊗ N → Hom(M, N)
defined by ϕ ⊗ n 7→ ϕ( · )n. When M is free of finite rank every element of
Hom(M, R)⊗ N can be written uniquely as ϕ1 ⊗ n1 + · · ·+ ϕk ⊗ nk where k is
the rank of M and ϕi is the i-th coordinate map from M to R and with easy ar-
guments of linear algebra one shows that this is an isomorphism. Going back
to the set up on sheaves we define a morphism

Φ : H om(E , OX)⊗F −→ H om(E , F )

for any open set U ⊆ X as follows

ΦU : HomOX |U(E |U, OX|U)⊗F (U) −→ HomOX |U(E |U, F |U)

ϕ⊗ t 7→
(

ϕ(t) : E |U → F |U
)
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where ϕ and ϕ(t) are morphisms of sheaves, and for any inclusion of open sets
V ⊆ U in X ϕ(t) is defined by

ϕ
(t)
V : E (V) −→ F (V)

s 7→ ϕV(s)(t|V)

With these definitions when E is locally free of finite rank we can assume U
to be a trivialising open set, and with easy considerations of linear algebra we
can conclude that ΦU is an isomorphism.

5.2.3 Projection Formula We will prove here the Projection Formula, a use-
ful formula dealing with pull-backs and push-forwards. But first we need a
preliminary result.

Lemma (Exercise 7 in Smith, 2002). Let f : X → Y be a morphism of ringed spaces.
If E is a locally free OY-module of finite rank then f ∗E is a locally free OX-module of
the same rank.

Proof. Observe that for any open subset U of X we have the following equality
on the restricted sheaves

f ∗E |U = f−1E |U ⊗ f−1OY |U OX|U
Therefore it is enough to prove that f−1 commutes with direct sums, and this
follows easily from the more general result that direct limit commutes with
direct sums.

Proposition (Exercise II.5.1 in Hartshorne, 1977). Let f : X → Y be a morphism
of ringed spaces. If F is an OX-module and if E is a locally free OY-module of finite
rank, then there is a natural isomorphism of OY-modules

f∗
(
F ⊗OX f ∗E ) ∼= f∗F ⊗OY E

Proof. For any sheaf of OX-modules F and any sheaf of OY-modules E we
have the canonical isomorphism

F ⊗OX f ∗E = F ⊗OX

(
f−1E ⊗ f−1OY

OX
) ∼= F ⊗ f−1OY

f−1E

Therefore by tensoring the identity with the natural map E → f∗ f−1E we can
define a morphism of OY-modules

f∗F ⊗OY E −→ f∗
(
F ⊗ f−1OY

f−1E
)

that, when E is locally free of rank n, on any open subset of a trivialising
covering is just the identity of f∗F n.
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5.2.4 The Picard Group The locally free OX-modules of rank one are called
invertible modules or invertible sheaves, the reason for this name is that the
set of isomorphism classes of invertible sheaves over X is a group under the
operation of tensor product. This is a well known result and can be found for
instance in Hartshorne (1977) or in Tennison (1975), nevertheless we are now
going to prove it.

If L and M are invertible sheaves, then for all members U of a sufficiently
fine open covering of X we have

(L ⊗OX M )|U ∼= L |U ⊗OX |U M |U ∼= OX|U ⊗OX |U OX|U ∼= OX|U
so that L ⊗OX M is also invertible. Observe also that the structure sheaf is a
unit element for this operation, indeed L ⊗OX

∼= L for any L .

Lemma. Let (X, OX) be a ringed space and let L be an invertible sheaf on X. Then
there is a natural isomorphism

ϕ : OX −→ H om(L , L )

Proof. For every open subset U ⊆ X we define ϕU to be the morphism sending
the section s ∈ OX(U) to the morphism of sheaves L |U → L |U defined on
any open set V ⊆ U by multiplication for s|V . This morphism of sheaves
coincides with the isomorphism we have seen in §5.2.1 above on any open
subset U such that L |U ∼= OX|U, and therefore it is an isomorphism.

Proposition. Let (X, OX) be a ringed space and let L be an invertible sheaf on X.
Then there exists an invertible sheaf L −1 on X such that L ⊗L −1 ∼= OX.

Proof. Take L −1 to be the dual sheaf L ∨. We know from §5.2.1 that this is
again an invertible sheaf, and in view of §5.2.2 there is a natural isomorphism
L ∨ ⊗L ∼= H om(L , L ). To conclude apply the previous Lemma.

Definition. For any ringed space X, we define the Picard group of X, Pic X,
to be the group of isomorphism classes of invertible sheaves on X, under the
operation

⊗
. In view of the previous results Pic X is in fact a group.

5.3 Coherent Sheaves

5.3.1 The Functor Shf We will apply now all the machinery of OX-modules
to schemes. First consider the affine case, so let A be a ring and X = Spec A
be its spectrum. To any A-module M we are now going to associate a sheaf
of OX-modules, denoted ShfM; the construction is identical to the one of the
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structure sheaf, in fact the ring A is a particular A-module and we should have
dealt with modules all the time. Just like in §1.3 we have two possible ways
of defining ShfM, by means of functions s : U → äp∈U Mp or by specifying a
B-sheaf where B is the base for the Zariski topology given by open sets D(α)
for any α ∈ A. Either way the main properties that this sheaf will have are the
following

i) for any p ∈ X, the stalk (ShfM)p is isomorphic to Mp;

ii) for any α ∈ A, the Aα-module ShfM
(

D(α)
)

is isomorphic to Mα;

iii) in particular, Γ(Spec A, ShfM) ∼= M.

In Hartshorne (1977, §II.5) the first approach is explained in details, while I
would invite the reader to work out the B-sheaf business on its own. Observe
that in this case property ii) alone is enough to define ShfM.

Of course for this association to be useful we need it to be functorial, even
better if the functor will be fully faithful. If ϕ : M → N is a homomorphism
of A-modules, in view of the properties above we can define the morphism of
OX-modules Shfϕ on any distinguished open subset D(α) of X as the localised
map ϕα : Mα → Nα. Again there is a strong analogy, this time with the mor-
phism of schemes induced by a homomorphism of rings, and functoriality
shows up without any surprise. Also standard constructions on A-modules
are respected by this functor, as shown by the following result.

Proposition (II.5.2 in Hartshorne, 1977). Let A be a ring and let X = Spec A.
Also let A → B be a ring homomorphism, and let f : Spec B → Spec A be the
corresponding morphism of spectra. Then:

(a) the map M 7→ ShfM gives an exact, fully faithful functor from the category of
A-modules to the category of OX-modules;

(b) if M and N are two A-modules, then Shf(M⊗A N) ∼= ShfM⊗OX ShfN;

(c) if {Mi} is any family of A-modules, then Shf(
⊕

Mi) ∼=
⊕

ShfMi;

(d) for any B-module N we have f∗(ShfN) ∼= Shf(AN), where AN means N
considered as an A-module;

(e) for any A-module M we have f ∗(ShfM) ∼= Shf(M⊗A B).
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5.3.2 Adjoint Property of Shf In analogy with the adjunction we have seen
in §2.1.4 between Spec and the global section functor we have the following
adjunction between Shf and the global section functor.

Proposition (Exercise II.5.3 in Hartshorne, 1977). Let X = Spec A be an affine
scheme. The functors Shf and Γ are adjoint in the following sense: for any A-module
M and for any sheaf of OX-modules F , there is a natural isomorphism of A-modules

HomOX(ShfM, F ) −→ HomA
(

M, Γ(X, F )
)

Proof. For any morphism of sheaves ξ : ShfM → F , taking global sections
gives a morphism ξX : M → Γ(X, F ) and this association defines a morphism
of A-modules. Conversely let ϕ : M → Γ(X, F ), for any α ∈ A observe that
F

(
D(α)

)
is an Aα-module and define a morphism Mα → F

(
D(α)

)
as the

composition

Mα
ϕα−→ Γ(X, F )α

resα−−→ F
(

D(α)
)

It is now routine to check that these maps are inverse to each other.

5.3.3 Quasi-coherent Sheaves As usual once we have a well understood
construction on affine schemes we generalise it to every scheme by means of
an open affine covering. In this particular case we are going to define what is
a quasi-coherent sheaf, the result that follows is that quasi-coherence is a local
property.

Definition. Let (X, OX) be a scheme. A sheaf of OX-modules F is quasi-
coherent if X can be covered by open affine subsets {Ui = Spec Ai}, such that
for each i there is an Ai-module Mi with F |Ui

∼= ShfMi.

Proposition (II.5.4 in Hartshorne, 1977). Let X be a scheme. Then an OX-module
F is quasi-coherent if and only if for every open affine subset U = Spec A of X, there
is an A-module M with F |U ∼= ShfM.

Observe that a locally free OX-module E of rank n is a quasi-coherent sheaf.
Indeed X can be covered by open sets U such that E |U ∼= (OX|U)n and by
refining the existing covering if necessary we can assume U to be affine. Now
we have

(OX|U)n =
(

ShfOX(U)
)n ∼= Shf

(
OX(U)n)

But of course quasi-coherent sheaves are more general than locally free
sheaves. The kernel, cokernel, and image of any morphism of quasi-coherent
sheaves are quasi-coherent. Any extension of quasi-coherent sheaves is quasi-
coherent; this refers to short exact sequences of OX-modules, more precisely
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given 0 → F ′ → F → F ′′ → 0, if F ′ and F ′′ are quasi-coherent then so is
F (see Hartshorne, 1977, for a proof). It is possible, and sometimes useful, to
give an equivalent definition of quasi-coherence. We will state it as a Theorem,
but first we need another result.

Proposition (II.5.6 in Hartshorne, 1977). Let 0 → F ′ → F → F ′′ → 0 be an
exact sequence of OX-modules, where X is an affine scheme, and assume that F ′ is
quasi-coherent. Then the following sequence is exact

0 −→ Γ(X, F ′) −→ Γ(X, F ) −→ Γ(X, F ′′) −→ 0

Theorem (Exercise II.5.4 in Hartshorne, 1977). Let X be a scheme and let F be a
sheaf of OX-modules. The following are equivalent

i) F is quasi-coherent;

ii) for every x ∈ X, there exists an open neighborhood U of x and an exact sequence
of OX-modules

O
(J)
X |U −→ O

(I)
X |U −→ F |U −→ 0

where I and J are sets and by O
(I)
X we mean the free OX-module over I.

Proof. In Chapter 5 of Liu (2002) statement ii) is given as the definition of
quasi-coherence, and this Theorem is stated from the opposite point of view
as Theorem 1.7, but the proof in there needs X to be Noetherian or separated
and quasi-compact.

Observe that if F is quasi-coherent then statement ii) holds trivially. For
the converse let U be an open affine set such that there exists an exact sequence
as above. Since the sheaf O

(J)
X |U is quasi-coherent the corresponding sequence

on global sections is exact, then we can apply the functor Shf to obtain an-
other exact sequence of sheaves. In this way we can construct the following
commutative diagram

Shf
(
OX(U)(J)) // Shf

(
OX(U)(I)) // Shf F (U) //

ψ

²²

0

O
(J)
X |U // O

(I)
X |U // F |U // 0

where vertical arrows are induced by adjunction as in §5.3.2. For any point
x ∈ U we have a diagram of OX,x-modules. An easy diagram chase will now
prove that ψ is an isomorphism.
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5.3.4 Coherent Sheaves over Noetherian Schemes Let X be a Noetherian
scheme. We say that a sheaf of OX-modules F is coherent if it can be covered
by open affine subsets {Ui = Spec Ai}, such that for each i there is a finitely
generated Ai-module Mi with F |Ui

∼= ShfMi. In particular F is quasi-coherent.

Just like quasi-coherence also coherence is a local property, again the ker-
nel, cokernel, and image of any morphism of coherent sheaves are coherent
and any extension of coherent sheaves is coherent. The equivalent definition
we have seen above holds also for coherent sheaves over a Noetherian scheme
with the extra condition that the sets I and J be finite.

Proposition. Let F and G be coherent sheaves over a Noetherian scheme X. Then
we have an isomorphism on the stalks of the sheaf H omOX(F , G )

H omOX(F , G )x −→ HomOX,x(Fx, Gx)

Proof. Observe that we can always define such a morphism, even when F
and G are just sheaves of OX-modules. To be precise any element of the stalk
H omOX(F , G )x is given by the equivalence class of a couple (U, ϕ) where U
is an open subset of X and ϕ : F |U → G |U is a morphism of sheaves, and ϕ
induces a morphism of OX,x-modules that doesn’t depend on the particular
choice inside the equivalence class. The reader can check that this association
defines in fact a morphism of OX,x-modules, the issue here is to prove that this
is in fact an isomorphism. The statement is local, so it is enough to assume the
scheme X to be affine, say X = Spec A. Then by adjunction (§5.3.2) for any
α ∈ A we have the following isomorphism

HomOX |D(α)

(
ShfM|D(α), ShfN|D(α)

) ∼= HomAα

(
Mα, Nα

)

where M is assumed to be finitely generated, say by m1, . . . , mr.

Injectivity. Let f : M → N be a morphism of A-modules such that the
localisation fp : Mp → Np is the zero map. Then for any i = 1, . . . , r we have
fp(mi) = 0, this is equivalent to say that for any i = 1, . . . , r there exists αi 6∈ p

such that αimi ∈ ker f . If we define α to be the product of the αi’s the localised
morphism fα : Mα → Nα is the zero map.

Surjectivity. Let ψ : Mp → Np be a morphism of Ap-modules. Then ψ is
uniquely determined by ψ(m1), . . . , ψ(mr), because m1, . . . , mr is a system of
generators for Mp, and these will be fractions n1/β, . . . , nr/β where β can be
taken to be independent from i. Now the same set of elements defines a unique
morphism Mβ → Nβ whose localisation in p is ψ.
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5.3.5 Tensor Operations For any sheaf of OX-modules F , we define the
tensor algebra, symmetric algebra, and exterior algebra of F by taking the sheaves
associated to the presheaves which to each open set U assign the correspond-
ing tensor operation applied to F (U) as an OX(U)-module. The results are
OX-algebras, and their components in each degree are OX-modules. From the
construction it is also clear that if F is quasi-coherent (respectively coherent)
then all of these are quasi-coherent (respectively coherent).

To fix notations we recall the definitions of these tensor operations on a
module. As usual we are forced to assume the reader familiar with the basic
concepts, referring him to the appendices in Eisenbud (1995) or Fulton and
Harris (1991) or to Northcott (1984) for a more complete exposition.

Let A be a ring and let M be an A-module. Let Tn(M) be the tensor product
M⊗ · · · ⊗M of M with itself n times, for n ≥ 1. For n = 0 we put T0(M) = A.
Then

T(M) =
⊕

n≥0
Tn(M)

is a (noncommutative) A-algebra, which we call the tensor algebra of M.
We define the symmetric algebra of M

Sym(M) =
⊕

n≥0
Symn(M)

to be the quotient of T(M) by the two-sided ideal generated by all expressions
x⊗ y− y⊗ x, for all x, y ∈ M. Then Sym(M) is a commutative A-algebra. Its
component Symn(M) in degree n is called the n-th symmetric product of M. We
denote the image of x⊗ y in Sym(M) by xy, for any x, y ∈ M. If M is a free A-
module of rank r, then the choice of a basis for M determines an isomorphism
Sym(M) → A[x1, . . . , xn].

We define the exterior algebra of M

∧
(M) =

⊕

n≥0

n∧
(M)

to be the quotient of T(M) by the two-sided ideal generated by all expressions
x ⊗ x, for x ∈ M. Note that this ideal contains all expressions of the form
x ⊗ y + y ⊗ x, so that

∧
(M) is a skew commutative graded A-algebra. This

means that if u ∈ ∧r(M) and v ∈ ∧s(M), then

u ∧ v = (−1)rsv ∧ u

where we denote by ∧ the multiplication in this algebra; so the image of x⊗ y
in

∧2(M) is denoted by x ∧ y. The n-th component
∧n(M) is called the n-th

exterior power of M.
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5.3.6 Coherence for Affine Schemes – Projective Modules Let X = Spec A
be an affine scheme and let E be a locally free OX-module of rank n. Since
quasi-coherence is a local property, we know that there exists an A-module
M such that E = ShfM. What can we say about the module M? We can
reasonably expect to characterise modules that give rise to locally free sheaves,
if not to prove that they are all free. To begin with observe that the localisation
Mp of M on any prime ideal p is a free Ap-module, a module with this property
is called locally free.

Proposition. Let X = Spec A be a Noetherian affine scheme and let E = ShfM be
a coherent sheaf. Then E is a locally free sheaf if and only if M is a projective module.

Proof. Let E be a locally free sheaf, then we can assume the trivialising cov-
ering of X for E to consist of basic open sets, and since any affine scheme is
quasi-compact we can also assume it to be finite. Now we are in the following
situation: M is an A-module and there is a finite set of elements α1, . . . , αr, that
generate the unit ideal of A, such that Mi is free over Ai for each i, where Mi
and Ai denote localisation on the element αi. Conversely if we are in this situ-
ation the sheaf ShfM is by definition locally free. Now we have the following
characterisation, which can be found in Eisenbud (1995) as Theorem 19.2 or
Theorem A3.2.

Theorem (19.2 in Eisenbud, 1995). Let M be a finitely generated module over a
Noetherian ring A. The following statements are equivalent:

(a) M is a projective module;

(b) Mp is a free module for every prime ideal p of A;

(c) There is a finite set of elements α1, . . . , αr that generate the unit ideal of A such
that Mi is free over Ai for each i.

In particular, every projective module over a local ring is free. Every graded projective
module over a positively graded ring A with A0 a field is a graded free module.

Projective modules appear naturally in Homological Algebra, where to-
gether with the dual concept of injective modules they represent the building
block for the construction of derived functors. A module P is projective if for
every epimorphism of modules ϕ : M → N and every map ψ : P → N, there
exists a map γ : P → M such that ψ = ϕ ◦ γ, as in the following diagram

P
∃γ

~~
ψ

²²
M ϕ

// N
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An introduction to these concepts can be found in Appendix 3 of Eisenbud
(1995), or in Berrick and Keating (2000) from a more categorical point of view.
The characterisation of projectives as locally free modules is also true in gen-
eral, without the Noetherian and finitely generated hypotheses, the proof is in
Kaplansky (1958).

Not all projective modules are free, but in the mid-1950s, Jean-Pierre Serre
conjectured that every projective module over a polynomial ring over a field
must be free. This was open until 1976, when a proof was given simultane-
ously, and independently, by Daniel Quillen (Fields Medal in 1978) in Cam-
bridge, Massachusetts and Andrei Suslin in Moscow. As a result, the state-
ment is often referred to as the Quillen-Suslin Theorem. It can be found in Man-
dal (1997), together with other interesting results about projective modules
and Algebraic Geometry. It clearly implies that the Picard Group of affine
n-space over a field k is trivial.

5.3.7 Pull-backs The next step in the study of quasi-coherent sheaves is
to describe their behaviour under pull-backs. Given a morphism of schemes
f : X → Y we consider quasi-coherent sheaves F over X and G over Y. It
turns out that f ∗G is always quasi-coherent, and even more importantly it
is coherent whenever F is coherent. The sheaf f∗F instead is much more
problematic. The main result is the following.

Proposition (II.5.8 in Hartshorne, 1977). Let f : X → Y be a morphism of schemes.

(a) If G is a quasi-coherent sheaf of OY-modules, then f ∗G is a quasi-coherent sheaf
of OX-modules.

(b) If X and Y are Noetherian, and if G is coherent, then f ∗G is coherent.

(c) Assume that either X is Noetherian, or f is quasi-compact and separated. Then
if F is a quasi-coherent sheaf of OX-modules, f∗F is a quasi-coherent sheaf of
OY-modules.

Looking at statement (c) observe that a closed immersion is a quasi-compact
and separated morphism, other examples include finite morphisms (§3.4) and
proper morphisms (§3.3.6). But we should keep in mind that when X is Noe-
therian quasi-coherence is not an issue.

The real issue is coherence. Indeed when X and Y are Noetherian and F
is a coherent sheaf it is not true that f∗F is a coherent sheaf. Not even when
f is quasi-compact and separated, in fact not even when f is a morphism of
affine schemes.
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Example (A coherent sheaf F such that f∗F is not coherent). Assume f to
be a morphism of affine schemes, induced by the homomorphism of rings
ϕ : A → B. Then a coherent sheaf of OX-modules is defined to be Shf M for
some finitely generated B-module M, and f∗F is given by Shf(AM) where
AM means M considered as an A-module. In this situation as soon as B is not
finitely generated as an A-module we have the easiest counterexample of all,
F = OY = Shf B. This is the case for instance when ϕ : C[x] → C[x]m is the
localisation in some maximal ideal m = (x− λ).

Inspired by this example we are now able to spot a sufficient condition
for f∗F to be coherent. The following is the first and easiest result in this
direction, in fact so easy to be almost useless.

Lemma (Exercise II.5.5 in Hartshorne, 1977). Let X and Y be Noetherian schemes,
and let f : X → Y be a finite morphism. If F is a coherent sheaf of OX-modules, then
f∗F is a coherent sheaf of OY-modules.

Proof. It is clearly enough to consider Y to be affine, in which case, since the
morphism is finite, X also will be affine. So the morphism f will be induced
by a homomorphism of rings ϕ : A → B, and the sheaf F will be in fact given
by Shf M for some finitely generated B-module M. But since f is finite B is
a finitely generated A-module, so that M viewed as an A-module is also fi-
nitely generated. This completes the proof because f∗F is precisely given by
Shf(AM).

The real importance of this result is that it holds more generally for proper
morphisms. The proof is in Grothendieck’s Éleménts de géométrie algébrique
(Théorème 3.2.1 in EGA III), but for most purposes it is enough to keep in
mind that this holds for projective morphisms (§6.1.1), which is the content
of Theorem III.8.8 in Hartshorne (1977). However let us remind the inter-
ested reader that Grothendieck’s original work is available from <http://www.
numdam.org/>.

5.3.8 Global Spec Let A be a quasi-coherent sheaf of OX-algebras over a
scheme X, that is a sheaf of rings which is also quasi-coherent. Equivalently
we can think about A as a sheaf of rings endowed with a structure morphism
OX → A which makes it into a quasi-coherent sheaf of OX-modules. We are
going to define the spectrum of A , this will be a scheme E, which we usu-
ally denote by Spec A , endowed with a morphism π : Spec A → X such
that π∗(OE) = A . In the affine case, when X is the spectrum of a ring R,
there exists an R-algebra A such that A = ShfA, thus it is natural to define
Spec A = Spec A: indeed, by the adjunction in §5.3.2, the structure morphism
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of A will be induced by the structure morphism R → A of A, which will also
define a morphism of affine schemes π : Spec A → X as required.

Proposition (Exercise II.5.17 in Hartshorne, 1977). Let X be a scheme. Then there
exists a fully faithful functor Spec from the category of quasi-coherent sheaves of OX-
algebras to the category of schemes over X. When X = Spec R is an affine scheme the
functor Spec coincides with Spec from the category of R-algebras to the category of
schemes over R.

Proof. By the previous discussion we know how to define Spec when X is
affine, and also that in this case it coincides with Spec. Now we want to ex-
tend this definition by means of a gluing argument. For any open affine sub-
set U of X consider the affine scheme SpecA (U) and observe that whenever
W ⊆ U is an inclusion of open affine subsets we have a natural open immer-
sion SpecA (W) → SpecA (U) induced by the restriction morphism. It is an
exercise to check that this family of schemes glue together and this association
is functorial (you may want to use the Gluing Lemma as in §2.3.3). Note that
for any scheme X we have Spec OX = X.

Observe that in the statement above we could be more precise, indeed the
functor Spec from the category of R-algebras to the category of schemes over
R coincides with the composition Spec ◦ Shf. But the analogy with the affine
case is so strong that no confusion can arise. In fact Spec satisfies an adjunc-
tion property in the same way as Spec.

Lemma. Let A be a quasi-coherent sheaf of OX-algebras and let S be a scheme over
X, with structure morphism p : S → X. If we denote by Alg the category of quasi-
coherent OX-algebras, there is a natural bijection

HomSch/X(S, Spec A ) ←→ HomAlg
(
A , p∗OS

)

given by the adjunction in §2.1.4.

Proof. Let E = Spec A and π : E → X its structure morphism. Then the
statement above is very easy to check if we observe that for any open affine
subset U ⊆ X we have V = π−1(U) = Spec A (U) and the restriction f |V
of any morphism of schemes f : S → E is given by a morphism of algebras
A (U) → OS

(
p−1(U)

)
.

A couple of remarks about this construction are needed. First observe
that if A is a quasi-coherent sheaf of OX-algebras, the projection morphism
π : Spec A → X is obviously an affine morphism (§3.3.6). Viceversa for any
affine morphism f : Z → X the direct image sheaf f∗OZ is a quasi-coherent
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sheaf of OX-algebras and Z = Spec f∗OZ. Indeed an affine morphism is
quasi-compact and separated, so we can apply the results in §5.3.7 above, in
particular Proposition II.5.8 in Hartshorne (1977). Observe that a closed im-
mersion is an affine morphism, therefore any closed subscheme of X arises in
this way. Observe also the obvious equality X = Spec OX.

5.4 Vector Bundles on Schemes

“Locally free modules are the most convenient algebraic form of the concept of
vector bundles familiar in Topology and Differential Geometry. And invertible
sheaves are the algebraic analogs of line bundles.”

taken from Mumford (1999, §III.2)
A vector bundle over a manifold X is, roughly speaking, another mani-

fold E obtained from X by gluing an n-dimensional vector space over each
point. In his book Mumford explains the statement above by a gluing argu-
ment, mimicking the definition of vector bundle as it is for instance in Griffiths
and Harris (1994). We will adopt here a slightly different point of view, in that
we will start with a purely algebraic definition before actually see that this is
the right analogy with Differential Geometry. We begin with the basic con-
struction of affine n-space An

X over a scheme X, this is defined to be simply the
product

An
X = An

Z ×Z X

where An
Z = Spec Z[x1, . . . , xn]. Observe that if X is a scheme over a field k

we can replace Z with k. When X = Spec R is affine An
X is affine too and is

given by Spec R[x1, . . . , xn], in this case we also denote affine n-space over X
by An

R. The R-algebra R[x1, . . . , xn] is naturally isomorphic to the symmetric
algebra Sym Rn, therefore we have also a natural identification

An
X = Spec Sym O n

X

We call the product An
X between X and affine space the trivial bundle. The

projection p onto X is an affine morphism, such that the fiber over each point
x of X is given by An

k(x).

Definition. A (geometric) vector bundle of rank n over a scheme X is another
scheme E, endowed with a morphism π : E → X, which is isomorphic to
Spec Sym E (as schemes over X), for some locally free sheaf E of rank n. A
line bundle is a vector bundle of rank one. A morphism of vector bundles is a mor-
phism of schemes compatible with this structure, namely it’s a morphism of
schemes from E = Spec Sym E to M = Spec Sym M induced by a morphism
of OX-modules from M to E .
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This definition surely fits with our intuition of a vector bundle as a scheme
locally isomorphic to the trivial bundle, but a few comments are needed. Ob-
serve that, for any open affine subset U = Spec R of X over which the sheaf
E is trivial there exists an isomorphism ψU : π−1(U) → An

U, in other words
π−1(U) is given by the spectrum of R[x1, . . . , xn], and this family of affine sche-
mes is glued together by means of linear morphisms. By this we mean that for
any V = Spec B and for any open affine subset W ⊆ U ∩V, W = Spec A, the
automorphism

ψ = (ψU|•) ◦ (ψV |•)−1 : An
W −→ An

W

is given by a linear automorphism θ, that is θ(xi) = ∑ aijxj for suitable ele-
ments aij ∈ A. Similarly, over each open affine subset U = Spec R of X over
which the sheaves E and M are trivial, a morphism of vector bundles is given
by a linear homomorphism An

U → Am
U.

It is a well known result that for any scheme X vector bundles over X
and locally free sheaves on X are equivalent concepts, the equivalence being
given by a natural one-to-one correspondence up to isomorphism. Therefore,
although conceptually different, the expressions “vector bundle over X” and
“locally free sheaf on X” are often used interchangeably, and one finds him-
self dealing almost exclusively with his favourite point of view regardless of
which language is being used. We are now going to prove the equivalence,
which is left as an exercise in Hartshorne (1977) and discussed very briefly in
Mumford (1999).

Definition. For any morphism of schemes f : E → X, a section of f over an
open set U ⊆ X is a morphism s : U → E such that f ◦ s is the open immersion
of U in X.

U
s

²²

¶ s

&&MMMMMMMMMMMMM

E
f

// X

It is clear how to restrict sections to smaller open subsets, or how to glue them
together, so we see that the presheaf U 7→ {sections of f over U} is a sheaf of
sets on X, which we denote by SE/X.

Proposition (Exercise II.5.18 in Hartshorne, 1977). Let E = Spec E be a vector
bundle of rank n over a scheme X. Then the sheaf SE/X of sections of the projection
morphism π : E → X over X is naturally identified with the locally free sheaf of
OX-modules E ∨.

Proof. As we have seen in §5.3.8 above, sections of π over the open subset
U are in one-to-one correspondence with morphisms of quasi-coherent alge-
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bras Sym E |U → OX|U, moreover if the open set U is also affine then by ad-
junction (§5.3.2) morphisms like these correspond to OX(U)-algebras homo-
morphisms Sym E (U) → OX(U). Now by the very definition of symmetric
algebra we have another bijection with homomorphisms of OX(U)-modules
between E (U) and OX(U).

Theorem (Exercise II.5.18 in Hartshorne, 1977). Let X be a scheme. The two
functors E 7→ SE/X and E 7→ Spec Sym E ∨ define an equivalence of categories
between vector bundles of rank n over X and locally free sheaves of rank n on X.

The proof of the Theorem is immediate from what we have seen so far, ob-
serve by the way that the two functors are covariant. The statement involves
a process of duality, which is harmless but nevertheless can lead to confusion.
If E is a locally free sheaf of rank n on X, then E is the sheaf of sections of
a uniquely defined vector bundle over X and this vector bundle is the one
usually taken to be in direct correspondence with E . Observe therefore that
the actual one-to-one correspondence is straightforward only in one direction,
namely from vector bundles to locally free sheaves.
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Chapter 6

Projective Geometry

This chapter is essentially divided in two parts. The first is rather technical and
contains lots of abstract results concerning schemes and graded rings while in
the second we are going to see some modern geometry. The two are unfor-
tunately indivisible, because we need to build a pretty strong bridge between
algebra and geometry to understand projective schemes. Indeed Proj doesn’t
satisfy all the good functorial properties of Spec and this, although really frus-
trating at the beginning, is the main reason why it is so much more interesting.
We are going to study projective and quasi-projective morphisms, analyse the
connection between graded modules and quasi-coherent sheaves, and define
very ample invertible sheaves. As a climax we will describe the very classic
construction of blow-up, starting from the easy example of the blow-up of the
plane at the origin to reach in increasing generality the construction of global
Proj and the blow-up of a Noetherian scheme along an arbitrary closed sub-
scheme.

6.1 Projective Schemes

6.1.1 Projective Morphisms The reader with some experience in basic Al-
gebraic Geometry may think about a projective variety as a closed irreducible
subset of projective n-space, defined by some homogeneous ideal I inside the
polynomial ring k[x0, . . . , xn], in other words as Proj k[x0, . . . , xn]/I. But this
point of view, although very useful in most cases, hides a subtle problem: let
X be an algebraic variety and assume that there exists a closed immersion
X → Pn

k , is this a projective variety? Surely we would be very disappointed
if it was not, but truth is that we cannot answer this question without de-
veloping more theory. The abstract approach that we are about to describe
gives the word projective a relative meaning, effectively adopting the idea that
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a projective variety should be a variety endowed with a closed immersion in
projective space.

Definition. If Y is any scheme, we define projective n-space over Y, denoted
Pn

Y, to be the fibered product Pn
Z ×Z Y. A morphism f : X → Y of schemes is

projective if it factors into a closed immersion i : X → Pn
Y for some n, followed

by the projection Pn
Y → Y. A morphism f : X → Y is quasi-projective if it

factors into an open immersion j : X → X′ followed by a projective morphism
g : X′ → Y. A scheme over Y is projective or quasi-projective if its structure
morphism is.

When we are working inside the category of schemes over k we can equiv-
alently say that Pn

Y is the fibered product Pn
k ×k Y. In particular any algebraic

scheme X is projective if and only if it comes endowed with a closed immer-
sion into projective space Pn

k .

Theorem (II.4.9 in Hartshorne, 1977). A projective morphism of Noetherian sche-
mes is proper. A quasi-projective morphism of Noetherian schemes is of finite type and
separated.

This Theorem is highly non-trivial, but the proof reduces quickly to the
case of projective space itself. In other words the hardest work is to show
that the structure morphism of projective space Pn

k → Spec k is proper, which
means Pn

k is a complete algebraic variety. The result itself is quite restrictive,
namely any scheme projective over k is already an algebraic scheme (recall
§3.3.6), in particular any integral scheme projective over k is already a com-
plete algebraic variety.

6.1.2 Properties of Projective Morphisms Projective morphisms satisfy all
the good properties of morphisms between schemes, for instance they are sta-
ble under base extension. This result has furthermore some very interesting
consequences about projective varieties and projective algebraic schemes in
general, but before we can see them we need to convince ourselves that for
any scheme S the product Pn

S ×S Pm
S is a projective scheme over S. This is a

very classic result and the reader may have seen it before, it is obtained by a
gluing argument which is explained in details in Liu (2002, Lemma III.3.31).

Segre Embedding. Let S be any scheme. Then there exists a closed immersion

Pn
S ×S Pm

S −→ Pnm+n+m
S

Proof. Let R and T be two graded rings with R0 = T0 = A, and let P be
the graded ring

⊕
d≥0(Rd ⊗A Td). If we denote X = Proj R and Y = Proj T
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then Proj P ∼= X ×A Y. To see this observe that for any homogeneous de-
composable element s⊗ t in P+ there is an isomorphism P(s⊗t)

∼= S(s) ⊗A T(t).
When the base scheme is affine, say S = Spec A, we can consider the rings
R = A[x0, . . . , xn] and T = A[y0, . . . , ym], so that Pn

S = Proj R and Pm
S = Proj T.

In this case the obvious surjective homomorphism A[z00, . . . , zij, . . . , znm] → P
defines the desired closed immersion. In the general case we can repeat this
construction over any open affine subset of S.

Proposition (Corollary III.3.32 in Liu, 2002). Projective morphisms satisfy the fol-
lowing properties.

(a) A closed immersion is projective;

(b) The composition of two projective morphisms is projective;

(c) Projective morphisms are stable under base extension;

(d) The product of two projective morphisms is projective;

(e) If f : X → Y and g : Y → Z are two morphisms, if g ◦ f is projective and g is
separated, then f is projective.

Proof. It is enough to prove the first three statements, the rest will follow by
the fundamental Lemma about attributes of morphisms (§3.3.7). Observe that
P0

Y = Y for any scheme Y, so a closed immersion f : X → Y is projective
because it factors through a zero dimensional projective space over Y.

If now f : X → Y and g : Y → S are two projective morphisms, there are
two closed immersions i f and ig as in the following diagram

Pn
Y

pY
²²

Pm
S

pS
²²

X f
//

i f
>>~~~~~~~~
Y g

//
ig

=={{{{{{{{
S

By the Segre embedding, to prove statement (b) it is enough to prove that
there exists a closed immersion γ : Pn

Y → Pn
S ×S Pm

S . For this purpose, we
refer to the following diagram, where W = Pn

S ×S Pm
S and σ is the product

morphism g× id.

Pn
Y

δY //

pY

²²

σ
ÂÂ??

γ
ÄÄÄÄÄ

Pn
Z id

ÂÂ??

W b //

a
²²

Pn
S δS

//

ε

²²

Pn
Z

i
²²

Y g

ÂÂ?
??

ig

ÄÄÄÄÄ

Pm
S pS

// S j
// Z
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The existence of γ is guaranteed because the square pSa = εb is a fibered
product, indeed σ and ig pY make a commutative diagram with ε and pS. It
remains to prove that γ is a closed immersion, and this follows by checking
that the diagram ig pY = aγ is a fibered product.

To prove (c) let f : Y → S be a projective morphism, and let g : X → S
be a base extension. We refer to the following diagram, where the cube is the
diagram of definition of the product morphism β : Pn

X → Pn
S and on the left

there is the diagram of the fibered product of f and g:

Pn
X

r //

s
²²

ÂÂ??
Pn

Z id
ÂÂ??

Pn
S u

//

v
²²

Pn
Z

j

²²

X×S Y p1
//

p2 ÂÂ?
??

h

44

X g
ÂÂ?

??

Y f
//

c

44

S i
// Z

The two morphisms p1 and ucp2 : X×S Y → Pn
Z make a commutative dia-

gram with jid and ig, therefore there exists a unique h as above. It remains
to prove that h is a closed immersion, and this follows by checking that the
diagram βh = cp2 is a fibered product.

The statement of this Proposition may appear to be quite abstract, but if
you try and translate it into English you will discover the following: products
of projective varieties are projective varieties, a variety which is projective over
R will be also projective when considered over C, a morphism between pro-
jective varieties is always projective (in particular proper). The same result,
but under more restrictive hypotheses, holds for quasi-projective morphisms,
however we need a little bit of extra work to be able to see it.

6.1.3 Immersions A morphism of schemes f : X → S is an immersion if it
factors into an open immersion followed by a closed immersion.

Y
c

²²
X f

//

u
88qqqqqqqqqqqqq
S

In other words if there exists a scheme Y endowed with a closed immersion
c : Y → S and an open immersion u : X → Y such that f = cu.

According to the very definition a morphism of schemes f : X → Y is
quasi-projective if it factors into an immersion i : X → Pn

Y for some n, fol-
lowed by the projection Pn

Y → Y, and it is projective when the immersion i is
closed. In particular immersions are quasi-projective morphisms.
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Lemma. Immersions are stable under base extension.

Proof. Let f : X → S be an immersion, and let f = cu its decomposition as
above. Let also g : W → S be any morphism of schemes. We refer to the
following diagram, where W ′ = W ×S Y and W ′′ = (W ×S Y)×Y X.

W ′′ r1 //

r2
²²

W ′ p1 //

p2
²²

W
g

²²
X u // Y c // S

The reader can convince himself that the commutative square cur2 = gp1r1 is
the fibered product diagram for W ×S X. Now p1r1 is an immersion because
closed and open immersions are stable under base extension.

Unfortunately in this generality it is not true that the composition of two
immersions is an immersion, we need more hypotheses as in the following
result.

Proposition (Exercise III.2.3 in Liu, 2002).

i) Let f : X → S be an immersion. Then f factors into a closed immersion followed
by an open immersion.

ii) Let q : X → S be a closed immersion and v : S → Y be an open immersion,
and assume that the composition f = vq is quasi-compact (see §3.1.3). Then f
is an immersion, that is it factors into an open immersion followed by a closed
immersion.

iii) Let f : X → Y and g : Y → S be two immersions, with g quasi-compact. Then
the composition g f is an immersion.

Proof. The first statement is little more than a trivial remark, indeed we can
factor f as cu where c is a closed immersion and u is an open immersion.
Therefore sp(X) is an open subset of some scheme Y, and since c is a homeo-
morphism there exists an open subset U ⊆ S such that c−1(U) = sp(X). Now
f = v ◦ c|U, where v is the inclusion of U.

Statement ii) is a consequence of the Theorem in §4.1.2, indeed we can
factor f through its scheme-theoretic image Z, and the dominant morphism
g : X → Z will be an open immersion. To see this, with reference to the second
diagram in the statement of the Theorem, just take U = S and observe that in
this case Z′ = X.

To prove part iii) observe first that we can factor f = c1u1 and g = c2u2,
where ci is a closed immersion and ui is an open immersion, therefore we have

141



Marco Lo Giudice 6. Projective Geometry

g f = c2(u2c1)u1. If we assume u2 is quasi-compact we can use statement ii) to
conclude that u2c1 is an immersion, that is it factors as c3u3, and we obtain the
factorisation g f = c2c3u3u1 which proves g f is an immersion. The reader can
check that quasi-compact morphisms are closed under composition, and that
if the composition cu of an open immersion followed by a closed immersion
is quasi-compact, then u is quasi-compact.

6.1.4 Quasi-Projective Morphisms We are now ready to prove that, when
we restrict ourselves to well-behaved categories, quasi-projective morphisms
satisfy all the good properties we expect.

Proposition (Exercise III.3.20 in Liu, 2002). Let S be any scheme. In the cate-
gory of separated schemes of finite type over S, quasi-projective morphisms satisfy the
following properties.

(a) An immersion is a quasi-projective morphism;

(b) The composition of two quasi-projective morphisms is quasi-projective;

(c) Quasi-projective morphisms are stable under base extension;

(d) The product of two quasi-projective morphisms is quasi-projective;

(e) If f : X → Y and g : Y → Z are two quasi-projective morphisms, if g ◦ f is
quasi-projective and g is separated, then f is quasi-projective.

Proof. Observe that in the category of separated schemes of finite type over
S every morphism is quasi-compact. Now the proof goes on precisely as the
one in §6.1.2, only we will have to replace “projective” with “quasi-projective”
and “closed immersion” with “immersion.”

Lemma. Let k be a field and let X = Spec A and Y = Spec R be affine algebraic
schemes. Then any morphism f : X → Y as schemes over k is quasi-projective.

Proof. The morphism f is of finite type, therefore it is induced by a ring ho-
momorphism R → A which makes A into a finitely generated algebra over
R. Thus f factors into an immersion i : X → An

R for some n, followed by
the projection An

R → Spec R, and we have reduced to prove that the latter is
quasi-projective, which is obvious.

Once again these statements may appear to be quite abstract, but in fact
they show that products of quasi-projective varieties are quasi-projective va-
rieties, and morphisms between quasi-projective varieties are always quasi-
projective. The Lemma in particular implies that every affine variety is quasi-
projective.
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6.2 Projective Varieties

6.2.1 Sheaves of Ideals By definition an algebraic variety is projective if
it comes endowed with a closed immersion into projective space Pn

k , we are
therefore interested at first in the following set up: X is a scheme and c : Z → X
is a closed immersion. The machinery of quasi-coherent sheaves allows us to
study the geometry of Z in terms of the geometry of X, for instance when X
is affine Z is given by the spectrum of the quotient ring A/a and we can read
all the geometry of Z out of this A-algebra. More generally we will be able to
identify Z with a sheaf of OX-algebras, but first we need to introduce the ideal
sheaf of a closed immersion.

Definition. Let Z be a closed subscheme of a scheme X, and let c : Z → X be
the corresponding closed immersion. We define the ideal sheaf of Z, denoted
IZ, to be the kernel of the morphism c# : OX → c∗OZ.

Proposition (II.5.9 in Hartshorne, 1977). Let X be a scheme. For any closed sub-
scheme Z of X, the corresponding ideal sheaf IZ is a quasi-coherent sheaf of ideals on
X. If X is Noetherian, it is coherent. Conversely, any quasi-coherent sheaf of ideals
on X is the ideal sheaf of a uniquely determined closed subscheme Z.

Proof. Since a closed immersion is quasi-compact and separated (it is indeed
finite), we can conclude using Proposition II.5.8 in Hartshorne (1977) that
c∗OZ is a quasi-coherent sheaf. Therefore IZ, being the kernel of a morphism
of quasi-coherent sheaves, is quasi-coherent. If X is Noetherian then it is co-
herent, since for any open affine subscheme U = Spec A of X the ring A is
Noetherian, and therefore the ideal IZ(U) is finitely generated.

Conversely, given any quasi-coherent sheaf of ideals I on X, we need to
define a scheme (Z, OZ) together with a closed immersion c : Z → X such that
the kernel of the surjective morphism c# : OX → c∗OZ be I . Observe that the
quotient sheaf OX/I is a quasi-coherent sheaf of OX-algebras and define Z to
be Spec OX/I (see §5.3.8).

An immediate consequence of the Proposition above is the following: for
any closed immersion c : Z → X we can identify the closed subscheme Z
with the quasi-coherent sheaf of OX-algebras OX/IZ. Incidentally observe
that from this point of view we can study the relative position of “closed sub-
spaces” inside the “ambient space” X as follows. We say that the closed sub-
scheme Z contains the closed subscheme Y if Y is in turn a closed subscheme
of Z, that is if IY ⊇ IZ. The union Y ∪ Z is defined as Spec OX/(IZ ∩IY),
and their intersection Y∩Z as Spec OX/(IZ + IY). It is important to note that
the notions of containment, intersection, and union do not satisfy all the usual
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properties of their set-theoretical counterparts, although they are consistent
with them.

In particular when Z is any closed subscheme of X we may want to study
the geometry of Z relatively to the given immersion c : Z → X. The following
result clarifies how to do it, characterising quasi-coherent sheaves over Z in
terms of quasi-coherent sheaves over X.

Lemma. Let X be a scheme and let c : Z → X be a closed immersion. Then the pull-
back functor c∗ and the push-forward c∗ give an isomorphism of categories between
quasi-coherent sheaves of OZ-modules over Z and quasi-coherent sheaves of OX/IZ-
modules over X. If X is Noetherian the same is true with coherent sheaves.

Proof. We can apply Proposition II.5.8 in Hartshorne (1977) and conclude that
c∗ and c∗ actually are functors between quasi-coherent sheaves. Then, since
c is an affine morphism we can reduce to prove the statement in the affine
case only, and the conclusion is then given by Proposition II.5.2 in Hartshorne
(1977).

Definition. Under the identification of the previous Lemma the pull-back of
any quasi-coherent sheaf of OX-modules F will be given by F ⊗OX OX/IZ
which will be rewritten as F ⊗OZ and called the restriction of F to Z.

6.2.2 Graded Modules and Quasi-coherent Sheaves Let I ⊆ k[x0, . . . , xn]
be a homogeneous ideal and let Z be the projective scheme Proj k[x0, . . . , xn]/I.
Then Z is a closed subscheme of projective space Pn

k and as we have seen
above it defines a unique quasi-coherent sheaf of ideals IZ. In what follows
we describe how to construct the sheaf IZ starting from the ideal I.

Let S be a graded ring. A graded S-module is an S-module M, together with
a decomposition M =

⊕
d∈Z Md of M into a direct sum of abelian groups Md,

such that for every d, e ∈ Z, with d ≥ 0, SdMe ⊆ Md+e. In analogy with the
affine case a graded S-module M defines a quasi-coherent sheaf ShfhM over
the scheme X = Proj S.

Proposition (V.1.17 in Liu, 2002). With the notations above, there exists a unique
quasi-coherent OX-module ShfhM such that

i) for any homogeneous α ∈ S+, the restriction ShfhM|Dh(α) is the quasi-coherent
sheaf ShfM(α) on Dh(α) = Spec S(α);

ii) for any p ∈ Proj S, the stalk (ShfhM)p is isomorphic to M(p).
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Proof. There are many different ways of constructing ShfhM, all essentially
equivalent. Observe for instance that property i) above characterises a sheaf
as in §1.3, provided that the gluing condition is satisfied. This is the direct
approach in Liu (2002) where another one is also shown: we can pull-back
the sheaf ShfM over the canonical injection Proj S → Spec S. In Hartshorne
(1977) we find instead the usual very geometric way of visualising sheaves,
by means of functions s : U → äp∈U M(p).

Corollary. The association M 7→ ShfhM defines an exact functor from the category
of graded S-modules, with morphisms preserving degrees, to the category of quasi-
coherent sheaves over Proj S.

Proof. We already know that M 7→ Shf M defines an exact functor. The pull-
back operation is right-exact because it is a left adjoint functor between abelian
categories (see Mac Lane, 1998, Theorem X.1.2), so we can conclude that Shfh is
a right exact functor. It remains to prove that it preserves injective morphisms,
but if ϕ : M → N is injective then the homogeneous localisation ϕ(α) is just the
restriction of the localisation ϕα : Mα → Nα, and therefore is injective.

Despite the analogy with the affine case when M is a graded S-module
many good results no longer apply. For instance it is obvious that any homo-
geneous element of degree zero m ∈ M0 defines a global section of the sheaf
ShfhM (observe indeed that it is contained in every localisation M(α)) but the
same is not true for every element of M. In fact the sheaf ShfhM doesn’t de-
termine the module M: for instance assume that S is generated by S1 as an
S0-algebra, in this situation Proj S is covered by the open affine subsets Dh(α)
where α runs through the elements of S of degree one, and the two localisa-
tions M(α) and N(α) are equal. Note the analogy with §2.2.5.

Lemma (Exercise II.3.12 in Liu, 2002). Let S be a Noetherian graded ring. Then
Proj S is a Noetherian scheme and every finitely generated graded module over S de-
fines a coherent sheaf.

Proof. If S is Noetherian then the maximal ideal S+ is finitely generated, say by
α1, . . . , αr. Therefore applying the results in §2.2.3 we conclude that Proj S =⋃r

i=1 Dh(αi). To complete the proof it is enough to show that S(α) is a Noether-
ian ring for any homogeneous α ∈ S+.

Let I be any ideal inside S(α) and consider Ie in Sα. The ring Sα is a Noe-
therian ring because S is, and the set of all the elements of I is a system of
generators for Ie. We want to prove that Ie is actually finitely generated.

So we have reduced to prove the following: A is a Noetherian ring, a is an
ideal, and S ⊆ a is a system of generators for a, then there exists a finite part
of S that generates a. Clearly if S is finite there is nothing to prove. Otherwise
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consider the collection of ideals in A generated by a finite part of S, which
must have a maximal element a′ because A is Noetherian. Then a′ is finitely
generated by a subset of S and is therefore contained in a. If S ⊆ a′ then
equality holds otherwise we reach a contradiction.

6.2.3 Twisted Sheaves Let S be a graded ring and let X = Proj S. For any
graded S-module M, and for any n ∈ Z, we define the twisted module M(n)
by shifting the degree in M as follows: M(n)d = Mn+d. We define the sheaf
OX(n) to be the quasi-coherent sheaf ShfhS(n). We call OX(1) the twisting sheaf
of Serre. For any sheaf of OX-modules F we denote by F (n) the twisted sheaf
F ⊗OX OX(n).
Example. Let S be the polynomial ring A[x0, . . . , xn] and let X be the projective
space Pn

A. Then the sheaf OX(1) is a locally free sheaf of rank one, indeed for
any i = 0, . . . , n the restriction OX(1)|Dh(xi) is given by the module of the ho-
mogeneous elements of degree one in Sxi , and multiplication by 1/xi defines
an isomorphism between this module and S(xi). On the intersection Dh(xixj)
the gluing condition is therefore given by multiplication with xi/xj.

Proposition (II.5.12 in Hartshorne, 1977). Let S be a graded ring and let X =
Proj S. Assume that S is generated by S1 as an S0-algebra. Then

(a) The sheaf OX(n) is an invertible sheaf on X;

(b) For graded S-modules M and N, we have ShfhM⊗S N = ShfhM⊗OX ShfhN.

(c) For any graded S-module M, we have (ShfhM)(n) = Shfh
(

M(n)
)
, in partic-

ular we have the identity OX(n)⊗OX(m) = OX(n + m).

Proof. The same argument as in the example above proves (a). Indeed for
any homogeneous element α of degree one multiplication by 1/αn gives an
isomorphism from OX(n)|Dh(α) and S(α). For statement (b) we need to observe
the following: the tensor product of graded modules M ⊗S N is a graded S-
module, where for homogeneous s ∈ Mi and t ∈ Nj we set the degree of s⊗ t
to d = i + j. Since the degree of α is one, we can write

s⊗ t
αd =

s
αi ⊗

t
αj

defining in this way an isomorphism (M ⊗S N)(α) = M(α) ⊗S(α)
N(α). State-

ment (c) follows by the previous ones.

Observe that according to this Proposition the twisting functor, defined over
the category of OX-modules by F 7→ F ⊗ OX(n), is exact. Indeed on stalks
this corresponds to taking tensor product with a free module, which is in par-
ticular flat.
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6.2.4 Projective Varieties Going back for a moment to the beginning of our
discussion, let X be a projective variety, that is a variety endowed with a closed
immersion X → Pn

k . We have seen that X is uniquely defined by a quasi-
coherent sheaf of ideals IX over Pn

k . We are now going to prove that there
exists a homogeneous ideal I ⊆ k[x0, . . . , xn] such that not only IX = Shfh I
but also X = Proj k[x0, . . . , xn]/I.

First we want to prove that any quasi-coherent sheaf over Pn
k arises as the

sheaf associated to some graded module over k[x0, . . . , xn], more generally we
investigate the situation for an arbitrary graded ring S. We need a functor
going in the opposite direction, that is associating a graded S-module to any
quasi-coherent sheaf.

Definition. Let S be a graded ring and let X = Proj S. Assume that S is gen-
erated by S1 as an S0-algebra, and let F be a sheaf of OX-modules. We define
the graded S-module associated to F as follows. We consider the group

Γ∗(F ) =
⊕

n∈Z

Γ
(
X, F (n)

)

Any homogeneous element α ∈ Sd determines a global section of the sheaf
OX(d) and we have seen above that F (n) ⊗ OX(d) ∼= F (n + d). We define
the product α · t of a global section t with an homogeneous α ∈ Sd to be the
tensor product α⊗ t.

Example. Let A be a ring, S be the polynomial ring A[x0, . . . , xn] and X be the
n-dimensional projective space Pn

A. Any homogeneous α ∈ Sd is an element
of degree zero in S(d), therefore it defines a global section of OX(d). If we now
take α ∈ Sd and β ∈ Sr the product we have defined over Γ∗(OX) is just the
usual product αβ over S. In fact much more is true, according to Hartshorne
(1977, Proposition II.5.13) there is an isomorphism Γ∗(OX) = S.

The next Theorem is the cornerstone of Projective Geometry, it allows us
to investigate properties of quasi-coherent sheaves over Proj S by studying
graded S-modules. Namely any quasi-coherent sheaf over Proj S is the sheaf
associated to some graded S-module.

Theorem (Proposition II.5.15 in Hartshorne, 1977). Let S be a graded ring, which
is finitely generated by S1 as an S0-algebra. Let X = Proj S, and let F be a quasi-
coherent sheaf on X. Then there is a natural isomorphism β : ShfhΓ∗(F ) → F .

Let A be a ring. With this result understood we can now characterise pro-
jective schemes over A, namely a scheme over A is projective if and only if it
is the projective spectrum of some graded ring S with S0 = A.
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Proposition (V.1.30 in Liu, 2002). Let A be a ring. A scheme X over Spec A is
projective if and only if it is isomorphic to Proj S/I, where S = A[x0, . . . , xn] and I
is a homogeneous ideal of S contained in S+.

Proof. This is just a corollary of the previous Theorem, the complete argument
can be found also in Hartshorne (1977, Corollary II.5.16). The point is to prove
that Γ∗(IX) is a homogeneous ideal of S, and this follows once we realise that
Γ∗ is a left-exact functor.

6.2.5 Saturated Ideals Let A be a ring. We describe next how to decide
when two different homogeneous ideals in A[x0, . . . , xn] give rise to the same
closed subscheme. Quite surprisingly this construction turns out to be also
computational, however we are not going to give any details about algorithms
referring the interested reader to Cox, Little, and O’Shea (1997).

Definition. Let A be a ring, let S = A[x0, . . . , xn] and let α be a homogeneous
element in S. For any homogeneous ideal I in S, we define the saturation I : α∞

of I with respect to α to be the homogeneous ideal

I : α∞ =
{

s ∈ S
∣∣ αms ∈ I for some m > 0

}

We define the saturation I of I to be the intersection I =
⋂n

i=0(I : x∞
i ). We say

that I is saturated if I = I.

Proposition (Exercise II.5.10 in Hartshorne, 1977). Let A be a ring and let S be
the polynomial ring A[x0, . . . , xn].

(a) Two homogeneous ideals I and J of S define the same subscheme of Pn
A if and

only if they have the same saturation;

(b) If Z is any closed subscheme of Pn
A, then the ideal Γ∗(IZ) is saturated;

(c) Saturated ideals of S are in one-to-one correspondence with closed subschemes
of projective space Pn

A.

Proof. Let I ⊆ S be homogeneous. Observe first that for any i = 0, . . . , n
we have I(xi) = I(xi); indeed since I ⊆ I one inclusion is obvious while the
other follows immediately from the definition. Hence Shfh I = Shfh I for any
homogeneous ideal I of S. Two homogeneous ideals I and J define the same
closed subscheme if and only if they define the same sheaf of ideals (see §6.2.1
above), thus we have proved the “if” part of (a). Now let Shfh I = Shfh J. For
any homogeneous element λ ∈ I of degree d, the fraction λ/xd

i is an element
of J(xi), hence there exists some homogeneous ε ∈ J of degree t such that
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λ/xd
i = ε/xt

i . This is equivalent to the relation xd+q
i ε = xt+q

i λ in S, which
implies λ ∈ J. Viceversa for every ε there exists λ and a similar relation, which
implies ε ∈ I.

To prove (b) it is enough to show that Γ∗(Shfh I) = I, furthermore this will
prove (c) also. Now the result will follow easily if we realise that a global
section of (Shfh I)(d) = Shfh

(
I(d)

)
is given by an homogeneous element λ ∈

Sd such that the fraction λ/xd
i is an element of I(xi) for every i = 0, . . . , n.

6.3 Very Ample Invertible Sheaves

6.3.1 Sheaves Generated by Global Sections Let (X, OX) be a ringed space.
We say that an OX-module F is generated by global sections if there is a family
of global sections {si}i∈I ⊆ Γ(X, F ), such that for each x ∈ X, the images of
si in the stalk Fx generate that stalk as an OX,x-module.

The obvious example of a sheaf generated by global sections is the free
OX-module over a set I. But more generally we have the following character-
isation.

Proposition. An OX-module F is generated by global sections if and only if it can
be written as a quotient of a free sheaf.

Proof. If ϕ : O
(I)

X → F is a surjective morphism of sheaves, then F is gen-
erated by the global sections

{
ϕX(ei)

}
where {ei} is the canonical basis for

Γ(X, OX) (I). Viceversa if F is generated by the global sections {si} the associ-
ation ϕX(ei) = si extends to a unique morphism of sheaves.

Examples. Any quasi-coherent sheaf on an affine scheme is generated by global
sections. Indeed, if F = Shf M on Spec A, any set of generators for M as an
A-module will do.

Let S = A[x0, . . . , xn] and let X be the projective space Pn
A. Then x0, . . . , xn

give global sections of OX(1) which generate it. Indeed for each i = 0, . . . , n
the restriction of OX(1) to the open affine subsets Dh(xi) is (by definition) the
sheaf associated to S(1)(xi) which is generated by xi over the localised ring
S(xi) = A[x0/xi, . . . , xn/xi].

Example. Here is a less trivial example, showing that it actually happens to
have a sheaf generated by a set of global sections which is not a system of
generators for the module of global sections. Let X be the conic in projective
plane defined by the equation z2 = xy, that is

X = Proj k[x, y, z]/(xy− z2)
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Then the sheaf OX(1) is generated by the global sections x, y, while z defines
a different global section not contained in the span of x and y over Γ(X, OX).
To see this, we first investigate the local structure of the conic by means of
the distinguished open affine covering X = Dh(x) ∪ Dh(y) ∪ Dh(z), in the
following way

Dh(z) = Spec k
[ x

z
,

y
z

] /(
1− xy

z2

)
= Spec k[ t, t−1 ]

Dh(x) = Spec k
[ y

x
,

z
x

] /(
z2

x2 −
y
x

)
= Spec k[ t−1 ]

Dh(y) = Spec k
[

x
y

,
z
y

] /(
z2

y2 −
x
y

)
= Spec k[ t ]

It is immediate to observe that Dh(z) ⊆ Dh(x) ∩ Dh(y), and that X is isomor-
phic to P1

k. Besides we know from §2.3.5 that Γ(X, OX) = k. In the same
fashion as above the restriction of OX(1) to Dh(x) is generated by x and the
restriction over Dh(y) is generated by y. This is enough to conclude that x and
y generate the sheaf. If now we assume z to be contained in the span of x and
y we reach the contradiction z = αx + βy with α, β ∈ k.

6.3.2 Morphisms to Projective Space We are now interested in studying
morphisms of a given scheme to projective space. More precisely let A be a
fixed ring and let X be any scheme over A. We want to characterise in intrinsic
terms all the morphisms from X to the projective space Pn

A = Proj A[x0, . . . , xn].
We will use the machinery of quasi-coherent sheaves, in particular the twisting
sheaf O(1) over Pn

A will play a central role. First observe that if f : X → Pn
A is

a morphism of A-schemes, then L = f ∗O(1) is an invertible sheaf on X (see
§5.2.3). We also have that O(1) is generated by the global sections x0, . . . , xn,
and this implies that L is generated by n + 1 global sections s0, . . . , sn. If this
is not completely obvious the following result will prove it.

Lemma. Let f : X → Y be a morphism of ringed spaces. Let G be a sheaf of OY-
modules generated by a finite number of global sections. Then f ∗G is generated by
the same number of global sections.

Proof. According to Mac Lane (1998, Theorem X.1.2) a left adjoint functor be-
tween abelian categories is right exact, therefore f ∗ is right exact. Now we
have an exact sequence O n

Y → G → 0 from which we obtain O n
X → f ∗G → 0,

recalling that f ∗O n
Y = O n

X .

If x0, . . . , xn are the global sections of G that generate it, we denote f ∗(xi)
the image of ei under the homomorphism Γ(X, OX)n → Γ(X, f ∗G ) deter-
mined by f ∗, where e0, . . . , en is the canonical basis for Γ(X, OX)n. With these
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notations the sheaf L above is generated by the global sections si = f ∗(xi).
This associates an invertible sheaf on X generated by a finite number of global
sections to any morphism of A-schemes from X to Pn

A. The converse is also
true and we can establish a one-to-one correspondence.

Theorem (II.7.1 in Hartshorne, 1977). Let A be a ring and let X be an A-scheme.

(a) If f : X → Pn
A is an A-morphism, then f ∗O(1) is an invertible sheaf on X,

which is generated by the global sections si = f ∗(xi), i = 0, . . . , n.

(b) Conversely, if L is an invertible sheaf on X, generated by the global sections
s0, . . . , sn ∈ Γ(X, L ), then there exists a unique A-morphism f : X → Pn

A
such that L ∼= f ∗O(1) and si = f ∗(xi).

Given an invertible sheaf L over X, for any global section s ∈ Γ(X, L ) the
subset Xs = {x ∈ X | sx 6∈ mxLx} is open. To see this we restrict to the affine
case as follows. Let A be a ring and let M be an A-module which we assume
to be isomorphic to A. Then there exists an element m ∈ M such that the
homomorphism ϕ : A → M defined by ϕ(1) = m is an isomorphism. A global
section of the sheaf ShfM over Spec A is just an element s = am of M, and
we claim that Xs = D(a). Indeed D(a) clearly contains Xs, because whenever
a ∈ p then s ∈ pMp, and conversely if s ∈ pMp then there exists a fraction
b/c ∈ pAp and an element t 6∈ p such that mt(ac− b) = 0, from which follows
atc = bt ∈ p and eventually a ∈ p.

With this understood, the construction of the morphism f : X → Pn
A start-

ing from an invertible sheaf L goes as follows. For any i = 0, . . . , n we con-
sider the open set Xi = Xsi and, covering Pn

A = Proj k[x0, . . . , xn] with the
usual affine patches, define a morphism of schemes fi : Xi → Dh(xi). This will
be given by a homomorphism of rings ϕi : k[x0/xi, . . . , xn/xi] → Γ(Xi, OXi)
that we set to be ϕ(xj/xi) = sj/si. The fraction sj/si it’s a compact notation,
the meaning should be clear from what we have seen above. It is the section
of OX(Xi) given on any open affine subset U of Xi by the fraction aj/ai where
sj|U = ajm, si|U = aim and m is the generator of the module L (U).

Observe that in this way we construct a morphism of schemes from the
open subscheme of X given by the union X0 ∪ · · · ∪ Xn to Pn

A. The hypothesis
that the sections s0, . . . , sn generate L is needed to ensure that the union above
be the whole of X.

6.3.3 Very Ample Invertible Sheaves Keeping in mind that the word pro-
jective has a relative meaning, we fix a base S and by definition a scheme over
S is projective if it is endowed with a closed immersion c in Pn

S = Pn
Z×Z S. We

can now compone with the projection p : Pn
S → Pn

Z to obtain a morphism from
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X to Pn
Z, and using the result above this is uniquely determined by the invert-

ible sheaf c∗(p∗OZ(1)
)
. Therefore for any scheme S, we define the twisting

sheaf O(1) on Pn
S to be p∗OZ(1).

Definition. If X is any scheme over S, an invertible sheaf L on X is very ample
relative to S, if there is an immersion (§6.1.3) of S-schemes i : X → Pr

S for some
r, such that i∗O(1) ∼= L .

Note in particular that a very ample invertible sheaf relative to S is gener-
ated by a finite number of global sections. This is clear when S is affine using
the theorem above, while the general case reduces to this one by composition
with p. Observe also that a scheme X is quasi-projective over S if and only if
there exists a very ample sheaf on X relative to S; a similar characterisation in
terms of very ample invertible sheaves holds for projective schemes.

Claim (Remark II.5.16.1 in Hartshorne, 1977). Let S be a Noetherian scheme. Then
a scheme X over S is projective if and only if it is proper, and there exists a very ample
sheaf on X relative to S.

Proof. we have seen in §6.1.1 that if X is projective over S then it is proper and
there exists a closed immersion i : X → Pr

S, therefore i∗O(1) is a very ample
invertible sheaf relative to S. Conversely if L is a very ample invertible sheaf
relative to S, there exists an immersion i : X → Pr

S such that i∗O(1) ∼= L .
Since X is proper over S and the projection morphism Pn

S → S is in particular
separated we can conclude that i is proper.

So the proof will be complete if we show that a proper immersion is neces-
sarily a closed immersion. Since every immersion can be written as the com-
position of an open immersion followed by a closed immersion, we can reduce
to prove that a proper open immersion is necessarily a closed immersion. So
let u : X → Y be a proper open immersion; since it is open it induces an iso-
morphism of X with an open subscheme of Y, say (U, OY|U), and since it is
proper U must be also a closed subset of Y. In particular u induces an home-
omorphism onto the closed subset U. Finally keeping in mind the topological
configuration, with both U and its complement open subsets, we can conclude
that the morphism of sheaves u# : OY → u∗OX is surjective. Indeed every
point of Y has an open neighborhood over which this morphism is either zero
or an isomorphism.

Let A be a ring and let X be a projective scheme over A. Looking back at the
characterisation given at the end of §6.2.4 we can realise X as Proj S/I where
S is the polynomial ring A[x0, . . . , xn] and I is a homogeneous ideal contained
in S+. In this situation the closed immersion of X in Pn

A, which we call i, is
induced by the surjective homomorphism of rings S → S/I, and the invertible
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sheaf i∗O(1) coincides with the sheaf OX(1) defined as Shfh(S/I)(1). We see
therefore that choosing a very ample invertible sheaf over X is equivalent to fixing a
representation of X as the projective spectrum of a graded ring.

Proposition (Exercise II.5.12 in Hartshorne, 1977). Fix a base scheme S and let X
be an S-scheme. If L and M are two very ample invertible sheaves on X relative to
S then so is their tensor product L ⊗M .

Proof. Since we have two immersions, the one defined by L that we call
` : X → Pn

S, and the one defined by M that we call m : X → Pr
S, we can define

their product to get a unique morphism i : X → Pn
S ×Pr

S. To see that this is an
immersion it is enough to check separately open and closed immersions with
a standard argument, moreover by the Segre embedding we obtain in this way
an immersion to a projective space. Observe that we are claiming here that the
composition of two immersions is an immersion, this is true provided that the
external one is also quasi-compact (see §6.1.3) and in this case it is because the
Segre embedding, call it σ, is a closed immersion.

It remains to prove that i∗(σ∗O(1)
)

is actually the tensor product L ⊗M ,
and to this purpose we must first compute the pull-back σ∗O(1). As with any
argument of this kind we can assume S to be affine, say S = Spec A. So we
can define R = A[x0, . . . , xr] and T = A[y0, . . . , yn], and the product Pn

A ×Pr
A

will be given by Proj P where P is the ring
⊕

d≥0(Rd ⊗A Td). In this graded
ring O(1) is generated by the products x0y0, . . . , xiyj, . . . , xryn, and products
of global sections like these generate the sheaf L ⊗M .

Lemma (Exercise II.5.12 in Hartshorne, 1977). Let f : X → Y and g : Y → S be
two morphisms of schemes, and assume g to be of finite type. Let L be a very ample
invertible sheaf on X relative to Y, and let M be a very ample invertible sheaf on X
relative to S. Then L ⊗ f ∗M is a a very ample invertible sheaf on X relative to S.

Proof. We have already encountered this situation in §6.1.2, in showing that
the composition of two projective morphisms is projective. With reference to
the diagrams in there γ is an immersion because it is obtained by base exten-
sion from ig, moreover since g is of finite type ig is also of finite type, therefore
γ is of finite type. In particular γ is quasi-compact so that the composition γi f
is an immersion. Now we conclude using the Segre embedding.

6.3.4 Veronese Embedding Let X be a projective scheme over a ring A,
more precisely let X = Proj R/I where R = A[x0, . . . , xn] and I ⊆ R+ is a
homogeneous ideal. Then we have seen that the sheaf OX(1) is very ample,
generated by the global sections x0, . . . , xn, and defines the closed immersion
of X in Pn

A given by the surjective homomorphism R → R/I. In this situation
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we also know that for any integer d > 0 the invertible sheaf OX(d) is very
ample; we are going to describe now how to construct the closed immersion
it defines.

Proposition (Exercise II.5.13 in Hartshorne, 1977). Let S be a graded ring, gener-
ated by S1 as an S0-algebra. For any integer d > 0 consider the subring of S

dS =
⊕

n≥0

Snd

Then, if X = Proj S, we have Proj dS ∼= X.

Proof. The reader may convince himself that the inclusion dS → S defines a
morphism of schemes f : X → Proj dS in the same fashion as in §2.2.5. In
our hypotheses S1 generates the ideal S+, therefore we can conclude that dS1
generates the ideal dS+. Hence as in §2.2.3 the homogeneous elements α ∈ Sd
define an open affine covering of both X and Proj dS, let us call X(α) the open
subset of X and Dh(α) the open subset of Proj dS. Then both X(α) and Dh(α)
are defined to be the spectrum of S(α) and f is an isomorphism.

When S = R/I as above, a set of generators s0, . . . , sN for the A-module
Sd defines a set of global sections for the sheaf OX(d) which generates it,
so we can define a homomorphism of graded rings ϕ : A[y0, . . . , yN ] → dS
which is surjective and therefore defines a closed immersion of X in PN

A , called
Veronese embedding. Clearly X will be isomorphic to the projective spectrum of
A[y0, . . . , yN ]/ ker ϕ, and over this ring the sheaf OX(1) corresponds to the
sheaf OX(d) over R/I.

For example the closed immersion associated with the invertible sheaf O(d)
over Pn

A will be defined as follows. Let G be a set of indeterminates indexed
over those (n + 1)-tuples of positive integers (i0, . . . , in) such that ∑ ij = d, and
define a homomorphism of graded rings A[G] → R sending yi0...in to the prod-
uct xi0 . . . xin . This closed immersion embeds Pn

A in PN
A , where N = (n+d

d )− 1.

Example. Let X be the conic in the projective plane P2
k = Proj k[x, y, z] defined

by the equation z2 = xy, that is

X = Proj k[x, y, z]/(xy− z2)

We want to construct the closed immersion defined by the very ample in-
vertible sheaf OX(2). First we observe that OX(2) is generated by the global
sections x 2, xy, xz, y 2 and z 2. Then we define a homomorphism

ϕ : k[y0, . . . , y4] −→ k[x, y, z]/(xy− z2)
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by setting ϕ(y0) = x 2, ϕ(y1) = xy, ϕ(y2) = xz, ϕ(y3) = y 2 and ϕ(y4) =
z 2. By the Proposition above this is actually a closed immersion, because it
is surjective on the subring 2S of S = k[x, y, z]/(xy− z2). Direct computation
shows that the kernel of ϕ is the ideal generated by the six quadratic forms

y0y2 − y1y4, y2
2 − y0y4, y1y2 − y3y4,

y0y1 − y2y3, y2
1 − y0y3, y2

0 − y3y4

In this new incarnation of the conic as Proj T, where T is the graded algebra
k[y0, . . . , y4]/ ker ϕ, we immediately recognise the very ample invertible sheaf
generated by the global sections y0, . . . , y4. Clearly this is the same sheaf that
before we were calling OX(2), so apparently we have lost track of the very
ample invertible sheaf OX(1). We claim that the graded T-module M (in fact
an ideal in T) generated by y0, y3 and y4 defines OX(1). To see that M gener-
ates an invertible sheaf, observe that for each i the homogeneous localisation
M(yi) = T(yi) (see above, the two relations in the middle). Now we check that
Shfh M is in fact OX(1) by proving that it defines the same closed immersion
in P2

A; start with the homomorphism

ψ : k[x, y, z] −→ k[y0, . . . , y4]/ ker ϕ

defined by ψ(x) = y0, ψ(y) = y3 and ψ(z) = y4. Direct computation shows
that the kernel of ψ is precisely (x2 − yz), so that the image of ψ is a graded
algebra whose Proj is X, and ψ induces a closed immersion of X in P2

A.
All computations in this example were preformed with Macaulay 2, a com-

puter algebra system developed by Grayson and Stillman (2001).

6.3.5 Coherent Sheaves and Finitely Generated Graded Modules Our aim
is now to prove that, under reasonable hypotheses, every coherent sheaf on
a projective scheme X = Proj S is given by the sheaf ShfhM associated to a
finitely generated graded S-module M. We will need to this purpose the fol-
lowing result.

Serre’s Theorem (II.5.17 in Hartshorne, 1977). Let X be a projective scheme over
a Noetherian ring A, and let F be a coherent OX-module. Then there is an integer
n0 such that, for all n ≥ n0, the sheaf F (n) can be generated by a finite number of
global sections.

With this understood we are able to prove our main result. In fact we are
just going to spell out clearly something that in Hartshorne (1977) is explained
between the lines of the proof of Theorem II.5.19.
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Proposition. Let X = Proj S be a projective scheme over a Noetherian ring A, and
let F be a coherent OX-module. Then F = ShfhM for some finitely generated graded
S-module M.

Proof. We set notations as follows, R will be the polynomial ring A[x0, . . . , xn]
and I ⊆ R will be a homogeneous ideal. The projective scheme X will be
defined as Proj S where S = R/I. We consider the graded S-module (which is
not necessarily finitely generated) M = Γ∗(F ), so that F = ShfhM. By Serre’s
Theorem for n sufficiently large F (n) is generated by a finite number of global
sections in Γ

(
X, F (n)

)
= Mn, so we define M′ to be the submodule generated

by these global sections. Observe that M′
d = 0 for any d < n. Now we have

an inclusion of modules which gives rise to a left-exact sequence of sheaves
0 → ShfhM′ → ShfhM, and twisting by n (which is an exact operation) we
obtain the left-exact sequence 0 → ShfhM′(n) → F (n). This is actually an
isomorphism because F (n) is generated by elements of M′

n = M′(n)0. So we
can twist by −n to obtain 0 → ShfhM′ → F → 0.

Corollary (II.5.18 in Hartshorne, 1977). Let X be a projective scheme over a Noe-
therian ring A. Then any coherent sheaf F on X can be written as a quotient of
a sheaf E , where E is a finite direct sum of twisted structure sheaves OX(−di) for
various integers di.

Proof. With notations and definitions as in the proof of the Proposition above,
let F = ShfhM for some finitely generated graded S-module M. Let m1, . . . , mr
be a system of homogeneous generators for M of degrees d1, . . . , dr respec-
tively and let E be the finitely generated graded S-module

E =
r⊕

i=1

S(−di)

Then clearly we have a surjective homomorphism from E to M which induces
a surjective morphism from ShfhE to F . It remains to observe that ShfhE is
precisely a finite direct sum of twisted structure sheaves as required.

We conclude this section with the actual statement of Theorem II.5.19 in
Hartshorne (1977). This is in fact a direct proof that when X is a projective
variety then H0(X, F ) is a finite dimensional vector space; as such it is a good
example of the power of cohomology, using which Serre (1955) proves a much
more general result concerning Hn(X, F ) for every n.

Theorem (II.5.19 in Hartshorne, 1977). Let k be a field, let A be a finitely gen-
erated k-algebra, let X be a projective scheme over A, and let F be a coherent OX-
module. Then Γ(X, F ) is a finitely generated A-module. In particular, if A = k,
then Γ(X, F ) is a finite dimensional k-vector space.
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6.4 Global Proj and Blow-ups

6.4.1 Blowing up the Plane We start with a classic example, we blow up
the affine plane A2

k at the origin (0, 0). Let R = k[x, y] be the coordinate ring of
the affine plane; in the product A2

k ×P1
k = Proj R[t0, t1] we consider the closed

subscheme X defined by the ideal (xt1 − yt0). We have a natural morphism
π : X → A2

k obtained by restricting the projection map of A2
k × P1

k onto the
first factor. Observe that there exists an open affine covering of X consisting
of two elements, X = Dh(t0) ∪ Dh(t1) each of which is isomorphic to A2

k.

Dh(t0) = Spec R[ t1 ]/(xt1 − y) ∼= Spec k[x, t1]
Dh(t1) = Spec R[ t0 ]/(x− yt0) ∼= Spec k[y, t0]

These two affine schemes are glued together by the isomorphism

k[x, x−1, t1, t−1
1 ] → k[y, y−1, t0, t−1

0 ]

defined by x 7→ yt0 and t1 7→ t−1
0 . The scheme X is the Blow-up of the affine

plane at the origin and usually it is denoted BlO(A2
k). We will now study the

properties of X.
Let O be the origin of the affine plane, that is the point (0, 0), and let U be

the open set A2
k \ {O}. Then π restricted to the open set U is an isomorphism.

Indeed π is given over the open subset Dh(t0) by the homomorphism y 7→ xt1,
therefore the open set V1 = A2

k \ V(x) is isomorphic via π to the distinguished
open subset of Dh(t0) defined by x. Similarly V2 = A2

k \ V(y) is isomorphic
via π to the distinguished open subset of Dh(t1) defined by y. Now observe
that U = V1 ∪V2.

The fiber of π over the closed point O is isomorphic to P1
k. This is imme-

diate once we recall that π−1(O) is given by the fibered product of X with
Spec R/(x, y), so that the open covering above will define an open covering
of π−1(O) consisting of two affine lines glued together to form P1

k. Observe
that this closed subscheme of X is given on each of the affine pieces above by
a single equation.

6.4.2 The Inverse Image of a Quasi-Coherent Sheaf Let X be a scheme
and let Z ⊆ X be a closed subscheme. If f : W → X is any morphism, we
have learned in §3.2.4 that the inverse image f−1(Z), which is defined as the
fibered product W ×X Z, is a closed subscheme of W. But now we know that
closed subschemes correspond one-to-one to quasi-coherent sheaves of ideals
(see §6.2.1), so we would like to characterise f−1(Z) in terms of quasi-coherent
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sheaves. Starting with IZ a natural candidate could be the pull-back f ∗IZ, but
we are going to see now that in general this is different from I f−1(Z).

As usual it is useful to look first at the affine case, thus we assume f to
be induced by the ring homomorphism ϕ : A → B and IZ to be the ideal
a ⊆ A. In this case f−1(Z) is defined to be the spectrum of the tensor product
B⊗A A/a ∼= B/ae, where ae is the ideal of B generated by the image of a under
ϕ. It follows that f−1(Z) corresponds to the quasi-coherent sheaf Shf ae, in
other words I f−1(Z) = Shf ae.

The pull back f ∗IZ is defined to be the product B ⊗A a (see §5.3.1), but
in general this is different from the ideal ae. Indeed we can apply the func-
tor B ⊗A − to the exact sequence 0 → a → A → A/a → 0, and in general
we obtain only a right-exact sequence B ⊗A a → B → B/ae → 0. In terms
of sheaves this corresponds to apply the pull-back functor f ∗ to the exact se-
quence 0 → IY → OX → OX/IZ → 0 to obtain the right-exact sequence
f ∗IZ → OW → f ∗(OX/IZ

) → 0, which can thus be rewritten as

f ∗IZ −→ OW −→ OW/IZOW −→ 0

where IZOW denotes (somewhat improperly) the image of f ∗IZ in OW . This
argument shows that when all our schemes are affine we have the equality
IZOW = I f−1(Z), but now it is an easy exercise to extend this result to the
general case.

Example (In which f ∗IY is different from IZOW). We start with the short exact
sequence 0 → 2Z → Z → Z2 → 0 and we apply Z6 ⊗Z − to obtain the
right-exact sequence

M
ϕ−→ Z6 −→ Z6/2Z6 −→ 0

where M is the group generated by 1⊗ 2. Observe that 3(1⊗ 2) = 3⊗ 2 is
different from zero in M, while ϕ(3⊗ 2) = 6 = 0. You may wish to apply the
equational characterisation in Eisenbud (1995, Lemma 6.4).

6.4.3 General Definition of Blow-up “We will use these observations as
starting points in generalising the definition of a blow-up to that of an arbi-
trary scheme along an arbitrary subscheme. The essential fact is that, in the
blow-up π : BlY(X) → X of a scheme X along the subscheme Y ⊆ X the in-
verse image of Y is locally principal.”

taken from Eisenbud and Harris (2000, §IV.2.1)
Let X be any scheme and Y ⊆ X a closed subscheme. We say that Y is a

Cartier subscheme in X if it is locally the zero locus of a single non-zero-divisor,
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or equivalently if the corresponding sheaf of ideals IY is an invertible sheaf.
To see the equivalence observe that a principal ideal (a) inside a ring A is
generated by a non-zero divisor if and only if the homomorphism A → (a),
sending 1 to a, is an isomorphism of A-modules.

Lemma (IV.19 in Eisenbud and Harris, 2000). Let X be any scheme and Y ⊆ X a
Cartier subscheme. Then X \Y is dense in X.

Proof. We may assume that X is affine, say X = Spec A, and that Y = V(α)
for some α ∈ A. Then X \ Y = D(α) is affine too, and the open immersion
is induced by the localisation homomorphism j : A → Aα. Since α is not a
zero-divisor in A this homomorphism is injective, and therefore the open im-
mersion is dominant as in §1.4.1.

Blow-up is a very classical topic, therefore very well understood and wide-
spread in the literature. Here we will follow the account in Eisenbud and
Harris (2000), which seems to be the most approachable one from the scheme-
theoretic point of view. So before proving the existence of the blow-up, we
give a general and abstract definition in terms of the properties we want it to
satisfy.

Definition. Let X be a Noetherian scheme and Y ⊆ X a closed subscheme.
The blow-up of X along Y, denoted π : BlY(X) → X, is the morphism to X
characterised by the following properties.

(a) the inverse image of Y is a Cartier subscheme in BlY(X);

(b) the morphism π is universal with respect to this property; that is, if
f : Z → X is any morphism such that f−1(Y) is a Cartier subscheme
of Z, then there exists a unique morphism g : Z → BlY(X) factoring f .

Z
g

//

f
''OOOOOOOOOOOOOOOO BlY(X)

π
²²

X

The inverse image E = π−1(Y) of Y is called the exceptional divisor of the blow-
up, and Y the center of the blow-up.

In this degree of generality, without knowing yet if blow-ups exist at all,
we can prove some of their most important properties. The reason for doing
this is that proofs are much cleaner, and consequently the results stand out
more clearly.
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Proposition. The blow-up is an isomorphism away from its center.

Proof. Let i : X \ Y → X be the open immersion and observe that i−1(Y) is a
Cartier subscheme. Indeed since topologically i−1(Y) = ∅ we can say imme-
diately that Ii−1(Y) = OX|X\Y. So by the universal property of the blow-up
there exists a unique morphism ϕ : X \Y → BlY(X) such that πϕ = i.

Let us consider next the restriction of π to the open set X \Y, in other words
we consider the following diagram where the external square is a fibered
product and p1 is an open immersion

π−1(X \Y)
p1 //

p2
²²

BlY(X)

π

²²
X \Y i //

ϕ
88qqqqqqqqqqq

X

We claim that this diagram is commutative. Clearly we have only to prove that
ϕp2 = p1, and for this we are going to use again the universal property of the
blow-up. Indeed the inverse image of Y under ip2 is a Cartier subscheme of
π−1(X \ Y), So there exists a unique morphism π−1(X \ Y) → BlY(X) which
makes a commutative diagram with π and ip2, and since this happens for both
p1 and ϕp2 they must be equal.

We said that the external square in the diagram above is a fibered product,
so we can do the following construction. We have the commutative square
πϕ = iidX\Y so there exists a unique morphism ξ : X \ Y → π−1(X \ Y) such
that p1ξ = ϕ and p2ξ = idX\Y. Observe that the restriction of ϕ to the open set

π−1(X \Y) also commutes like that, so ξ = ϕ|π−1(X\Y). Now we have

p1(ξ p2) = ϕp2 = p1 = p1idπ−1(X\Y)

p2(ξ p2) = (p2ξ)p2 = p2 = p2idπ−1(X\Y)

from which we see that p2 and ξ are inverse to each other, or in other words
that ϕ is an open immersion. So π is an isomorphism away from Y.

Probably the most important consequence of the definition is the follow-
ing result, dealing with the behaviour of blow-ups under fibered products
(or pull-backs), that will also allow us to define the strict transform of Y. In
Hartshorne (1977) it is presented as Corollary II.7.15 but a more precise state-
ment can be found in (Eisenbud and Harris, 2000, Proposition IV-21).

Theorem. Let X be a Noetherian scheme, Y a closed subscheme, and π : BlY(X) →
X the blow-up of X along Y. Let f : X′ → X be any morphism of Noetherian schemes
and set Y′ = f−1(Y). If W is the scheme theoretic image of the open immersion
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p−1
1 (X′ \ Y′) ⊆ X′ ×X BlY(X), then the restriction p1 : W → X′ is the blow-up of

X′ along Y′.

Proof. The statement is better understood if we draw a diagram, starting with
the fibered product of X′ with BlY(X) and completing with the construction
of the scheme theoretic image of p−1

1 (X′ \Y′)

W

c
²²

f̃

))
p−1

1 (X′ \Y′)

b
²²

i
//

h

44iiiiiiiiiiiiiiiiiii

X′ ×X BlY(X)

p1

²²

p2
// BlY(X)

π

²²
X′ \Y′ a

// X′
f

// X

The first remark is that a is a morphism of finite type, because it is an open
immersion of Noetherian schemes, therefore i is a morphism of finite type. In
particular i is quasi-compact and we can construct its scheme theoretic image
W as in §4.1.2.

Next we need to prove that c−1(p−1
1 (Y′)

)
is a Cartier subscheme of W. The

question is local so let X = Spec A be affine and consider affine open subsets
Spec C of X′ and Spec B of BlY(X). The closed subscheme Y will be given by
an ideal I in A, and Y′ will be the ideal generated by f #(I) inside C, which we
call J. Moreover we are assuming that π#(I) generates a principal ideal (β)
in B where β is not a zero divisor. To complete the picture we take an open
basic subset contained in X′ \ Y′, which will be the spectrum of a localisation
Cγ where γ is in fact an element of J.

A
f #

//

π#

²²

C a#
//

p#
1

²²

Cγ

b#

²²
B

p#
2

// C⊗A B i# //

c#

²²

Cγ ⊗A B

(C⊗A B)/ ker i#
h#

44jjjjjjjjjjjjjjjj

In this situation the ideal generated by p#
1(J) is principal, in fact generated by

p#
2(b) = 1⊗ b. Now we know that a#(J) is the unit ideal, therefore i#(1⊗ b)

is a unit and we can conclude that the ideal generated by c#(p#
1(J)

)
is the unit

ideal.
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If g : Z → X′ is a morphism of schemes such that g−1(Y′) is a Cartier sub-
scheme of Z, then the same is true for the composition f g and by the uni-
versal property of the blow-up we have a unique g1 : Z → BlY(X) such that
πg1 = f g. But now we can apply the universal property of the fibered prod-
uct and say that there exists g2 : Z → X′ ×X BlY(X) such that p2g2 = g1 and
p1g2 = g. Now it should be clear that, topologically, g−1

2 (W) = Z: indeed
since g−1(Y′) is a Cartier subscheme we can say that g−1(X′ \ Y′) is dense in
Z and on the other hand we have

g−1(X′ \Y′) = g−1
2

(
p−1

1 (X′ \Y′)
) ⊆ g−1

2 (W)

We claim that this is enough to say that there exists a unique morphism of
schemes g3 : Z → W such that cg3 = g2.

Claim. Let S be a scheme and c : W → S be a closed immersion. Let g : Z → S be
a morphism of schemes and assume that, topologically, g−1(sp(W)

)
= sp(Z). Then

there exists a unique morphism of schemes r : Z → W such that cr = g.

Proof. We know from §3.2.4 that the restriction of g to W is constructed via
the fibered product W ×S Z, moreover when g−1(sp(W)

)
= sp(Z) the first

projection is the identity and we can take r to be simply the second projection.
Uniqueness then follow by the universal property of fibered products.

With the reference to the first diagram in the proof of the Theorem, observe
that when f is a closed immersion f̃ is as well a closed immersion. In this
situation we call W the strict transform of X′ under the blow-up, and usually
we denote it by X̃′.

6.4.4 Sheaves of Graded Algebras and Global Proj In order to prove the
existence of the blow-up we need to introduce the general construction of
global Proj. This is very similar to the construction of global Spec we have
seen in §5.3.8, in fact there is the same sort of analogy as between affine and
projective schemes.

Let X be a Noetherian scheme. A quasi-coherent sheaf S over X is a sheaf
of graded OX-algebras if it is a sheaf of rings and there exists a decomposition
S =

⊕
d≥0 Sd into a direct sum of sheaves of OX-modules, compatible with

the ring structure. For simplicity we will always assume furthermore that
S0 = OX, that S1 is a coherent OX-module, and that S is locally generated
by S1 as an OX-algebra.

In order to better understand the definition we can look first at the affine
case. Let X = Spec A be affine, then S = Shf S where S is the A-algebra of the
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global sections Γ(X, S ), and the direct sum decomposition defines a structure
of graded ring over S. The assumptions above imply in particular that S0 = A
and that S1 is a finitely generated A-module.

Claim. Let X be a Noetherian scheme and S a sheaf of graded OX-algebras as above.
Then we have

i) S is generated by S1 over any open affine subset, and

ii) the sheaf Sd is coherent for any d ≥ 0.

Proof. We can clearly assume X is affine, so with notations as above there exist
elements α1, . . . , αt ∈ A, which generate the unit ideal, such that the graded
structure on the localisations Sαi is given by Aαi in degree zero, (S1)αi in de-
gree one, and the rest is generated by these two. We want to prove that S is
generated by S1 as an A-algebra.

Let θ be any homogeneous element of S of degree d. Then for i = 1, . . . , t,
the same θ can be written as a polynomial on the generators of S1 with co-
efficients in Aαi , that is θ = Pi(m1, . . . , mq)/αr

i where Pi ∈ A[x1, . . . , xq] and
m1, . . . , mq is a system of generators for S1. Then we have an expression of the
form αr

i θ − Pi(m1, . . . , mq) = 0 in S (up to a power of αi), and with the usual
“partition of unity” kind of argument we find a polynomial expression for θ
with coefficients in A.

To prove part ii) we must show that the graded decomposition of S is
compatible with localisation, that is (Sα)d = (Sd)α for every α ∈ A and d ≥ 2
(since we already know that this is the case for d = 0, 1). By part i), for every
α ∈ A the localisation Sα = S

(
D(α)

)
is generated by its elements of degree

one. Then we have

(Sα)d = Symd (
(Sα)1

)
= Symd (

(S1)α

)
= (Symd S1)α = (Sd)α

which is precisely what we wanted.

The graded A-algebra S is therefore isomorphic to a quotient of the polyno-
mial ring A[x1, . . . , xq]/I where I is a homogeneous ideal. We define Proj S
to be the homogeneous spectrum of S, observe that with our assumptions the
natural morphism π : Proj S → Spec A is a projective morphism.

Let now α ∈ A and consider the open affine subset D(α) ⊆ X. We can
make the same construction using the algebra S |D(α) = Shf Sα, in other words
we can define a projective scheme over Spec Aα as Proj S |D(α) = Proj Sα. The
localisation homomorphism j : S → Sα preserves degrees, therefore it defines
a morphism g : Proj S |D(α) → Proj S as in §2.2.5, which is clearly compatible
with the two structure morphisms. We will prove that g is an open immersion,
then a standard gluing argument as in §2.3.6 will give the following.
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Proposition. Let X be a Noetherian scheme and S a sheaf of graded OX-algebras
as above. For any open affine subset U ⊆ X consider the scheme Proj S (U) en-
dowed with the natural morphism πU : Proj S (U) → U. Then this family of sche-
mes glue together into a scheme Proj S endowed with a natural proper morphism
π : Proj S → X.

Proof. The condition for a morphism to be an open immersion is local on the
base, hence it is enough to prove that for any element U of an open cover-
ing of Proj S the restriction g|U is an open immersion. To this purpose we
consider any homogeneous β ∈ S+ and let U = Dh(β) ⊆ Proj S. Then the
restriction g|U is a morphism of affine schemes induced by the homogeneous
localisation j(β) : S(β) → (Sα)(β). Observe however that we can also form the
localisation of S(β) in α, and the homomorphism ξ : S(β) → (S(β))α induces an
open immersion. Now j(β)(α) is an invertible element of (Sα)(β), thus by the
universal property of the localisation (Atiyah and Macdonald, 1969, Proposi-
tion 3.1) there exists a unique ψ : (S(β))α → (Sα)(β), which turns out to be an
isomorphism. This proves the existence of the scheme Proj S endowed with
a natural morphism π. We have already seen that when X is affine π is projec-
tive (hence proper), recall now that the condition for a morphism to be proper
is local on the base (see §3.3.6).

Observe the obvious identity Pn
X = Proj Sym

(
On+1

X
)
. We can also use this

remark to see another construction of the product of two projective spaces
over X. Indeed we have Pn

X ×Pm
X = Proj Sym

(
Om+1

n
)
, where On denotes the

structure sheaf of Pn
X.

Since Proj is not a functor we don’t have any reason to expect Proj to be a
functor, but it certainly will satisfy some functorial properties derived by the
ones satisfied by Proj. The question is too delicate to be answered here, in fact
it is somewhat more instructive to keep a case-by-case philosophy.

Lemma. Let X be a Noetherian scheme, S a sheaf of graded OX-algebras as above,
and P = Proj S . Then P comes naturally equipped with an invertible sheaf OP(1)
such that for any open affine subset U of X the restriction OP(1)|U is the twisted sheaf
OP(U)(1), where P(U) is the projective scheme Proj S |U.

Proof. We have seen above that when X = Spec A is affine the scheme P is pro-
jective over A and as such it is endowed with the invertible sheaf OP(1), which
in turn is given by the pull-back c∗O(1) where c : P → Pn

A is a closed immer-
sion. In the general case we just need to prove that the schemes OP(U)(1) glue
together. To this purpose consider the following commutative diagram where
i is just an inclusion of open affine subsets, and β is the open immersion given

164



6.4 Global Proj and Blow-ups Marco Lo Giudice

both by the construction of Proj Sym
(
On+1

U
)

and by the product of i with the
identity of Pn

Z.

Pn
V

sV //

qV

²²

β
ÂÂ??

Pn
Z id

ÂÂ??

Pn
U sU

//

qU

²²

Pn
Z

a

²²

Proj S |V πV
//

α ÂÂ?
?

cV

22

V i
ÂÂ?

??

Proj S |U πU
//

cU

22

U b
// Z

We see from here that the pull-back c∗UO(1) commutes with the restriction
β∗O(1), in other words OP(U)(1)|V = OP(V)(1).

6.4.5 General Construction of the Blow-up Let X be a Noetherian scheme
and let Y be any closed subscheme of X. If IY is the sheaf of ideals associated
to Y, we define a sheaf of graded OX-algebras by taking as graded parts the
powers of IY. More precisely we set

S =
∞⊕

n=0
I n

Y = OX ⊕IY ⊕I 2
Y ⊕ · · ·

Clearly this sheaf satisfies the hypotheses of §6.4.4 above, so we can consider
Proj S which comes naturally endowed with a proper morphism to X. Now
we have the following result.

Theorem (IV-23 in Eisenbud and Harris, 2000). With notations and definitions as
above, the proper morphism π : Proj S → X is the blow-up of X along Y.

Proof. The following differs only slightly from the proof in Hartshorne (1977,
Propositions II.7.13 and II.7.14). First it is immediate to observe that the sheaf
of ideals associated to π−1(Y) is just O(1), therefore it is an invertible sheaf
or in other words π−1(Y) is a Cartier subscheme. Next we consider the affine
case, so X = Spec A for some Noetherian ring A and IY = Shf I for some
finitely generated ideal I = (a1, . . . , an) of A. In this situation we can realise
the algebra S as a subalgebra of the polynomial ring, more precisely we have
S = A[ta1, . . . , tan] where t is just an indeterminate. There is obviously a sur-
jective homomorphism from the polynomial ring A[x1, . . . , xn] to S, therefore
there is a closed immersion c : Proj S → Pn−1

A compatible with π. Now let Z be
any Noetherian scheme and let f be a morphism from Z to X such that I f−1(Y)
is an invertible sheaf of ideals, which we call L . By adjunction f is induced
by a homomorphism ϕ : A → Γ(Z, OZ) and it is easy to see that the global
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sections ϕ(ai) generate L , so we have the following commutative diagram
where s is the morphism associated to L .

Proj S c // Pn
A

p
²²

Z

g
OO

f
//

s
;;wwwwwwwww

X

To prove the existence of the morphism g, we restrict the factorisation s = cg
to the open basic subset Dh(xi) of Pn

A to obtain the diagram

s−1(Dh(xi)
) s //

g
²²

Dh(xi)

Dh(tai)
c

55lllllllllllllll

Such a restriction will correspond by adjunction to the following commutative
diagram of homomorphisms of rings, where U is the open subset of Z defined
by s−1(Dh(xi)

)

A[ x1
xi

, . . .î . . . , xn
xi

] c#
//

s# **TTTTTTTTTTTTTTT
Aai

g#

²²
Γ
(
U, OZ|U

)

Now it is clear that there exists a unique g# if and only if ker c# ⊆ ker s#, but
this is obvious by construction. Finally there is to convince ourselves that
these morphisms g# glue together and that proving the universal property for
affine X is enough.
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Appendix A

Algebra

A.1 Rings and Modules of Finite Length

Modules of finite length are a standard topic in commutative algebra, but for
some reason they are always treated in great generality. Fulton (1998) uses
them to define multiplicity, and from his point of view it is enough to consider
finite modules over Noetherian rings. This is a complement to his appendix,
my attempt to describe the results he needs. In what follows R will always
denote a ring, not necessarily Noetherian.

A.1.1 Composition Series Let M be an R-module. A normal series in M is
a descending (but not necessarily strictly descending) finite chain of submod-
ules

M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = (0)
beginning with M and ending with (0); the integer n is called the length of the
normal series. If all the inclusions are proper the normal series is said to be
without repetitions. A refinement of a normal series is a normal series obtained
by inserting additional terms.

Definition. A composition series of M is a normal series without repetitions for
which every refinement has repetitions.

A normal series without repetitions is a composition series if and only if
for each i = 0, . . . , n− 1 the quotient Mi/Mi+1 is simple. Where an R-module
is said to be simple if it has exactly two submodules, in particular (0) is not a
simple module.
Example. Let k be a field and let R = k[ x ]. The R-module M = k[ x ]/(x2 − 1)
has a composition series of length two, namely

M ⊇ (x− 1) ⊇ (0)
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Indeed the quotient M/(x− 1)M is isomorphic to k and thus it is simple.
While a submodule N such that (0) ⊆ N ⊆ (x− 1) would correspond to an
ideal a in k[ x ] such that (x2 − 1) ⊆ a ⊆ (x− 1), and since k[ x ] is a principal
ideal domain a must be either (x2 − 1) or (x− 1).

Slightly more generally for any polynomial F ∈ k[ x ] the module k[ x ]/(F)
has a composition series of length n, where n is the number of irreducible
factors of F.

For a module to have a composition series is a rather special property, ob-
serve for instance that Z or k[x1, . . . , xn] don’t have any. Indeed in both cases
any finite descending chain of ideals can be extended. But if an R-module
M has a composition series, then all of its composition series have the same
length. This result can be found in Atiyah and Macdonald (1969, Proposi-
tion 6.7), in Eisenbud (1995, Theorem 2.13), or in Zariski and Samuel (1958).

Jordan’s Theorem (III.11.19 in Zariski and Samuel, 1958). If an R-module M has
one composition series of length n, then every composition series of M has length n,
and every normal series without repetitions can be refined to a composition series.

The next step is to understand more precisely what properties a module
must satisfy in order to have a composition series. Not surprisingly the char-
acterisation is in terms of chain conditions, references are again Atiyah and
Macdonald (1969, Proposition 6.8), Eisenbud (1995, Theorem 2.13), or Zariski
and Samuel (1958).

Proposition (Theroem III.11.21 in Zariski and Samuel, 1958). A module M has
a composition series if and only if it satisfies both chain conditions.

A module satisfying both chain conditions is therefore called a module of
finite length. The common length of all composition series in M will be called
the length of M and will be denoted `R(M) or simply `(M). The simplest
examples of modules of finite length are finite groups (groups are modules
over Z) and finite dimensional k-vector spaces (where k is any field).

Lemma (A.1.1 in Fulton, 1998). If 0 → M′ → M → M′′ → 0 is an exact sequence
of R-modules, whenever two of the modules have finite length the third also will have
finite length. Moreover the length `(M) is an additive function on the class of all
R-modules of finite length.

A stronger result than Jordan’s Theorem also holds (see Zariski and Samuel,
1958). We say that two normal series (Mi) and (M′

j) of M are equivalent if
the set of modules (Mi/Mi+1) can be put in bijection with the set of mod-
ules (M′

j/M′
j+1) so that corresponding quotients are isomorphic over R. The

reader can check that this is an equivalence relation, in particular two equiva-
lent normal series have the same length.
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Hölder’s Theorem (III.11.22 in Zariski and Samuel, 1958). If an R-module M
has one composition series, then any two composition series of M are equivalent.

A.1.2 Associated Primes We now want to characterise modules of finite
length over a Noetherian ring. Before we can state the result we need to recall
what an associated prime is and some properties of the set Ass(M). The main
reference for this is Chapter IV in Bourbaki (1998), and what follows is in fact
just a rearrangement of it.

Definition. Let M be an R-module. A prime ideal p is said to be associated with
M if there exists an element m ∈ M such that p is equal to the annihilator of m.
The set of prime ideals associated with M is denoted by AssR(M) or simply
Ass(M).

To say that a prime ideal p is associated with M amounts to saying that M
contains a submodule isomorphic to R/p, namely the submodule generated by
m. This can also be described as the image of the morphism R → M given by
multiplication by m. Observe that an element m ∈ M whose annihilator is a
prime ideal is necessarily nonzero, because 1 6∈ ann(m).

Example. When R = k[ x ] and M = k[ x ]/(x3 + 2x2 − x − 2) the three prime
ideals (x + 1), (x− 1) and (x + 2), generated by the linear factors of the poly-
nomial x3 + 2x2 − x− 2, are associated with M. Indeed

(x + 1) = ann(x2 + x− 2), (x− 1) = ann(x2 + 3x + 2)
and (x + 2) = ann(x2 − 1).

The submodule generated by x2 + 3x + 2 is isomorphic to k[ x ]/(x − 1).
Observe that, although the former is an ideal in k[ x ]/(x3 + 2x2 − x− 2) and
the latter is a ring, this is just an isomorphism of k[ x ]-modules.

Claim. Let M be a module over a ring R and let S be the set

S =
{

ann(m) ⊆ R
∣∣ m ∈ M \ {0}}

Then every maximal element of S is a prime ideal, and therefore belongs to Ass(M).

Proof. Let a = ann(m) be a maximal element of S. Let b, c be elements of
R such that bc ∈ a and assume c 6∈ a. Then cm 6= 0, b ∈ ann(cm) and
a ⊆ ann(cm). Since a is maximal, ann(cm) = a, therefore b ∈ a.

Lemma. Let M be a module over a Noetherian ring R. Then M 6= 0 if and only if
Ass(M) 6= ∅.
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Proof. If M = 0 clearly Ass(M) is empty (without any hypothesis on R). If
M 6= 0, then the set S is non-empty and consists of proper ideals. Since R is
Noetherian, this set has a maximal element .

Proposition. Let M be a module over a Noetherian ring R, and let S be a multiplica-
tively closed subset of R. If Σ is the set of prime ideals of R which do not meet S then
AssS−1R(S−1M) is in bijection with AssR(M) ∩ Σ via the usual map p 7→ S−1p.

Proof. If p ∈ AssR(M) ∩ Σ, then p = ann(m) for some m ∈ M and hence
S−1p = ann(m/1). Conversely, assume that S−1p is the annihilator of m/t in
S−1M, where p is a prime ideal in Σ, m is an element of M and t ∈ S. Since
R is Noetherian every ideal is finitely generated, so let p = (a1, . . . , ar); then
(ai/1)(m/t) = 0 for every i and so there exist elements s1, . . . , sr ∈ S such that
siaim = 0 (for i = 1, . . . , r). We claim that p is the annihilator of sm, where s is
the product s1s2 . . . sr. Indeed for any a ∈ p, sam = 0, and conversely if b ∈ R
satisfies bsm = 0, then b/1 annihilates m/t so that b ∈ p.

A.1.3 Support of a Module The set of prime ideals p of R such that Mp 6= 0
is called the support of M and is denoted by Supp(M). This is coherent with
the language of sheaves, where the support of a sheaf F over a topological
space X is the set of points x ∈ X such that Fx 6= 0. The analogy is of course
due to M giving rise to a quasi-coherent sheaf over Spec R, so that the support
of the module M is in fact the support of the sheaf ShfM.

Lemma. Let R be a Noetherian ring, p a prime ideal of R and M an R-module. Then
p ∈ Supp(M) if and only if p contains an element of Ass(M).

Proof. If q is an element of Ass(M) contained in p then q∩ (R \ p) = ∅ and so
it defines an element of AssRp(Mp) (§A.1.2 above). Then, since the localisation
Rp is a Noetherian ring, we can conclude that Mp 6= 0. Conversely, if Mp 6= 0
then AssRp(Mp) 6= ∅ (see above) and hence there exists q ∈ AssR(M) such
that q∩ (R \ p) = ∅.

Proposition. Let R be a Noetherian ring and M a finitely generated R-module. Then
Ass(M) ⊆ Supp(M) and these two sets have the same minimal elements. Moreover
Supp(M) coincides with the set of prime ideals containing ann(M).

Proof. The first part of the statement is immediate from the previous Proposi-
tion. It is also clear that any associated prime contains ann(M), hence the same
is true for any element of Supp(M). If p is any prime ideal then Mp = 0 if and
only if for every m ∈ M there exists am ∈ ann(m) \ p, that is p ∈ Supp(M) if
and only if there exists m ∈ M such that ann(m) ⊆ p. Let now m1, . . . , mr be a
set of generators for M, so that ann(M) =

⋂
ann(mi); assuming a prime ideal

170



A.1 Rings and Modules of Finite Length Marco Lo Giudice

contains ann(M) we can conclude that it contains one of the annihilators and
eventually that it is an element of Supp(M).

A.1.4 Normal Series in Noetherian Modules Let R be a Noetherian ring
and M a finitely generated R-module. We are interested in normal series in-
side M, in particular we want to highlight a special class of normal series. The
next result is in fact the starting point for Fulton (1998).

Theorem. Let R be a Noetherian ring and M a finitely generated R-module. There
exists a normal series without repetitions in M

M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = (0)

such that, for i = 0, . . . , n− 1, the quotient Mi/Mi+1 is isomorphic to R/pi, where
pi is a prime ideal of R. Moreover

Ass(M) ⊆ {p0, . . . , pn−1} ⊆ Supp(M)

and the minimal elements of these three sets are the same and coincide with the mini-
mal elements of the set of prime ideals containing ann(M).

Proof. We can assume the module M to be different from 0, otherwise the state-
ment is trivially true. In order to construct a normal series as above we start
with M ) (0), and take p1 ∈ Ass(M) that is p1 = ann(m1). If we denote by
N1 the submodule generated by m1 we have the normal series M ⊇ N1 ) (0)
with N1

∼= R/p1. The submodule N1 is either equal to M or strictly contained
in it. In the first case we are done, in the second we have Ass (M/N1) 6= ∅. So
we can take p2 = ann(m2) and let N2 be the submodule generated by m1, m2.
We have the normal series M ⊇ N2 ) N1 ) (0) with N2/N1

∼= R/p2 and
N1

∼= R/p1. Now we can go on; note that N1 ( N2 ( · · · is an increasing
chain of submodules of M, therefore the process has to end with some Ni be-
ing equal to M. In this way the set of elements m1, m2, . . . will be eventually a
set of generators for M.

Now that we have the existence of the normal series, in order to prove the
second statement, we need a couple of preliminary remarks. First observe that
Ass(R/p) = {p}, moreover in this case p is the annihilator of every non-zero
element of R/p (just because the quotient is an integral domain). Next we
claim that if N is any submodule of M then

Ass(N) ⊆ Ass(M) ⊆ Ass(N) ∪Ass(M/N)

Indeed the first inclusion is obvious, while for any p ∈ Ass(M), with p =
ann(m), either Rm ∩ N = 0 or not. In the former case m 6= 0 in the quotient
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M/N and p = ann(m), in the latter any y ∈ Rm ∩ N is the product y = am
with a 6∈ p so that p = ann(y).

Starting from the normal series we have in M and using the tower of inclu-
sions above we can say that Ass(M) ⊆ Ass(M1) ∪Ass(M/M1). But recalling
that M/M1

∼= R/p0 we obtain Ass(M) ⊆ Ass(M1) ∪ {p0}. Going on we have
the inclusion Ass(M) ⊆ {p0, . . . , pn−1}.

If N is any submodule of M, and p is any prime ideal of R, by localising
the short exact sequence 0 → N → M → M/N → 0 we derive

0 −→ Np −→ Mp −→ (M/N)p −→ 0

from which one sees immediately that for Mp to be reduced to 0 it is necessary
and sufficient that Np and (M/N)p be so. Therefore we have the equality

Supp(M) = Supp(N) ∩ Supp(M/N)

For i = 0, . . . , n − 1 we have pi ∈ Supp(Mi/Mi+1), because associated
primes belong to the support (see above). In particular pn−1 ∈ Supp(Mn−1)
but clearly Supp(Mn−1) ⊆ Supp(M), moreover using the previous equality
we see that for i = 0, . . . , n− 2

pi ∈ Supp(Mi+1) ⊆ Supp(M)

The last assertion on the minimal elements of the three sets follows imme-
diately from the Proposition in §A.1.3 above.

Example. Let k be a field and let R = k[x, y]. We consider the finitely generated
module M = k[x, y]/(xy), which geometrically is the union of the coordinate
axes. Then we have

Ass(M) =
{
(x), (y), (x, y)

}

Supp(M) = V(xy) = V(x) ∪ V(y)

In order to find a normal series without repetitions like in the Theorem
above we can in the first place just perform the construction in the proof. So we
start by taking (y) = ann(x), and construct the normal series M ⊇ 〈x〉 ⊇ (0).
The quotient M/〈x〉 is clearly different from zero, so we can go on taking
(x) = ann(y) and constructing the normal series

M ⊇ 〈x, y〉 ⊇ 〈x〉 ⊇ (0)

Now we are done because M/〈x, y〉 is isomorphic to R/(x, y). In fact, with
notations as in the theorem, we have

p1 = (x, y), p2 = (x), p3 = (y)
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We can find other normal series in M with the required properties, in fact
we can construct normal series as long as we like. The following is an example
where the set of primes is strictly bigger than Ass(M)

M ⊇ 〈x, y〉 ⊇ 〈x(x− 1), y〉 ⊇ 〈y〉 ⊇ 〈y 2〉 ⊇ (0)

Here the set of primes is given as follows

p1 = (x, y), p2 = (x− 1, y), p3 = (y), p4 = p5 = (x)

In particular the set of primes is not determined uniquely by the module M;
note also that they need not be distinct.

A.1.5 Noetherian Modules of Finite Length Let M be a finitely generated
module over a Noetherian ring R. In order to better understand the picture
in this situation, we start by putting together many of the previous results.
First let us assume that M is simple. In this case M will be isomorphic to
R/m, where m = ann(M) is a maximal ideal. Indeed Ass(M) is not empty be-
cause M 6= 0 and if we pick any associated prime p = ann(m) the submodule
generated by m is isomorphic to R/p and has to be the whole of M. But then
p = ann(M) and R/p ∼= M, in particular R/p has to be simple so that the ideal
is maximal. Now assume M to be of finite length, then we have a composition
series

M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = (0)

where in particular each module Mi/Mi+1 (i = 0, . . . , n − 1) is simple and
therefore isomorphic to R/mi for some maximal ideal mi.

Theorem. Let M be a finitely generated module over a Noetherian ring R. Then the
following properties are equivalent.

(a) M is of finite length;

(b) Every ideal p ∈ Ass(M) is a maximal ideal of R;

(c) Every ideal p ∈ Supp(M) is a maximal ideal of R.

Proof. Let (Mi)0≤i≤n be a normal series without repetitions of M such that,
for i = 0, . . . , n − 1, the module Mi/Mi+1 is isomorphic to R/pi, where pi is
a prime ideal. If M is of finite length, so is each of the R-modules R/pi, in
particular each of them is an Artinian ring; being also an integral domain each
of them is a field.
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Let A be an integral domain which is an Artinian ring. Let x ∈ A,
x 6= 0. By the d.c.c. we have (xs) = (xs+1) for some s, hence
xs = xs+1y for some y ∈ A. Since A is an integral domain and
x 6= 0 we can cancel xs, hence xy = 1.

Using the Theorem in §A.1.4 above, we conclude that (a) implies (b) and that
(b) implies (c). Finally if all the ideals in Supp(M) are maximal so are the pi,
hence all the modules R/pi are simple and the normal series is a composition
series.

This Theorem is the key to understand the definition in Fulton (1998). In
§A.1.4 we have seen that for any finitely generated R-module M there is a
chain of submodules

M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = (0)

with Mi/Mi+1
∼= R/pi, where pi is a prime ideal of R. And now we know

that M is of finite length if and only if the pi which occur in such a chain are
all maximal ideals. Moreover this is equivalent to Supp(M) containing only a
finite number of maximal ideals, indeed we have the following.

Corollary. Let R be a Noetherian ring. Let M be a finitely generated R-module of
finite length. Then Ass(M) = Supp(M).

Proof. This is actually contained already in the proof of the Theorem. Since
Ass(M) consists of only maximal ideals it coincides with the set of its minimal
elements. These are the minimal primes above ann(M) and therefore there
are only finitely many of them. Now Supp(M) is the set of all the prime ideals
above ann(M).

A word of caution: although Ass(M) and Supp(M) are the same finite set,
the cardinality of this set doesn’t give any information on the length of the
module. The obvious example is the vector space kn, which have length n but
for which this set has cardinality one.

The last remark is that `R(M) = `R/I(M) for any ideal containing ann(M).
This is clear because every submodule of M will be also a module over R/I,
and composition series over M will be also composition series over R/I.

A.1.6 Properties of Length We conclude this section proving the results
in Fulton (1998), therefore we adopt the same conventions. All rings will be
Noetherian, and in saying that a module is of finite length we will mean addi-
tionally that it is finitely generated.
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Lemma (A.1.2 in Fulton, 1998). Let M be a module of finite length over R. Then

`R(M) = ∑ `Rp (Mp)

where the sum is taken over all the prime ideals of R.

The following proof of this Lemma is obtained from the proof of a more
general statement in Eisenbud (1995) (§2.4, Theorem 2.13).

Proof. Note first that `Rp(Mp) 6= 0 if and only if p ∈ Supp(M). Since Supp(M)
is a finite set and consists only of maximal ideals, the sum in the statement is
finite and runs in fact through a subset of the maximal ideals of R.

If M is a simple module then M ∼= R/m for some maximal ideal m, and for
any other maximal ideal p we either have p = m, in which case the localisation
(R/m)p = R/m, or p * m, in which case (R/m)p = Rp/me = 0.

We are now ready to prove the Lemma. Let `R(M) = n, and p be any
maximal ideal of R. Any composition series for M localises to a normal series
for Mp

Mp = (M0)p ⊇ (M1)p ⊇ . . . (Mn)p = (0)

the modules Mi/Mi+1 have length one, so by the previous discussion we have
the following situation

(Mi)p/(Mi+1)p = (Mi/Mi+1)p =

{
Mi/Mi+1 if p = ann(Mi/Mi+1)
0 otherwise

The sequence above is therefore a redundant composition series for Mp

over Rp for any maximal ideal p of R. The number of non-trivial inclusions
in it is given by `Rp(Mp). If p and q are different maximal ideals then inclu-
sions which are non-trivial in the sequence determined by p are trivial in the
sequence determined by q, thus the Lemma is proved.

Lemma (A.1.3 in Fulton (1998)). Let A → B be a local homomorphism of local
rings. Let d be the degree of the residue field extension. A non-zero B-module M has
finite length over A if and only if d < ∞ and M has finite length over B, in which
case

`A(M) = d · `B(M)

Proof. Start assuming that M has finite length over A. Since M is finitely gen-
erated over A, it is also finitely generated over B and there is a normal series
without repetitions

M = M0 ⊇ M1 ⊇ · · · ⊇ Mn = (0)

175



Marco Lo Giudice Appendix A. Algebra

where each Mi is a B-module (thus also an A-module) and for i = 0, . . . , n− 1
the quotient Mi/Mi+1 is isomorphic as a B-module (thus also as an A-module)
to B/pi. Being M of finite length so it is each A-module Mi/Mi+1, in particular
B/pi is an Artinian A-module. Therefore B/pi satisfies the descending chain
condition on ideals (which are particular submodules over A), that is B/pi is
an Artinian ring. Being it a domain it is a field, thus each ideal pi is maximal
and M is of finite length over B.

In this case for i = 0, . . . , n− 1 we have the following short exact sequence
(which is exact both over A and over B)

0 −→ Mi+1 −→ Mi −→ Mi/Mi+1 −→ 0

we can therefore say the following

`A(Mi) = `A(Mi+1) + `A(Mi/Mi+1)

and since Mi/Mi+1 is isomorphic to B/mB, we can put all things together to
get the formula

`A(M) = `B(M) · `A(B/mB)

Note now that annA(B/mB) = mA, therefore we have the equalities

`A(B/mB) = `A/mA(B/mB) = d

the latter holding because for vector spaces length and dimension are the same
(it should be clear by now, but you can see Atiyah and Macdonald, 1969,
Proposition 6.10). Therefore if we assume M to be of finite length over A then d
is necessarily finite. Conversely if we assume d to be finite then `A(B/mB) = d
and if M is of finite length over B then the same argument as above shows that
M is of finite length over A.
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Appendix B

Sheaf Theory

It is well known that one cannot possibly read Hartshorne (1977) without at
least attempting to solve the exercises, as they contain fundamental results
needed in the text. This is in particular true for sheaf theory, introduced
in a brief section and developed mostly in the exercises. For this reason I
have collected here many of them, but without writing any introduction to
sheaves myself. Therefore this appendix should be viewed as a complement
of Hartshorne (1977), and the reader must be familiar with definitions and no-
tation in there. To gain a broader vision of sheaf theory as a natural tool in
geometry we suggest to read Tennison (1975), to learn everything related with
sheaves from a topological point of view there is also Bredon (1997).

B.1 Basic properties

B.1.1 The constant sheaf Let G be a group. On a topological space X the
constant sheaf determined by G is defined as follows: give G the discrete topol-
ogy, and for any open set U ⊆ X, let G(U) be the group of all continuous
functions from U into G, with the usual restriction maps. The basic remark
here is that whenever U is connected one such a function must be constant
and therefore G(U) = G.

We can describe the same sheaf starting from the constant presheaf G , de-
fined by U 7→ A for all U 6= ∅, with restriction maps the identity.

Proposition (Exercise II.1.1 in Hartshorne, 1977). With notations and definitions
as above, there exists an isomorphism between G and G +.

Proof. The associated sheaf G + has the following universal property: there
is a morphism θ : G → G +, such that for any sheaf F , and any morphism
ϕ : G → F , there is a unique morphism ψ : G + → F with ϕ = ψ ◦ θ. So
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we define ϕ : G → G over any open subset U ⊆ X as the homomorphism
associating to each element of G the corresponding constant function

ϕU : G (U) −→ G(U)

Note that for any x ∈ X the homomorphism ϕx : Gx → Gx is an isomor-
phism. Injectivity follows immediately from the injectivity of ϕU, so we check
surjectivity. It is enough to observe that given a pair (U, s), where U is an open
neighborhood of x and s is a continuous function from U to G, the subset of X
given by the preimage s−1(s(x)

)
is an open subset over which the function s

is constant. Now there is a unique morphism ψ : G + → G such that ϕ = ψ ◦ θ,
so the following diagram on the stalks is commutative

Gx
ϕx // Gx

G +
x

ψx

>>||||||||

This proves that ψx is an isomorphism for all x, and this is enough to con-
clude that ψ is an isomorphism.

B.1.2 Injectivity and Surjectivity A morphism of sheaves ϕ : F → G is
injective if for every open subset U ⊆ X the homomorphism ϕU is injective.
The kernel of ϕ is the subsheaf of F defined by ker ϕ(U) = ker ϕU, thus ϕ is
injective if and only if ker ϕ = 0. The image of ϕ is the sheaf associated to the
presheaf U 7→ Im ϕU, we say ϕ is surjective if Im ϕ = G .

Claim (Exercise II.1.4 in Hartshorne, 1977). Let ϕ : F → G be a morphism of
presheaves such that ϕU : F (U) → G (U) is injective for each U. Then the induced
map ϕ+ : F+ → G + of associated sheaves is injective.

In particular, if ϕ : F → G is a morphism of sheaves, then Im ϕ can be naturally
identified with a subsheaf of G .

Proof. To see this one can fix an open set U and work with the homomorphism
ϕ+

U : F+(U) → G +(U). Recalling that this is defined by sending a section
s : U → ä Fx to the composition (ä ϕx) ◦ s, injectivity follows at once.

To check the final statement, let H be the presheaf U → Im ϕU and ob-
serve that the morphism of presheaves ψ : H → G defined by the inclusion
Im ϕU ⊆ G (U) is injective for all U.

Proposition (Exercise II.1.2 in Hartshorne, 1977). Let ϕ : F → G be a morphism
of sheaves over a topological space X. Then
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(a) for any x ∈ X, we have (ker ϕ)x = ker(ϕx) and (Im ϕ)x = Im(ϕx).

(b) ϕ is injective (respectively, surjective) if and only if the induced map on the
stalks ϕx is injective (respectively, surjective) for all x.

Moreover, a sequence . . . F i−1 ϕi−1

−→ F i ϕi

−→ F i+1 → . . . of sheaves and morphisms
is exact if and only if for each x ∈ X the corresponding sequence of stalks is exact as a
sequence of Abelian groups.

Proof. Since ker ϕ is a subsheaf of F and Im ϕ is a subsheaf of G , the stalk
(ker ϕ)x is a subgroup of Fx and the stalk (Im ϕ)x is a subgroup of Gx. This
allows us to prove the equalities above in the category of sets. The first,
(ker ϕ)x = ker(ϕx), holds because both groups can be described as the set
of couples (U, t), where U is an open neighborhood of x and t is an element
of F (U) such that ϕU(t) = 0, under the same equivalence relation. Similarly
the second holds because both groups can be described in the same way, only
one have to be careful and recall that a presheaf and the sheaf associated to it
have the same stalks.

Statement (b) is a consequence of (a). The morphism ϕ is injective if and
only if ker ϕ = 0, which is the case if and only if (ker ϕ)x = 0 for all x ∈ X.
Applying (a) we can say that ϕ is injective if and only if ker(ϕx) = 0 for all
x, that is ϕx is injective for all x. In the same way Im ϕ = G if and only if
(Im ϕ)x = Gx for all x ∈ X, and by (a) if and only if ϕx is surjective for all x.

The last assertion about the exact sequence is immediate now.

Corollary (Exercise II.1.5 in Hartshorne, 1977). A morphism of sheaves is an iso-
morphism if and only if it is both injective and surjective.

Proof. According to (Hartshorne, 1977, Proposition II.1.1), a morphism of shea-
ves is an isomorphism if and only if the induced maps on the stalks are all
isomorphisms, that is are all both injective and surjective. By the Proposition
above this is equivalent to say that the morphism itself is both injective and
surjective.

Example (In which ϕ is surjective but ϕU is not). Let X = [0, 1] ⊂ R and let F
be the constant sheaf with stalk Z. Let G be the sheaf whose stalks are

Gx =

{
Z if x = 0 or x = 1
0 otherwise

so that, for instance, Γ(X, G ) = Z⊕Z. Let ϕ : F → G be the unique mor-
phism such that ϕx = idZ if x = 0 or x = 1. Then ϕ is surjective, but the
homomorphism ϕX : Z → Z⊕Z cannot be surjective.
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Lemma (Exercise II.1.3 in Hartshorne, 1977). Let ϕ : F → G be a morphism of
sheaves on X. Then ϕ is surjective if and only if the following condition holds: for
every open set U ⊆ X, and for every s ∈ G (U), there is a covering {Ui} of U, and
there are elements ti ∈ F (Ui), such that ϕ(ti) = s|Ui for all i.

Proof. Assume ϕ is surjective, then ϕx is surjective for all x. Let U be an open
set in X and let s be an element of G (U); for any x ∈ U let σx be the germ
of s in the stalk Gx. There exist elements τx ∈ Fx such that ϕx(τx) = σx, and
for each one of them there exists an open set Ux containing x and elements
sx ∈ G (Ux) and tx ∈ F (Ux) such that ϕ(tx) = sx = s|Ux . Thus the condition
holds.

Conversely if the condition holds we prove that ϕ is surjective by proving
that ϕx is surjective for all x. Every σ ∈ Gx is the germ of some s ∈ G (U); in
the open set U there is a covering such as described above, in particular there
exists an open set V ⊆ U containing x and an element t ∈ F (V) such that
ϕV(t) = s|V , in other words ϕx(τ) = σ where τ is the germ of t in Fx.

B.1.3 Exact sequences If F ′ is a subsheaf of F , the quotient sheaf F /F ′ is
defined to be the sheaf associated to the presheaf U 7→ F (U)/F ′(U). One
sees immediately that the stalks of the quotient sheaf are given by the quo-
tients of the stalks, (F /F ′)x = Fx/F ′

x.

Proposition (Exercise II.1.6 in Hartshorne, 1977).

(a) Let F ′ be a subsheaf of a sheaf F . Then the natural map of F to the quotient
sheaf F /F ′ is surjective, and has kernel F ′. Thus there is an exact sequence

0 −→ F ′ −→ F −→ F /F ′ −→ 0

(b) Conversely, if 0 → F ′ → F → F ′′ → 0 is an exact sequence, then F ′ is
isomorphic to a subsheaf of F , and F ′′ is isomorphic to the quotient of F by
this subsheaf.

Proof. The natural map is surjective because it induces surjective maps on the
stalks. Its kernel is a subsheaf of F whose stalks are the same as those of F ′,
so it is F ′.

Conversely the map F ′ → F is injective (because so it is on the stalks),
hence F ′ is isomorphic to its image, that is a subsheaf of F , say H . We
define ḡ : F /H → F ′′ via the following commutative diagram

0 // H //

o
²²

F // F /H

ḡ
²²Â
Â
Â

// 0

0 // F ′ f
// F

g
// F ′′ // 0
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It turns out that ḡ is an isomorphism.

Corollary (Exercise II.1.7 in Hartshorne, 1977). Let ϕ : F → G be a morphism of
sheaves. Then

i) Im ϕ ∼= F / ker ϕ.

ii) coker ϕ ∼= G / Im ϕ.

Proof. We have exact sequences

0 −→ ker ϕ −→ F
ϕ−→ Im ϕ −→ 0

0 −→ Im ϕ −→ G −→ coker ϕ −→ 0

According to the Proposition the first gives i) while the second gives ii).

B.2 Functorial constructions

B.2.1 The Global Sections Functor For any open subset U ⊆ X, the asso-
ciation F 7→ F (U) defines a functor from the category of sheaves over X to
the category of Abelian groups. When U = X this is particularly important,
so that it gets a special name and notation; it’s called the global sections functor
and is denoted Γ(X, · ) or also H0(X, · ).

Proposition (Exercise II.1.8 in Hartshorne, 1977). The global sections functor is
left exact, i.e. if 0 → F ′ → F → F ′′ is an exact sequence of sheaves, then
0 → Γ(X, F ′) → Γ(X, F ) → Γ(X, F ′′) is an exact sequence of groups.

Proof. We consider the following sequence

0 // Γ(X, F ′)
ϕX

(1)
// Γ(X, F )

ψX

(2)
// Γ(X, F ′′)

To show exactness in (1) it is enough to remind that a morphism is injective
if and only if it is injective on any open set. Now we have to prove that it is
exact in (2) i.e. that ker ψX = Im ϕX. One inclusion is clear, since we have

Im ϕX ⊆ Γ(X, Im ϕ) = Γ(X, ker ψ) = ker ψX

It remains to prove the other. Let s ∈ ker ψX and for every P ∈ X let σP
be its germ in the stalk ker ψP = Im ϕP, then there exists τP ∈ F ′

P such that
ϕP(τP) = σP. From this it follows that there are an open covering {Ui} of X
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and elements ti ∈ F ′(Ui) such that ϕUi(ti) = s|Ui ; now we use the injectivity
of ϕ to say that the family {ti} is coherent. If i 6= j we have

ϕUij(ti|Uij) = ϕUi(ti)|Uij = s|Uij = ϕUj(tj)|Uij = ϕUij(tj|Uij)

Since ϕUij is injective we can now say that ti|Uij = tj|Uij and since F ′ is a
sheaf there exist a unique element t ∈ Γ(X, F ′) such that t|Ui = ti. Now it’s
easy to conclude that ϕX(t) = s, that is s ∈ Im ϕX.

B.2.2 Direct Sum of Sheaves Let F and G be sheaves over X. The presheaf
U 7→ F (U)⊕G (U) is already a sheaf. To see this observe that restriction maps
are defined componentwise, hence uniqueness and gluing axioms are verified
in the same way. This sheaf is called the direct sum of F and G , and is denoted
by F ⊕ G .

Proposition (Exercise II.1.9 in Hartshorne, 1977). Let F and G be sheaves over
X. The direct sum F ⊕ G plays the role of direct sum and of direct product in the
category of sheaves of Abelian groups over X.

Proof. For each U note that F (U)⊕ G (U) it is the direct sum and the direct
product of F (U) and G (U) in the category of Abelian groups, with projec-
tions and injections defined in the usual way. The following diagram chases,
where f ∈ F (U), g ∈ G (U) and vertical arrows are restrictions, also show
that they are morphisms of sheaves:

f //

²²

( f , 0)

²²
f |V // ( f |V , 0)

( f , g) //

²²

f

²²
( f |V , g|V) // f |V

We have to check universal properties and again F (U) ⊕ G (U) verifies
them in the category of Abelian groups. If ϕ : F → H and ψ : G → H are
morphisms of sheaves, for all U there exists a unique morphism of Abelian
groups

ϕ⊕ ψ : F (U)⊕ G (U) → H (U)

such that (ϕ⊕ ψ) ◦ i1 = ϕ and (ϕ⊕ ψ) ◦ i2 = ψ, moreover this morphism is
defined by ( f , g) 7→ ϕ( f ) + ψ(g). Now we can chase the diagram

( f , g)

²²
( f |V , g|V) // ϕ( f |V) + ψ(g|V)

( f , g) // ϕ( f ) + ψ(g)

²²
(ϕ( f ) + ψ(g))|V
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and conclude that ϕ⊕ ψ is a morphism of sheaves, because of the following

(ϕ( f ) + ψ(g))|V = ϕ( f )|V + ψ(g)|V = ϕ( f |V) + ψ(g|V)

In the same way if ϕ : H → F and ψ : H → G are morphisms of sheaves,
for all U there exist a unique morphism of Abelian groups

ϕ× ψ : H (U) → F (U)⊕ G (U)

such that p1 ◦ (ϕ× ψ) = ϕ and p2 ◦ (ϕ× ψ) = ψ, moreover this morphism is
defined by h 7→ (ϕ(h), ψ(h)). Now we can chase the diagram

h

²²
h|V // (ϕ(h|V), ψ(h|V))

h // (ϕ(h), ψ(h))

²²
(ϕ(h)|V , ψ(h)|V)

and conclude that ϕ× ψ is a morphism of sheaves, because of the following

(ϕ(h)|V , ψ(h)|V) = (ϕ(h|V), ψ(h|V))

B.2.3 Direct and Inverse Limits Let {Fi} be a direct system of sheaves
and morphisms over X. We define the direct limit of the system {Fi}, denoted
lim−→Fi, to be the sheaf associated to the presheaf U 7→ lim−→Fi(U). The reader
not familiar with limits in categories will find all the relevant definitions in
(Berrick and Keating, 2000, Chapter 5).

Lemma (Exercise II.1.10 in Hartshorne, 1977). Let {Fi} be a direct system of
sheaves and morphisms over X. The construction of the sheaf lim−→Fi is a direct limit
in the category of sheaves over X.

Proof. As above the only thing we have to do is to verify the universal prop-
erty, knowing that for any open set U it is satisfied by lim−→Fi(U). So let
ψi : Fi → G be morphisms of sheaves such that for any i ≤ j the following
diagram commutes

Fi

f ij

²²

ψi
// G

Fj
ψj

??ÄÄÄÄÄÄÄÄ

If we denote H the presheaf U 7→ lim−→Fi(U), for each open set U there
is a unique morphism βU : H (U) → G (U) such that for all i the following
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diagram commutes

Fi(U)

f i
U

²²

ψi
U // G (U)

H (U)
βU

::uuuuuuuuu

Since we know exactly how the maps work, it is straightforward to show
that β is a morphism of presheaves. Now it defines a unique morphism of
sheaves β+ : H + → G , and we are done.

Claim (Exercise II.1.11 in Hartshorne, 1977). Let {Fi} be a direct system of sheaves
over a Noetherian topological space X. In this case the presheaf U 7→ lim−→Fi(U) is
already a sheaf.

Proof. Let U ⊆ X be open. In §1.2.5 we have seen that every open subset of a
Noetherian topological space X is quasi-compact, hence we can assume every
open covering of U to be finite. Let then U = U1 ∪ · · · ∪Ur and consider a co-
herent family of sections, that is elements τ1 ∈ lim−→Fi(U1), . . . , τr ∈ lim−→Fi(Ur)
such that

τk|Uk∩Uh = τh|Uk∩Uh

For each k = 1, . . . , r the section τk is an equivalence class, a representative
is given by some element tk ∈ Fik(Uk). Since the family of sections is coherent
for every pair h, k there exists an index `, bigger than both ih and ik, such that

f ik`
Uk∩Uh

(tk|Uk∩Uh) = f ih`
Uk∩Uh

(th|Uk∩Uh)

where f ij are the structure morphisms of the direct system. We can in fact
assume ` bigger than each index i1, . . . , ir, so that we’ve got a family

f i1`
U1

(t1) ∈ F`(U1), . . . , f ir`
Ur

(tr) ∈ F`(Ur)

which is a coherent family of sections for the sheaf F`. Thus there exists a
unique element s ∈ F`(U) whose equivalence class σ ∈ lim−→Fi(U) is the
unique section such that σ|Uk = τk for any k = 1, . . . , r.

Proposition (Exercise II.1.12 in Hartshorne, 1977). Let {Fi} be an inverse system
of sheaves over X. Then

i) the presheaf U 7→ lim←−Fi(U) is already a sheaf;

ii) it is an inverse limit in the category of sheaves over X.

It is called the inverse limit of the system {Fi}, and is denoted by lim←−Fi.

184



Appendix B. Sheaf Theory Marco Lo Giudice

Proof. Let U be an open subset of X and let {Uk} be an open covering of U.
Consider a coherent family of sections, that is elements τk ∈ lim←−Fi(Uk) such
that

τk|Uk∩Uh = τh|Uk∩Uh

For each k the section τk can be realised as an element tk ∈ ∏ Fi(Uk) such
that whenever i ≤ j

f ij
Uk

(tk
i ) = tk

j

where f ij are the structure morphisms of the inverse system. The restriction
of τk to the intersection Uh ∩Uk is then given by the family

τk|Uk∩Uh = (tk
i |Uk∩Uh)i

which is automatically an element of lim←−Fi(Uh ∩ Uk) because f ij is a mor-
phism of sheaves. Thus the gluing condition applies componentwise, that is
for every i we have a coherent family of sections {tk

i } that glue into a unique
section ti ∈ Fi(U). The element t ∈ ∏ Fi(U) obtained in this way is in fact a
section in lim←−Fi(U) since for every k

f ij
U(ti)|Uk = f ij

Uk
(tk

i ) = tk
j = tj|Uk

This proves part i), while for part ii) the reader will not have any difficulty
in applying the same argument as in the Lemma above.

B.2.4 Flasque Sheaves A sheaf F on a topological space X is flasque if for
every inclusion V ⊆ U of open sets, the restriction map F (U) → F (V) is
surjective. A very easy but incredibly relevant example of flasque sheaf is a
constant sheaf on an irreducible topological space. Indeed, since the intersec-
tion of two open subsets is in this case always nonempty, a constant presheaf
is already a sheaf. Restriction maps are the identity so they are surjective. If
f : X → Y is a continuous map, and if F is a flasque sheaf on X, then f∗F is
a flasque sheaf on Y. Indeed restriction maps of f∗F are particular restriction
maps of F .

Proposition (Exercise II.1.16 in Hartshorne, 1977). We describe here how flasque
sheaves behave with respect to exact sequences.

i) If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves over X, and if
F ′ is flasque, then for any open subset U of X, the sequence of Abelian groups
0 → F ′(U) → F (U) → F ′′(U) → 0 is also exact.
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ii) If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves, and if F ′ and
F are flasque, then F ′′ is flasque.

Proof. In §B.2.1 above we have seen that whenever 0 → F ′ → F → F ′′ →
0 is an exact sequence of sheaves then for any open set U the sequence of
Abelian groups 0 → F ′(U) → F (U) → F ′′(U) is exact; to have i) we have
then to show that the last map is surjective. Without loss of generality we can
deal with global sections, since F ′|U is also a flasque sheaf. So what we have
to prove is that in the sequence

0 → Γ
(
X, F ′) ψX−→ Γ (X, F )

ϕX−→ Γ
(
X, F ′′) → 0

the map ϕX is surjective. Let s ∈ Γ (X, F ′′) and consider the collection Σ of
all pairs (U, t) where U ⊆ X is an open set and t ∈ F (U) is a section such
that ϕU(t) = s|U. Observe that such a collection is not empty because ϕ is a
surjective morphism of sheaves (applying the Lemma in §B.1.2 above). Order
Σ by (U, t) < (U′, t′) if U ⊆ U′ and t′|U = t. Then Σ is inductively ordered
(i.e. a chain in Σ has an upper bound, its union) and by Zorn’s lemma has
a maximal element, say (V, t). If we prove that V = X then we are done,
because in that case ϕX(t) = s. Suppose V 6= X, let x 6∈ V and let W be
a neighborhood of x such that (W, t′) ∈ Σ for some t′ ∈ F (W); note that
the existence of such a neighborhood is guaranteed by the Lemma in §B.1.2
above. Now t|V∩W − t′|V∩W is in the kernel of the map ϕ(V∩W) which is equal
to the image of ψ(V∩W) hence extends to some t′′ ∈ F (W), since F ′ is flasque.
Then t and t′ + t′′ agree on V ∩W, so that together they define an element of
F (V ∪W), extending t and contradicting the maximality of (V, t).

Statement ii) follows from the following commutative diagram (which is
so by the previous part), where V ⊂ U is an inclusion of open sets and all
sequences are exact

0 // F ′(U) //

²²

F (U) //

²²

F ′′(U) //

²²

0

0 // F ′(V) //

²²

F (V) //

²²

F ′′(V) // 0

0 0

and a diagram chase. In fact in this way one can prove that, being the sheaf
F ′ flasque, then F is flasque if and only if so is F ′′.

Another example of flasque sheaf is the sheaf of discontinuous functions. Let
F be any sheaf on X, for each open set U ⊆ X, we define G (U) to be the set of
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maps s : U → ⋃
P∈U FP such that for each P ∈ U, s(P) ∈ FP. It is clear that G

is a sheaf, that restriction homomorphisms are surjective, and also that there
is a natural injective morphism of F to G .

B.3 Topological attributes

B.3.1 Support of a sheaf Let F be a sheaf over X, and let s ∈ F (U) be a
section over an open set U. The support of s, denoted Supp s, is defined to be
{P ∈ U | sP 6= 0} where sP denotes the germ of s in the stalk FP. We define
the support of F , Supp F to be {P ∈ U | FP 6= 0}.

Lemma (Exercise II.1.14 in Hartshorne, 1977). Let F be a sheaf over X, and let
s ∈ F (U) be a section over an open set U. Then the support Supp s is a closed subset
of U.

Proof. We show that the complement in U of Supp s is an open set. First note
that this is {P ∈ U | sP = 0}, then let P ∈ U \ Supp s. Since sP = 0 there
exists an open neighborhood VP ⊆ U of P such that s|VP = 0; this proves that
U \ Supp s contains VP, and thus it is an open set.

Example (In which Supp F is not closed). Let F be the sheaf over [0, 1] ⊂ R

defined as the sheaf associated to the presheaf

F (U) =

{
Z if U ⊆ [1

3 , 2
3) or 1

3 ∈ U
0 otherwise

with the obvious restriction maps. It is clear that the stalks of F are

Fx =

{
Z if x ∈ [1

3 , 2
3)

0 otherwise

therefore the support Supp F = [ 1
3 , 2

3) is not a closed nor an open set.

B.3.2 Skyscraper sheaves Let G be an Abelian group. We fix a point x ∈ X
and construct the skyscraper sheaf over x, denoted Gx, by setting Gx(U) = G if
x ∈ U, otherwise Gx(U) = 0. It is clearly a sheaf, and we have the following
characterisation.

Proposition (Exercise II.1.17 in Hartshorne, 1977). The stalks of the skyscraper
sheaf are given by Gx

y = G if y ∈ {x}, otherwise Gx
y = 0. The same sheaf is given by

i∗G, where G is the constant sheaf over the closed subspace {x} and i : {x} → X is
the inclusion.
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Proof. To prove this result it is enough to make a couple of remarks. If y ∈ {x}
then any open neighborhood of y contains also x, otherwise there exists an
open neighborhood of y that doesn’t contain x. In the same way, for any open
subset U of X, the preimage i−1(U) is empty if and only if x 6∈ U. To conclude
we need to observe that G coincides with the constant presheaf because {x} is
an irreducible space.

B.3.3 Extending a Sheaf by Zero Let Z ⊆ X be a closed subset of X, and let
i : Z → X be the inclusion. If F is a sheaf over Z the stalks of the direct image
sheaf i∗F are given by (i∗F )P = FP for any P ∈ Z, otherwise (i∗F )P = 0.
For this reason we say that i∗F is obtained by extending F by zero outside
the closed subset Z.

Let now U be any open subset of X and let j : U → X be the inclusion. If
G is a sheaf over U we define j!G to be the sheaf associated to the presheaf
V 7→ G (V) if V ⊆ U, otherwise V 7→ 0. Clearly the stalks of j!G are given by
(j!G )P = GP if P ∈ U, otherwise (j!G )P = 0.

Proposition (Exercise II.1.19 in Hartshorne, 1977). Let Z ⊆ X be a closed subset
of X, and let U = X \ Z. If F is a sheaf over X, with the same notations as above,
there is an exact sequence of sheaves

0 −→ j!(F |U) −→ F −→ i∗(F |Z) −→ 0

Proof. We can define an injective morphism of presheaves by taking, for any
open subset V of X, the identity of F (V) if V ⊆ U, otherwise the inclusion of
zero. This will extend uniquely to a morphism of sheaves j!(F |U) → F , that
will be injective as we have seen in §B.1.2.

We define a surjective morphism F → i∗(F |Z) by taking, for any open
subset V of X, a limit of restriction homomorphisms. Indeed we have

i∗(F |Z)(V) = F |Z(V ∩ Z) = i−1F (V ∩ Z) = lim−→
V∩Z⊆W⊆V

F (W)

The resulting sequence is exact because it induces exact sequences on the
stalks (see §B.1.2 above).
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