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Complex Structures

the tangent space point of view

A complex structure in M2n is

• A distribution L ⊂ TCM ;

• dimC L = n;

• L is closed under [·, ·] (integrable);

• L ∩ L = {0} (nondegenerate).

L defines the (1,0)-vectors.
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Complex Structures

the differential forms point of view

A complex structure in M2n is

• Ω = θ1 . . . θn locally decomposable n-form;

• dΩ = αΩ (integrable);

• Ω ∧Ω 6= 0 (nondegenerate).

Ω is a local (0, n) form.

L is the annihilator of Ω.
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Generalized Complex Structure

Ingredients

• Clifford action of T ⊕ T ∗ on forms;

• Courant bracket:

[X+ξ, Y +η] = [X, Y ]+LXη−LY ξ−
1

2
(d(Xbη−Y bξ));

• The natural pairing on T ⊕ T ∗:

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y ));

• The Mukai pairing on forms:

〈〉.
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Geneneralized Complex Structures

the T ⊕ T ∗ point of view

A generalized complex structure in M2n is

• A distribution L ⊂ TCM ⊕ T ∗CM ;

• dimC L = 2n;

• L is isotropic wrt the natural pairing;

• L is closed under [·, ·] (integrable);

• L ∩ L = {0} (nondegenerate).
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Generalized Complex Structures

the differential forms point of view

A geneneralized complex structure in M2n is

• ρ = Ωexp(B+iω), Ω locally decomposable;

• dρ = (X + ξ) · ρ (integrable);

• 〈ρ, ρ〉 = Ω ∧Ωωk 6= 0 (nondegenerate).

A generalized structure ρ gives us the spinor

line bundle.

L is the annihilator of ρ.
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The Jacobi identity

• The Courant bracket does not satisfy the

Jacoby identity.

• Jac(X, Y, Z) = d(〈[X, Y ], Z〉 + 〈[Y, Z], X〉 +

〈[Z, X], Y 〉).

• The Courant bracket satisfies the Jacobi

identity in L.

• Use [·, ·] to define d :
∧∗L∗ →

∧∗+1 L∗.

6



The B-field

• A 2-form B acts on T ⊕ T ∗ by

X + ξ 7→ X + ξ −XbB;

• B skew-symmetric ⇒ B is orthogonal;

• B closed ⇒ B preserves [·, ·];

• L 7→ LB = {X + ξ −XbB|X + ξ ∈ L};

• ρ 7→ ρ exp(B).
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Examples

• Complex Structures:

ρ = Ω; L = T1,0 ⊕ T ∗0,1;

• Symplectic Structures:

ρ = exp(iω); L = {X − iXbω | X ∈ TCM};

• Products and B-field transform.
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Local structure

Around a regular point the structure gives a

foliation of the manifold with with symplectic

leaves and complex base.

Idea

Symplectic fibration + generalized complex base

+ Thurston’s argument:

Theorem

If a symplectic fibration over a generalized com-

plex base is such that the base and the fibers

are 1–connected, then the total space has a

generalized complex structure.
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More examples

Principal torus bundles E over surfaces always

have generalized complex structures:

• Take the complex structure on the base Ω

• Let ρ = Ωexp(idθ1dθ2);

• b1(E) even ⇒ no complex structure (Ko-

daira);

• Euler class (m, n) 6= 0 + genus > 1 ⇒ no

symplectic structure (Walczak & Etgü)
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Nilmanifolds

• Quotient of nilpotent Lie group by a max-

imal rank lattice;

• “Iterated circle bundles over a point”;

• There are 34 of those in 6-d;

• Classification of complex structures in 6-d

(Salamon);

• Classification of symplectic structures in 6-

d (?).
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Nilpotent Lie algebras

• For g1 = g and gi = [gi−1, g],

g1 ⊃ g2 ⊃ · · · ⊃ gi ⊃ gi+1 = 0

• Dualizing

d(g∗k) ⊂
∧2

(g∗k−1)

• Presentation:

(0,0,0,12,13,14)

de1 = de2 = de3 = 0

de4 = e12, de5 = e13, de6 = e14

• Reading the brackets

[x1, x2] = −x4, [x1, x3] = −x5, etc
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Invariant gen. complex structures

Theorem 1 Integrability + invariance ⇒ the

spinor is closed (generalized Calabi-Yau)

• ρ = θ1 . . . θk exp(B + iω), dρ = (X + ξ)ρ

implies

• (θ1 . . . θk−1dθi)θk = 0

• Nilpotency gives

θ1 . . . θi−1dθi = 0

therefore

d(θ1 . . . θk) = 0;

• and dρ = 0.
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Using nilmanifold structure to find

obstructions

• If gi
gi+1

is 1-d for i ≤ j ⇒ No gcs of type

(k, n− k), for k ≥ 2n− nil(M) + j + 1

• maximal nilpotency index ⇒ no gcs of type

(k, n− k) for k ≥ 2.
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Deformations of complex structures

— the pedestrian way —

• Complex structure: Ω = θ1θ2 . . . θn;

• Then θ1 . . . θn−2 is closed;

• And

ρt = tθ1 . . . θn−2 exp(
θn−1θn−2

t
)

interpolates between an (n,0) and an (n−
2,2) structure

• In 6-d, complex can always be deformed

into a general type structure
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Deformations of complex structures

— revised —

• Deformations ⇔ β ∈
∧2 L∗ such that

dLβ +
1

2
[β, β] = 0.

• Complex case:

β ∈
∧2

T0,1M and [β, β] = 0

• Nilmanifolds with complex structure θ1 . . . θn.

Xn−1, Xn duals to θn−1, θn;

• β = Xn−1 ∧ Xn defines a deformation of

gcss.
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Iwasawa manifold

(0,0,0,0,13− 24,14 + 23)

• The space of complex structures has 2 com-

ponents (‘Good George’ and Salamon);

• Complex structures in different components

determine different orientations on the base

4-torus;

•

ρ1 = (e1 + ie2)(e3 + ie4)(e5 + ie6)

and

ρ2 = (e1 + ie2)(e3 − ie4)(e5 − ie6)

are in distinct components;
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• ρ1 can be deformed by β = −1
4 (x3−ix4)(x5−

ix6) to

(e1 + ie2) exp(−(e35 − e46)− i(e45 + e36))

• Similarly, ρ2 can be deformed to

(e1 + ie2) exp(e35 − e46 − i(e45 + e36))

• Both are B-field transforms of

(e1 + ie2) exp(−i(e45 + e36))

• Conclusion: Space of complex structures

on the Iwasawa manifold can be connected

using gcss
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An 8-d example

Consider the nilmanifold

(0,0,12,13,14,15,16,36− 45− 27)

• Maximal nilpotence step ⇒ no gcs of type

(4,0), (3,1) or (2,2).

• A (1,3) structure would imply symplectic

structure on the leaves:

(0,0,0,0,0,14− 23)

and there aren’t any!

• A (0,4) structure is just symplectic struc-

ture, but

H2(M) = span{e23, e34 − e25, e17}.

There is no e8 above ⇒ no symplectic form.

19



• Cavalcanti, G. R. and Gualtieri, M. Generalized Com-
plex Structures in Nilmanifolds.

• Courant, T. Dirac Manifolds. Trans. Amer. Math.
Soc. 319 (1990), 631 – 661.
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