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Complex Structures
the tangent space point of view

A complex structure in M2" is

e A distribution L C T¢M,

o dimg L = n;

e L is closed under [-,-] (integrable);

e LN L = {0} (nondegenerate).

L defines the (1,0)-vectors.



Complex Structures
the differential forms point of view

A complex structure in M2" is

o (2=201...0, lOocally decomposable n-form;

o dQ2 = a2 (integrable);

e QNQ # 0 (nondegenerate).

Q2 is a local (0,n) form.

L is the annihilator of <2.



Generalized Complex Structure
Ingredients

Clifford action of T'@ T™* on forms;

Courant bracket:

[XHE Y 0] = [X, Y]+ Lxn—Lyé— (X [n-Y[©);

The natural pairing on T'® T™*:

(X+6Y +n) = (n(X) +£0)

The Mukai pairing on forms:
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Geneneralized Complex Structures
the T'@ T* point of view

A generalized complex structure in M?2" s

e A distribution L C TeM & TaM;

e dimg L = 2n,;

e [ is isotropic wrt the natural pairing;

e L is closed under [-,-] (integrable);

e LN L = {0} (nondegenerate).



Generalized Complex Structures
the differential forms point of view

A geneneralized complex structure in M2" is

e p = Qexp(B+iw), 2 locally decomposable;

o dp = (X 4+ &) - p (integrable);

e (p,p) = QA QuwF # 0 (nondegenerate).

A generalized structure p gives us the spinor
line bundle.

L is the annihilator of p.



The Jacobi identity

The Courant bracket does not satisfy the
Jacoby identity.

Jae(X,Y, 2) = d({[X,Y], ) + {[V, Z], X) +
(12, X1, Y)).

The Courant bracket satisfies the Jacobi
identity in L.

Use [, -] to define d: A* L* — A*T1 L*.



The B-field

A 2-form B acts on T @ T™* by

X4+€&—X+¢—X|B;

B skew-symmetric = B is orthogonal;

B closed = B preserves [, -];

L— LB ={X4+¢—-X|BIX+£€L};

p— pexp(B).



Examples

e Complex Structures:

e Symplectic Structures:

p=exp(iw); L={X—-iX|w|X €TcM};

e Products and B-field transform.



LLocal structure

Around a regular point the structure gives a
foliation of the manifold with with symplectic
leaves and complex base.

Idea

Symplectic fibration + generalized complex base
+ Thurston’s argument:

T heorem

If a symplectic fibration over a generalized com-
plex base is such that the base and the fibers
are 1—connected, then the total space has a
generalized complex structure.



More examples

Principal torus bundles E over surfaces always
have generalized complex structures:

e [Take the complex structure on the base 2

o Let p = Qexp(idhdbs);

e b1(F) even = no complex structure (Ko-
daira);

e Euler class (m,n) 20 + genus > 1 = no
symplectic structure (Walczak & Etgl)
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Nilmanifolds

e Quotient of nilpotent Lie group by a max-
imal rank lattice;

e ‘Iterated circle bundles over a point”;

e [ here are 34 of those in 6-d;

e Classification of complex structures in 6-d
(Salamon);

e Classification of symplectic structures in 6-

d (7).
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Nilpotent Lie algebras

For g1 = ¢ and g; = [g;—1, g],

g1 209220+ D g D9gi+1 =20

Dualizing

d(g}) € N°(gf_1)

Presentation:

(0,0,0,12,13,14)
de1 = dep = de3z =0

deqg = e1p,des = e13,deg = €14

Reading the brackets

1, z0] = —x4, [21,23] = —z5, etc
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Invariant gen. complex structures

Theorem 1 Integrability + invariance = the
spinor is closed (generalized Calabi-Yau)

e p = 01...0,exp(B+iw), dp = (X+&Ep
implies

o (91 c o Qk_ldei)ek =0

e Nilpotency gives
91 B Qi_ldez' =0
therefore

d(6y...0,) = 0;

e and dp = 0.

13



Using nilmanifold structure to find
obstructions

1+1

(k,n—k), fork>2n—nil(M)+ 5+ 1

o If ggi is 1-d for : < 7 = No gcs of type

e Mmaximal nilpotency index = no gcs of type
(k,n—k) for k > 2.
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Deformations of complex structures
— the pedestrian way —

Complex structure: €2 =010>...0p;
Then 61...0,,_o is closed;

And

0, 10, >
pr =101 ...0, pexp(FL=2)

interpolates between an (n,0) and an (n —
2,2) structure

In 6-d, complex can always be deformed
into a general type structure
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Deformations of complex structures

— revised —

Deformations < 8 € A2 L* such that

1

Complex case:

Be N°TO1M and [3,8] =0

Nilmanifolds with complex structure 61 ... 60,.

8 =

gCss.

X,_1,Xnp duals to 0,,_1,0n;

Xn—1 N Xp defines a deformation of
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Iwasawa manifold
(0,0,0,0,13 — 24,14 4 23)

e [ he space of complex structures has 2 com-
ponents (‘Good George' and Salamon);

e Complex structures in different components
determine different orientations on the base
4-torus;

p1 = (e1 +iex)(e3 + ieq)(es + iep)

and

p2 = (e1 +iex)(e3 —ieq)(es — ieg)

are in distinct components;
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p1 can be deformed by 3 = _Tl(aig—’iaj4)(a§5—
ixg) toO

(e1 + ten) exp(—(e35 — esap) — i(eas + e36))

Similarly, po can be deformed to

(e1 + iep) exp(eszs — esp — i(es5 + €36))

Both are B-field transforms of

(e1 + ten) exp(—i(eq5 + €36))

Conclusion: Space of complex structures
on the Iwasawa manifold can be connected
using gcss
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An 8-d example

Consider the nilmanifold

(0,0,12,13,14,15,16,36 — 45 — 27)

e Maximal nilpotence step = no gcs of type
(4,0),(3,1) or (2,2).

e A (1,3) structure would imply symplectic
structure on the leaves:

(0,0,0,0,0,14 — 23)

and there aren’t any!

e A (0,4) structure is just symplectic struc-
ture, but

H?(M) = span{eps, e34 — €5, €17}

Thereis no eg above = no symplectic form.
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