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"Tropical Geometry"

1. R := R ∪ {∞} with operations a⊕ b := min{a, b} and
a⊗ b := a+ b the tropical semiring

2. B := {0,∞} ⊂ R is the boolean semiring
3. Given a field K, we consider val : K → T a

"non-archemedian field valuation"
4. For this talk val(a) = 0 ⇐⇒ a 6= 0K , val(0K) =∞.
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Motivation

I "Non-realizable" tropical ideals are hard to construct.

I (Zajaczkowska 2018)[Zaj18]: Zero-dimensional, degree-2
homogeneous tropical ideals in B[x±11 , . . . , x±1n ] are in 1-1
correspondence with sublattices Zn
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Contribution

1. Provide a simple way of constructing zero-dimensional
tropical ideals of any degree.

2. Understand the degree-2 sublattice correspondence from a
combinatorial perspective, "generalizing" to higher degrees
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Method/Synopsis

1. identify a subclass of tropical ideals that admits a
well-defined notion of ideal generation (paving tropical
ideals)

2. study conditions on the generating set that controls the
structure of the resulting ideal

3. use these conditions to construct and study examples.
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Matroids (Circuits)

Definition
A matroid presented by circuits is a set E along with a set
system C on E such that
1. ∅ /∈ C,
2. the elements of C are finite,
3. C is a clutter, and
4. (Circuit Elimination Axiom) For each pair C1, C2 ∈ C,

and each element e ∈ C1 ∩ C2 there exists a C3 ∈ C such
that

C3 ⊂ (C1 ∪ C2) \ e

I Sets of E which do not contain a circuit are independent.
I The size of a maximal independent set is the rank of the

matroid.
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Example: Points in Space

1A
B

C

a
b

c

Pappus’ Theorem: 1, 2, 3 must lie on a line in any vector space
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Example: Ideals

I The polynomials in an ideal I with minimal support
correspond to the circuits of a matroid.

I ∑
u∈Zn

cux
u 7→ {u ∈ Zn | cu 6= 0}

I An ideal in K[x±11 , . . . ,x±1n ] gives us a matroid on
the set Zn, called it’s underlying matroid.
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Tropical Ideals

Definition
A tropical ideal is an ideal in R[x±11 , . . . , x±1n ] whose polynomials
of minimal support form the circuits of a matroid.
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Example: Tropical Ideals Aren’t So Nice

I Consider I := 〈x− y〉 ⊂ C[x, y].

I trop(I) ⊂ R[x±11 , x±12 ], is not finitely generated as
xd − yd ∈ I hence xd ⊕ yd ∈ trop(I).

I Since no cancellation occurs naturally in R[x±11 , . . . , x±1n ],
no finite collection of xd ⊕ yd may be used to generate all
such binomials.

I This makes it quite hard to construct nontrivial
examples of tropical ideals: what can we do to
specify an ideal with an infinite generating set?
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Tropical Ideals are Nice

1. Variety is finite, balanced polyhedral complex
2. Satisfy ascending chain condition
3. Hilbert polynomial encodes meaningful combinatorial data
4. Weak Nulstellensatz holds.
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Paving Matroids

Definition
A Paving Matroid of rank r is a matroid (of rank r) whose
circuits have size r or r + 1

Example:
1A

B
C

a
b

c

1 2 3

14 / 37



Paving Matroids

Definition
A Paving Matroid of rank r is a matroid (of rank r) whose
circuits have size r or r + 1

Example:
1A

B
C

a
b

c

1 2 3

14 / 37



Generalized Partitions

Definition
Given a set E, a d-partition on E is a set system H such that
P1) |H| ≥ 2,
P2) for all H ∈ H, |H| ≥ d, and
P3) each d-subset of E appears in a unique element of H.

Elements of H are called blocks.
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From d-Partitions to Circuits

I d-partitions exactly encode paving matroids of rank d+ 1

I The circuits of size d+1 are exactly the subsets of blocks of
size at least d+ 1.

I The circuits of size d+ 2 are implicit: take all d+ 2 subsets
of E not containing a circuit of size d+ 1.
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Generating d-Partitions

I We can generate d-partitions

I Let S be a set system on E with elements of size at least
d+ 1, and with pairwise intersections of size less than d.

I Just fill in the d-subsets not covered by S:

H := S ∪ {T ⊂ E | |T | = d and T 6⊂ S for all S ∈ S}
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Recap

I Tropical ideals are ideals in B[x±11 , . . . , x±1n ] that are
matroids.

I Matroids, and thus tropical ideals, are very complicated
I d-Partitions provide a succinct way of describing the

circuits of a paving matroid.
I d-Partitions can be generated
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Definition

Definition
A zero-dimensional tropical ideal is called a paving tropical
ideal if its underlying matroid Mat(I) is a paving matroid.
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Structural Observation

I A (tropical) ideal I gives us a matroid on Zn called its’
underlying matroid Mat(I) via the map∑

u∈Zn

cux
u 7→ {u ∈ Zn | cu 6= 0}

I If S ∈ Mat(I), then the set S + u := {t+ u | t ∈ S} is also
in Mat(I), as I is closed under multiplication by the
monomial xu. Succinctly: Mat(I) is a matroid on Zn that
is invariant under the action of Zn.
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Invariance under Zn action

Definition
We say that a d-partition H of Zn is Zn-invariant if for each
u ∈ Zn and H ∈ H, H + u ∈ H.

21 / 37



Correspondence Theorem

Theorem (Correspondence Theorem)

There is a natural one-to-one correspondence between tropical
ideals I ⊂ B[x±11 , . . . , x±1n ] and Zn-invariant matroids on Zn. In
particular, there is a one-to-one correspondence between degree
d+ 1 paving tropical ideals in B[x±11 , . . . , x±1n ] and Zn-invariant
d-partitions of Zn.
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Constructing a Non-Example

Not just any subset of Zn can be a block in a paving tropical
ideal; there is a geometric constraint.
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Constructing a Non-Example

Consider S = {(0, 0), (−2, 0), (−4, 0), (−2, 2)} as a block in a
2-partition

1
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Constructing a Non-Example

The set S+(2,0) is also a block in our paving tropical ideal
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Constructing a Non-Example

This is a problem because S ∩ S + (2, 0) = {(−2, 0), (0, 0)},
which has more than one element.
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Constructing a Non-Example

What if we try and fix this? The minimal block containing S
contains S and S + (2, 0)

1
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Constructing a Non-Example

1
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Constructing a Non-Example

The minimal block containing S is (2Z)2

1
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d -Sparsity

Definition
A subset S ⊂ Zn is called d-sparse if there is no u ∈ Zn \ 0
such that |S ∩ S + u| ≥ d.

24 / 37



Lattice Blocks

Proposition (A, Rincón, [AR21])
Suppose P is a Zn-invariant d-partition of Zn. Then any block
S ∈ P is either d-sparse or a non-trivial affine sublattice of Zn,
i.e. it has the form S = v + L for v ∈ Zn and {0} ( L ( Zn a
sublattice.

25 / 37



Generalizing Zajaczkowska

I Setting d = 1 we consider partitions of Zn.

I Every subset of Zn of size at least 2 intersects a translate of
itself in one point.

I Every block in a degree 2 paving tropical ideal is the
translate of a unique lattice L.

I This is precisely the result of Zajaczkowska
[Zaj18][Theorem 4.2.4]
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Generating d-Partitions
Definition
Suppose A is a collection of subsets of Zn satisfying:

(A1) Zn /∈ A.
(A2) |A| ≥ d+ 1 for all A ∈ A.
(A3) If A1, A2 ∈ A and u ∈ Zn satisfy |A1Ap(u+A2)| ≥ d then

A1 = u+A2.
Define:

Pd(A) := (Zn +A) ∪ D,
where

Zn +A := {u+A : u ∈ Zn and A ∈ A}
and

D := {S ⊂ Zn : |S| = d and S 6⊂ X for all X ∈ Zn +A}.

We call Pd(A) the Zn-invariant d-partition of Zn generated
by A. 27 / 37



The key content of the previous frame

Given a collection of subsets of size at least d+ 1, whose
translations intersect in fewer than d points, we can generate a
paving tropical ideal by simply considering Zn’s action on our
set system, and then generating a d-partition as usual.

28 / 37



Lots of Paving Tropical Ideals

Proposition (A, Rincón)

There are uncountably many degree 3 paving tropical ideals in
B[x±1].
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Proof by Example

I To any S ⊂ P(N) of size at least 3 we associate the set
TS := {2t | t ∈ S}

I TS is a 2-sparse set that is in 1− 1 correspondence with S.
I The Z invariant 2-partition generated by {TS} is in 1-1

correspondence with S.
I There are uncountably many such S

30 / 37



Proof by Example

I To any S ⊂ P(N) of size at least 3 we associate the set
TS := {2t | t ∈ S}

I TS is a 2-sparse set that is in 1− 1 correspondence with S.

I The Z invariant 2-partition generated by {TS} is in 1-1
correspondence with S.

I There are uncountably many such S

30 / 37



Proof by Example

I To any S ⊂ P(N) of size at least 3 we associate the set
TS := {2t | t ∈ S}

I TS is a 2-sparse set that is in 1− 1 correspondence with S.
I The Z invariant 2-partition generated by {TS} is in 1-1

correspondence with S.

I There are uncountably many such S

30 / 37



Proof by Example

I To any S ⊂ P(N) of size at least 3 we associate the set
TS := {2t | t ∈ S}

I TS is a 2-sparse set that is in 1− 1 correspondence with S.
I The Z invariant 2-partition generated by {TS} is in 1-1

correspondence with S.
I There are uncountably many such S

30 / 37



Short Corollary

Corollary (A, Rincón)

Most zero-dimensional tropical ideals are not representable.

Proof.
Only countably many zero-dimensional tropical ideals are
representable [Sil21]
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Degree 2 Paving Tropical Ideals

I All Rank 2 matroids are realizable

I Degree 2 paving tropical ideals are "everywhere a rank-2
matroid"

I Degree 2 paving tropical ideals in one variable are realisable
[Zaj18, Theorem 5.1.5].

I Question: Are all degree 2 paving tropical ideals realisable.
I Answer: No
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Characteristic Two

Lemma (Proposition 5.2.9, Zajaczkowska)

The degree 2 paving tropical ideal associated to the lattice
(2n, 2m) is not realisable except in characteristic 2

It should suffice to find a tropical ideal that is not realisable in
characteristic 2.
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Lemma (Proposition 5.2.9, Zajaczkowska)
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Not Characteristic Two

Lemma
The (homogeneous) tropical ideal associated to 4Z is not
realisable in characteristic two.

Proof: a simple proof by contradiction
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Gluing

Proposition

If I is a paving tropical ideal in B[x±11 , . . . , x±1n ] and J is a
paving tropical ideal in B[x±11 , . . . , x±1m ], then The d-partition H
of Zn+m generated by H(Mat(I)) ∪H(Mat(J)) is defined and
H|Zn = H(Mat(I)) and H|Zm = H(Mat(J)).

Proof: Any translation of Zm intersects Zn in exactly one point
and vice versa; the case where d = 1 is the exception, but the
generators in this case form the basis of a lattice and are
lineraly independent by definition.
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Counterexample

The degree 2 tropical ideal associated to the lattice (4x, 2y, 2z)
is not realisable over any field.
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