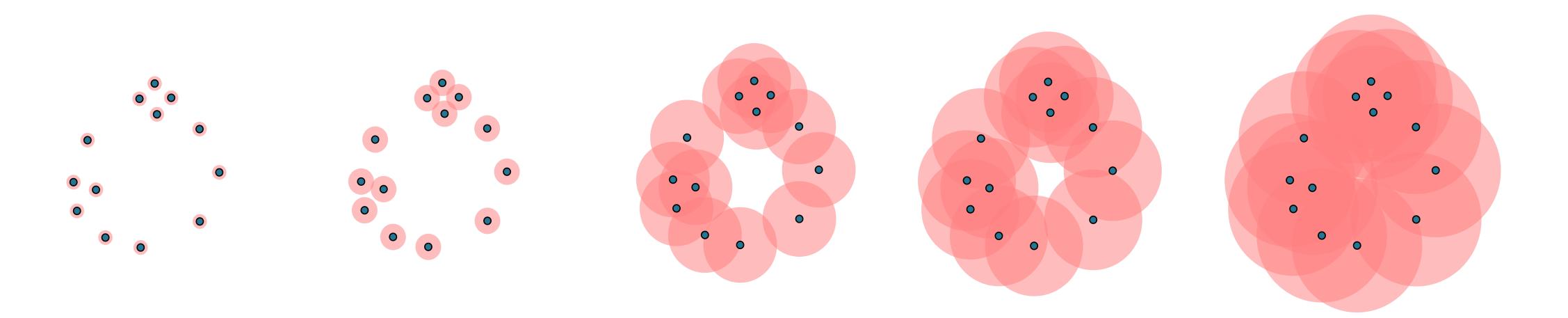
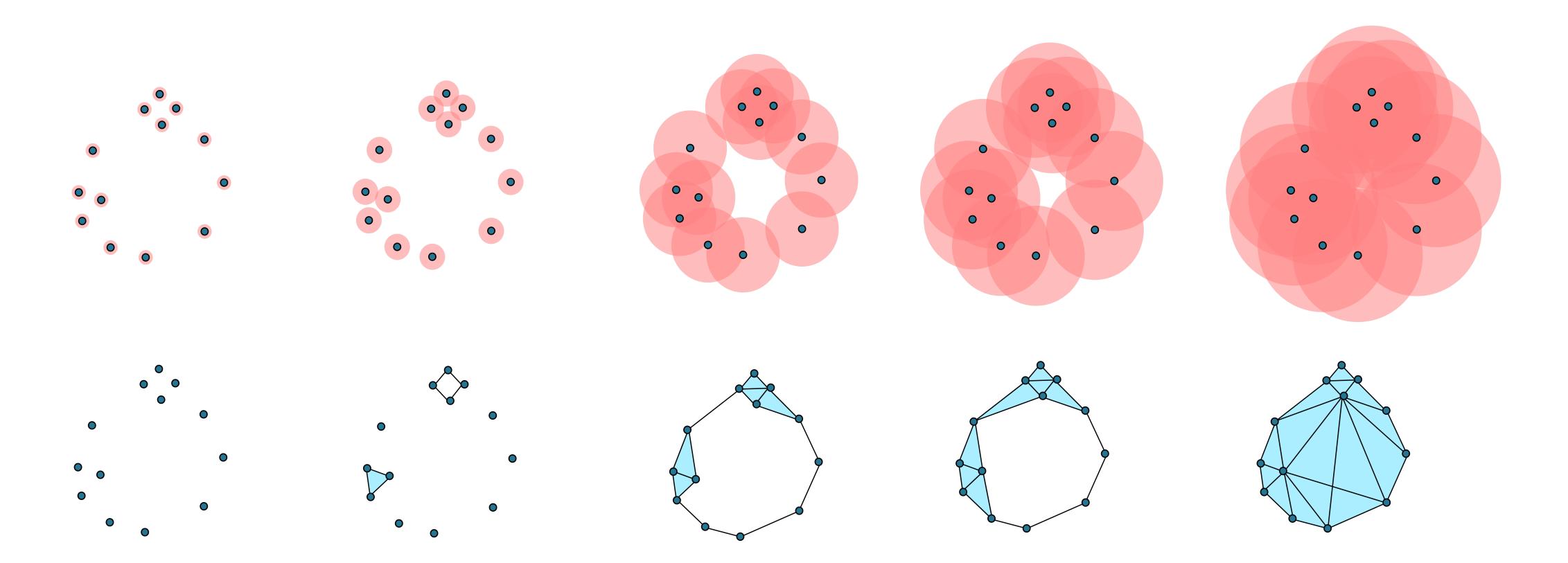
Persistent homology, hypergraphs and geometric cycle matching

Agnese Barbensi Online Machine Learning Seminar Nov 2023



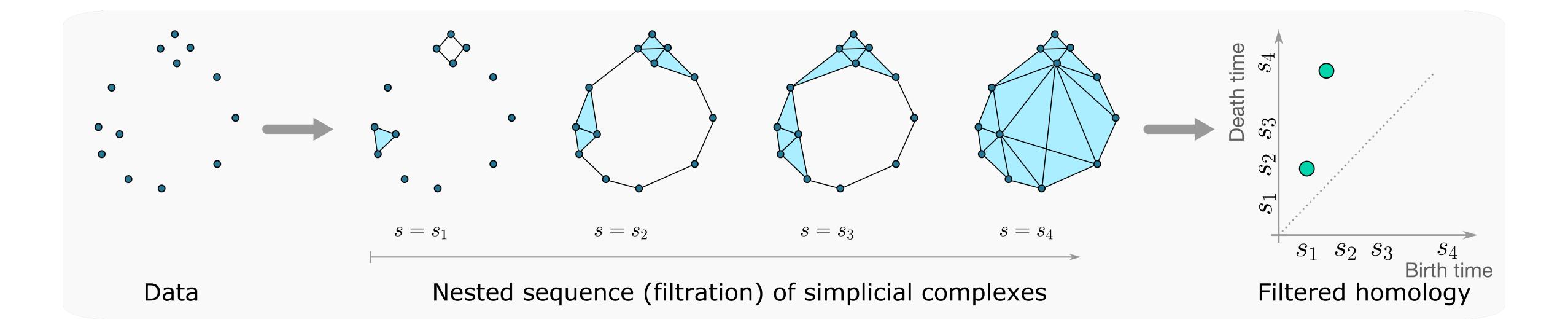
Builds revealing shapes from data to find features persisting across multiple scales



Builds revealing shapes from data to find features persisting across multiple scales

Simplicial complexes: combinatorial approximations of data at different scales

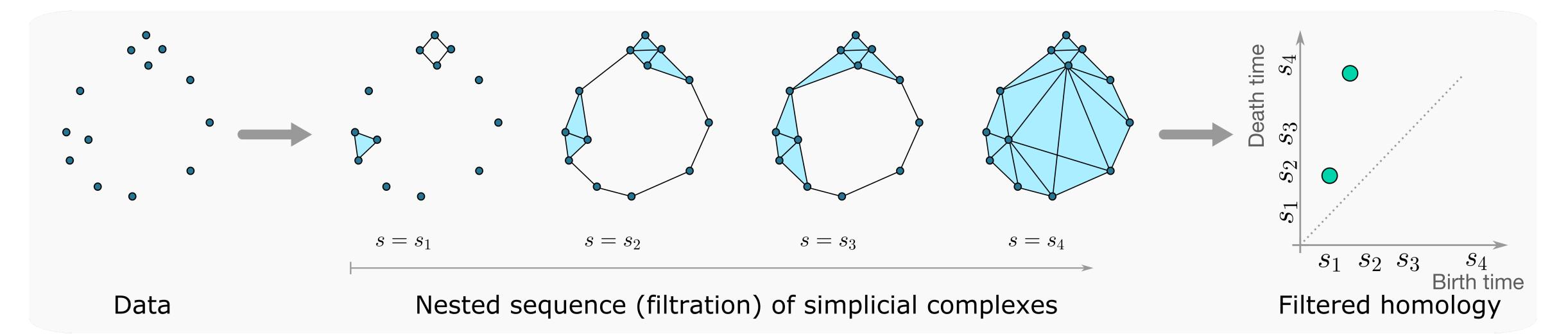
Persistent homology (PH): algebraically describes the structure of data based on topological features persisting across different scales.



Features are encoded in a persistent diagram (multi-set of topological features)

From a point cloud, to (filtered) simplicial complexes, to homology

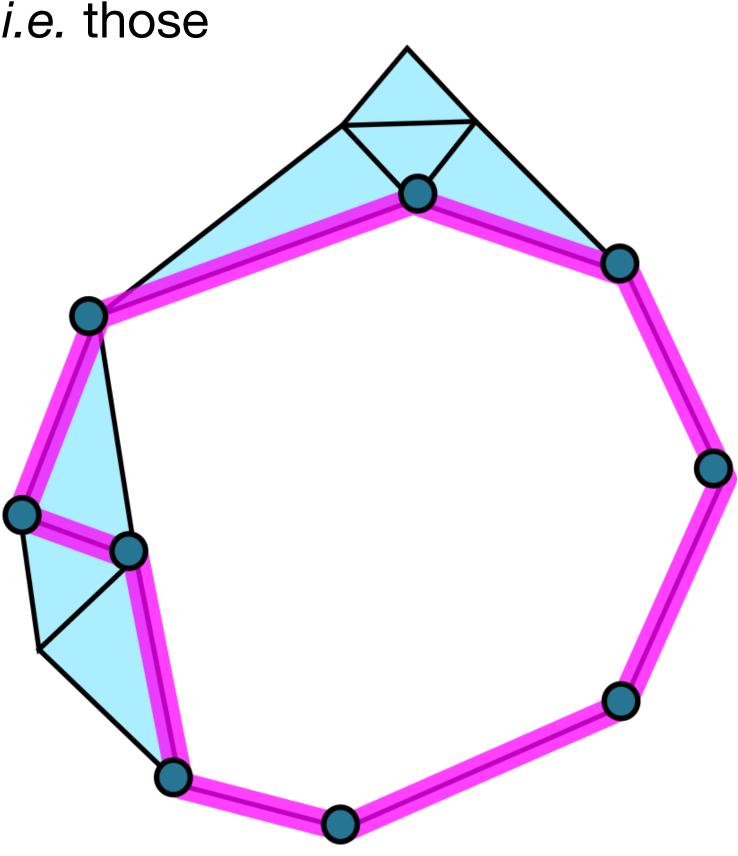
Persistent homology (PH): algebraically describes the structure of data based on topological features persisting across different scales.



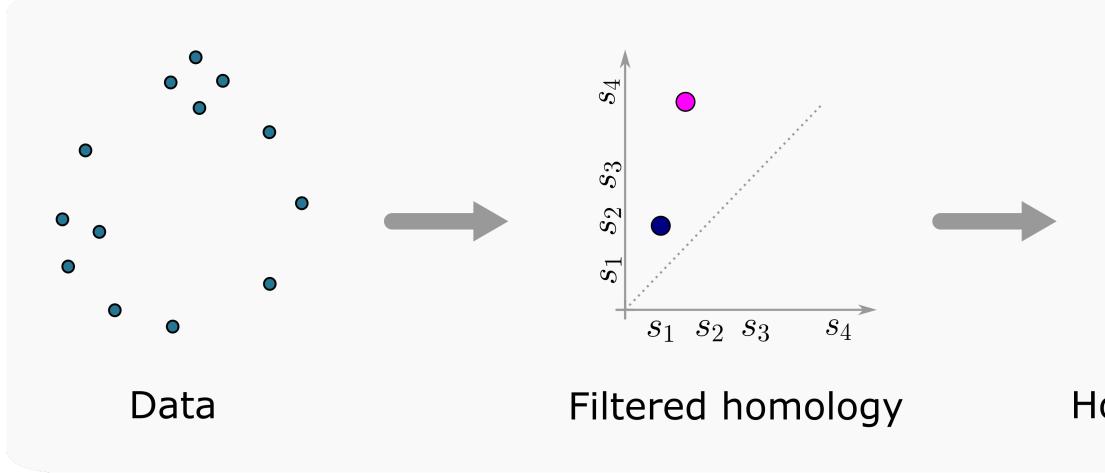
- Bukkuri, et al "Applications of topological data analysis in oncology." Frontiers in artificial intelligence 2021
- Rabadán, Raúl, et al. "Identification of relevant genetic alterations in cancer using topological data analysis." Nature communications 2020 2)
- Vipond, et al. "Multiparameter persistent homology landscapes identify immune cell spatial patterns in tumors." PNAS 2021
- Saggar, Manish, et al. "Towards a new approach to reveal dynamical organization of the brain using topological data analysis." Nature communications 2018 4)
- Kanari, et al. "A topological representation of branching neuronal morphologies." Neuroinformatics 2018
- McGuirl, et al. "Topological data analysis of zebrafish patterns." PNAS 2020 6)
- Sørensen, Søren S., et al. "Revealing hidden medium-range order in amorphous materials using topological data analysis." Science Advances 2020 7)

Applications: oncological studies (1-2) pathology (3) brain (4-5) ecology (6) materials (7)...

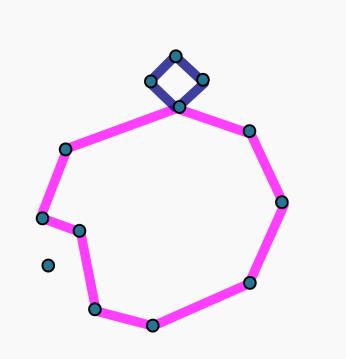
Homology generators: subsets of data giving rise to topological classes, *i.e.* those points forming cycles representing homology classes



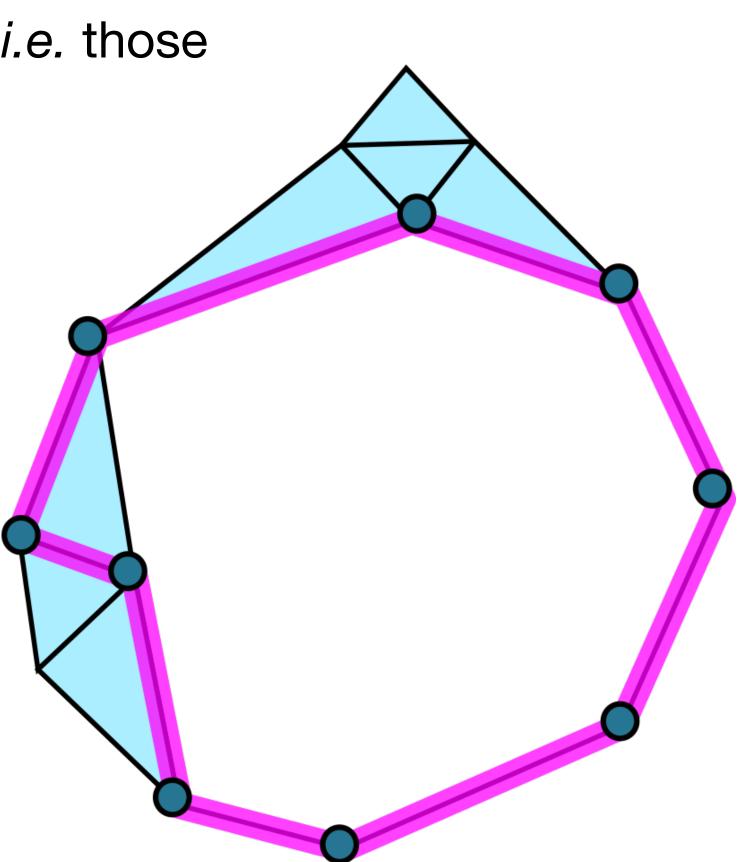
Homology generators: subsets of data giving rise to topological classes, *i.e.* those points forming cycles representing homology classes



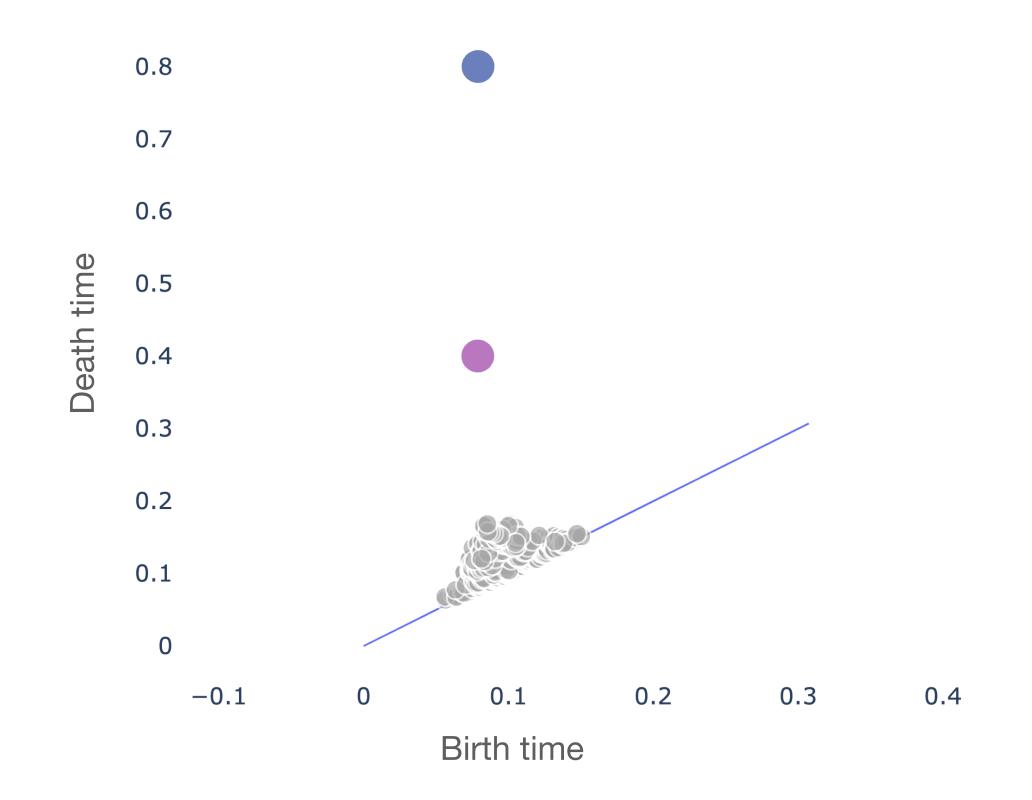
Lead to geometric interpretation of structural features



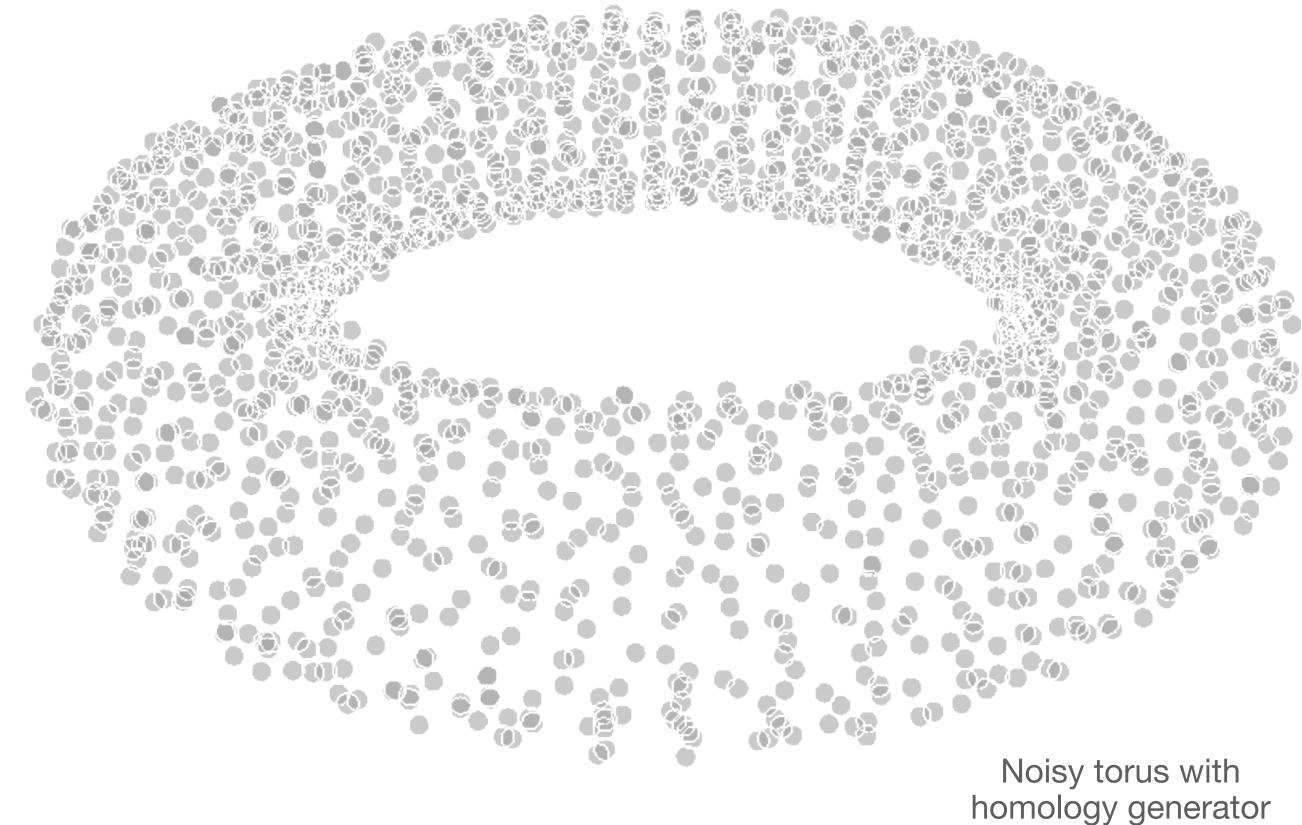
Homology generators



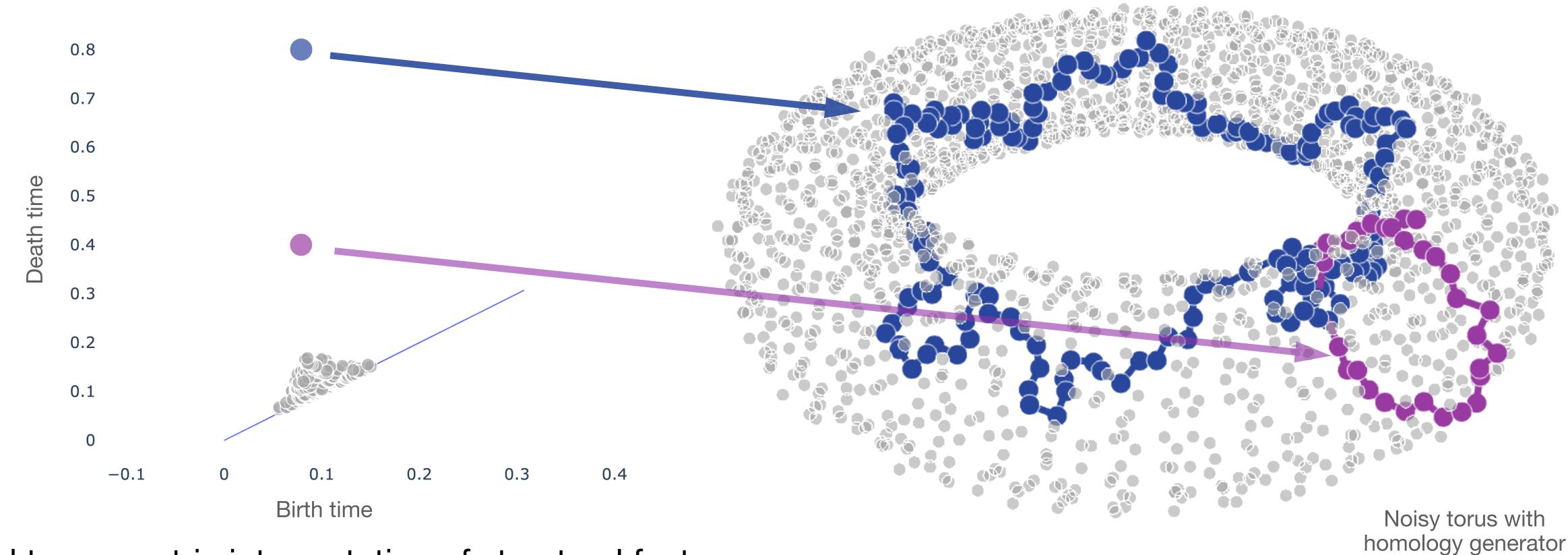
Homology generators: subsets of data giving rise to topological classes, *i.e.* those points forming cycles representing homology classes



Lead to geometric interpretation of structural features



Homology generators: subsets of data giving rise to topological classes, *i.e.* those points forming cycles representing homology classes



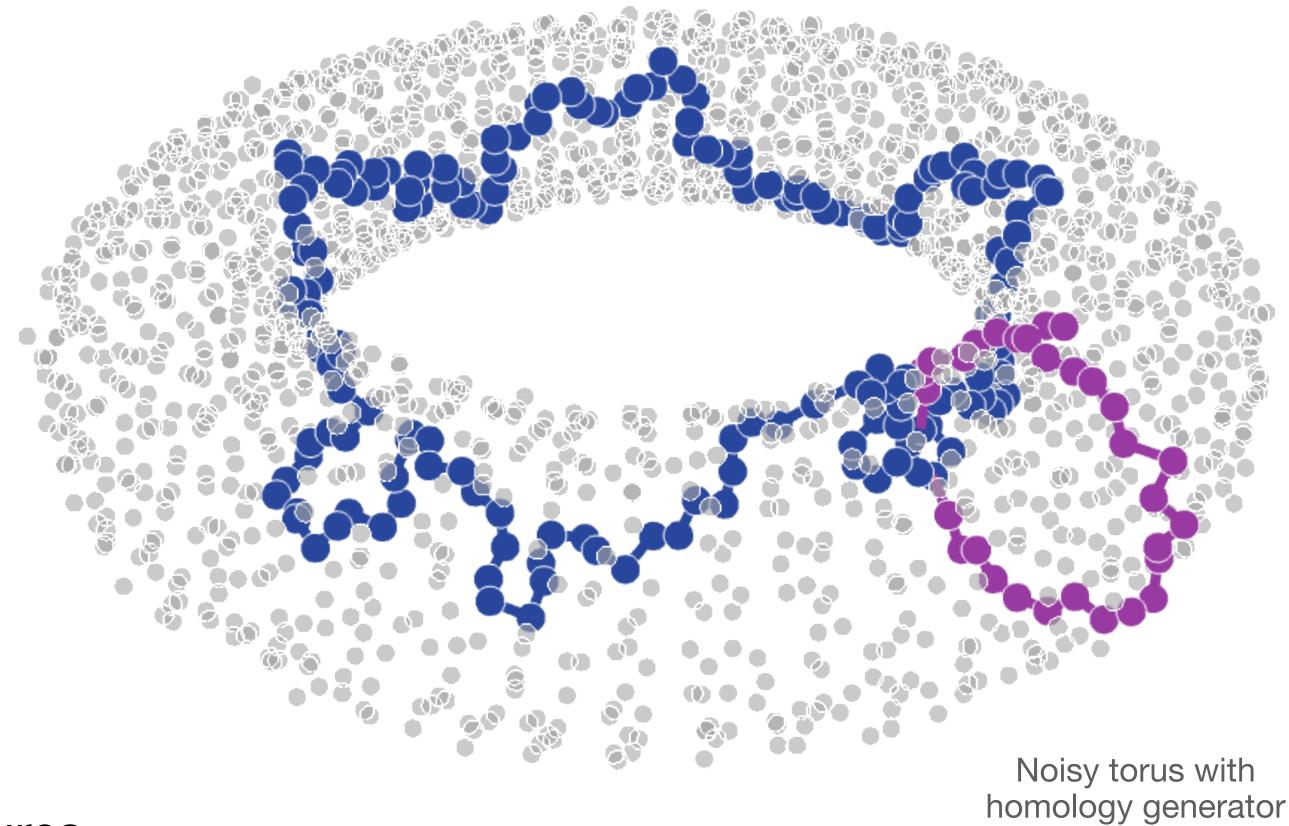
Lead to geometric interpretation of structural features

Homology generators: subsets of data giving rise to topological classes, *i.e.* those points forming cycles representing homology classes

Challenge 1

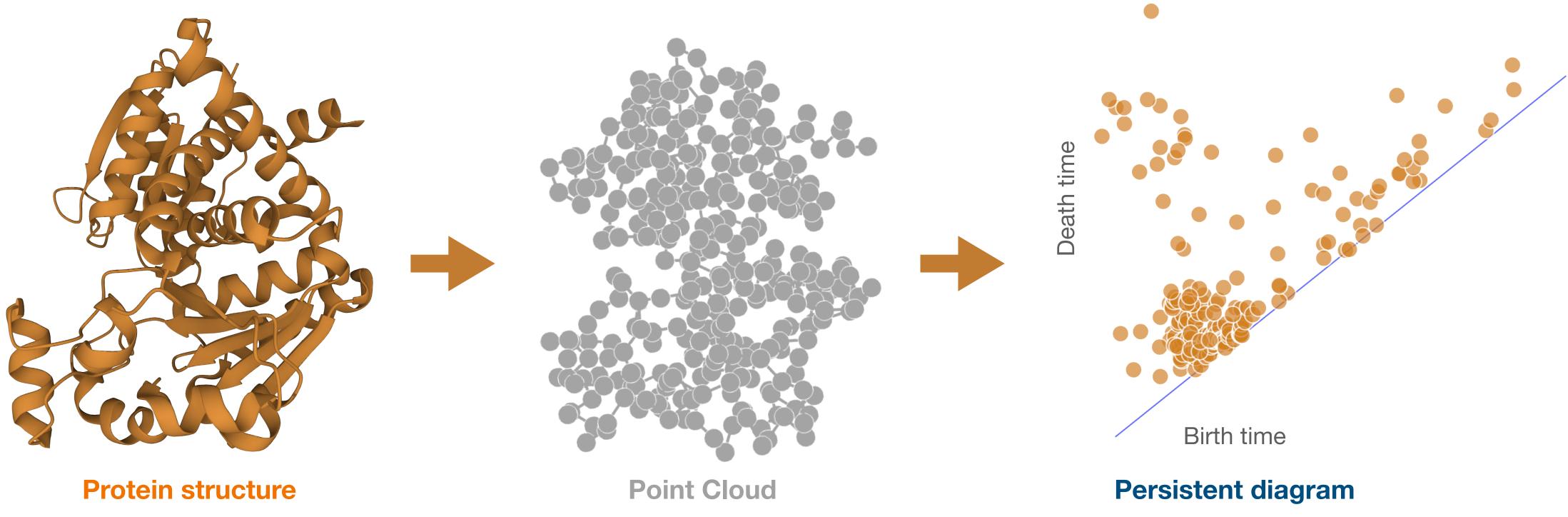
- Homology generators are **not unique**: a) their analysis might introduce **biases**
- Finding **optimal** cycles is **NP-hard**¹: b) there is no natural preferred choice

Lead to <u>geometric</u> interpretation of structural features

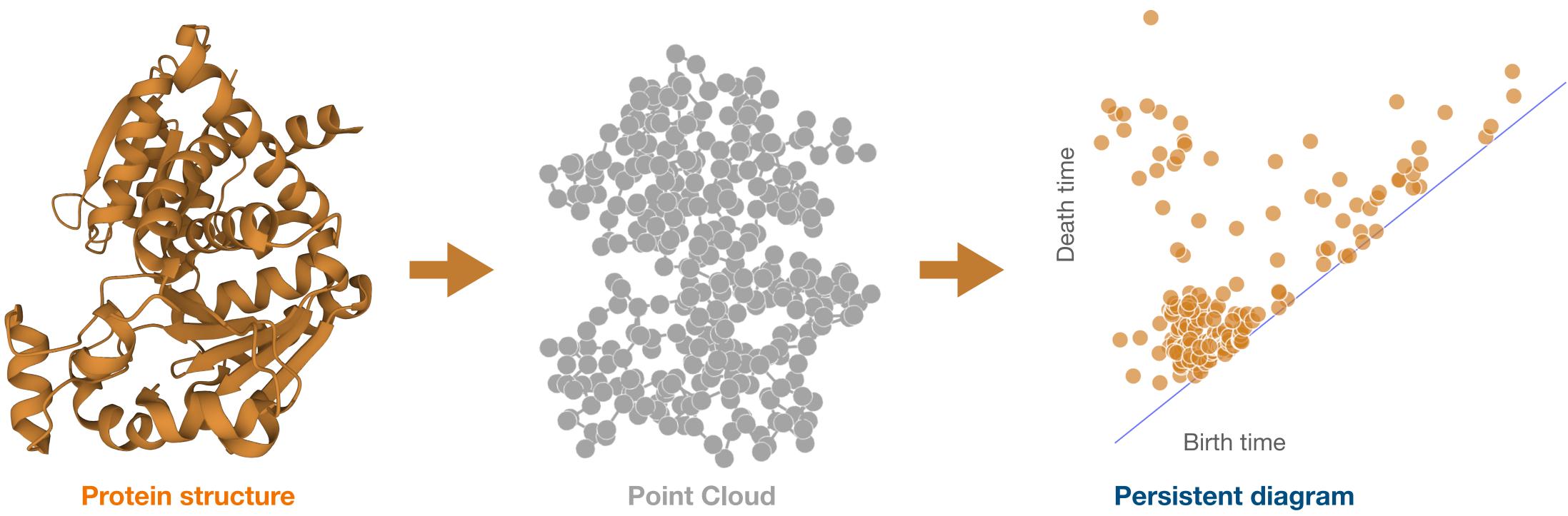


1) Li, Lu, et al. Frontiers in artificial intelligence (2021): 73.

Interpretability: noisy homology classes

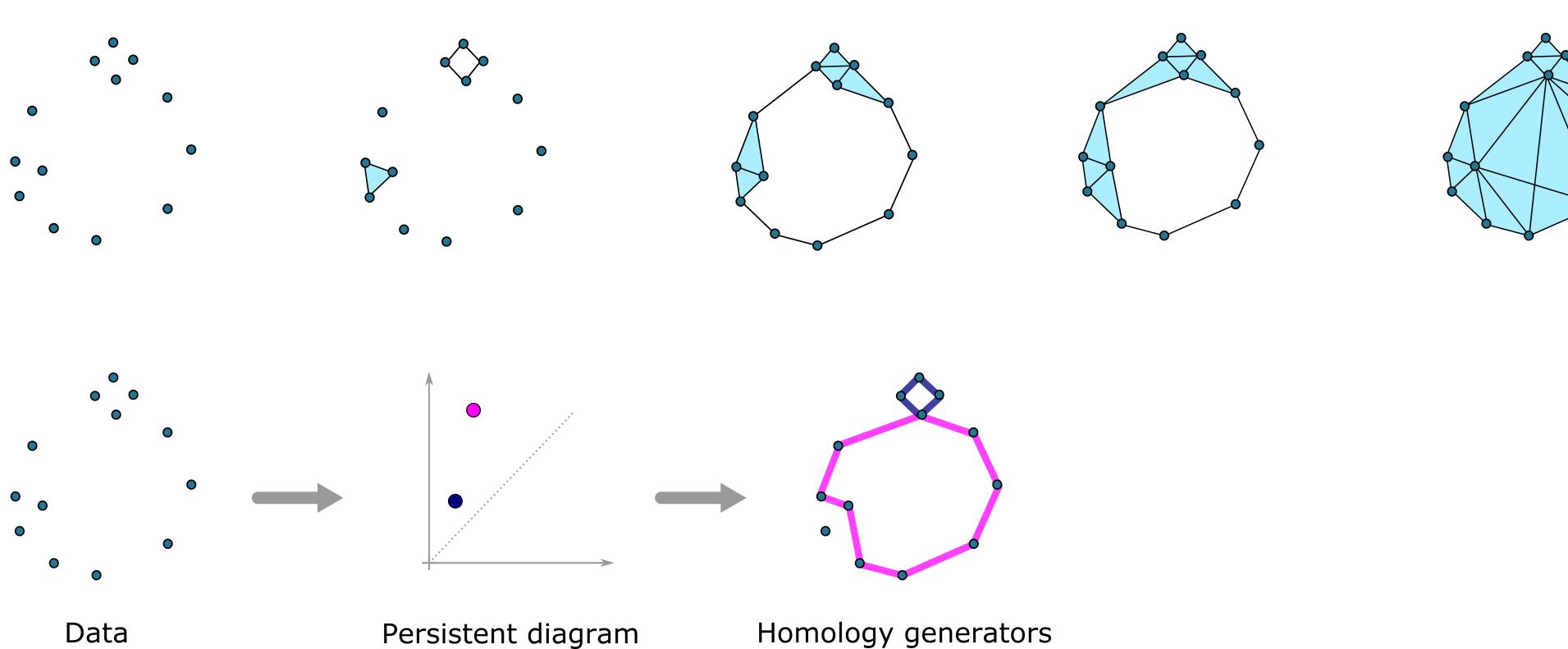


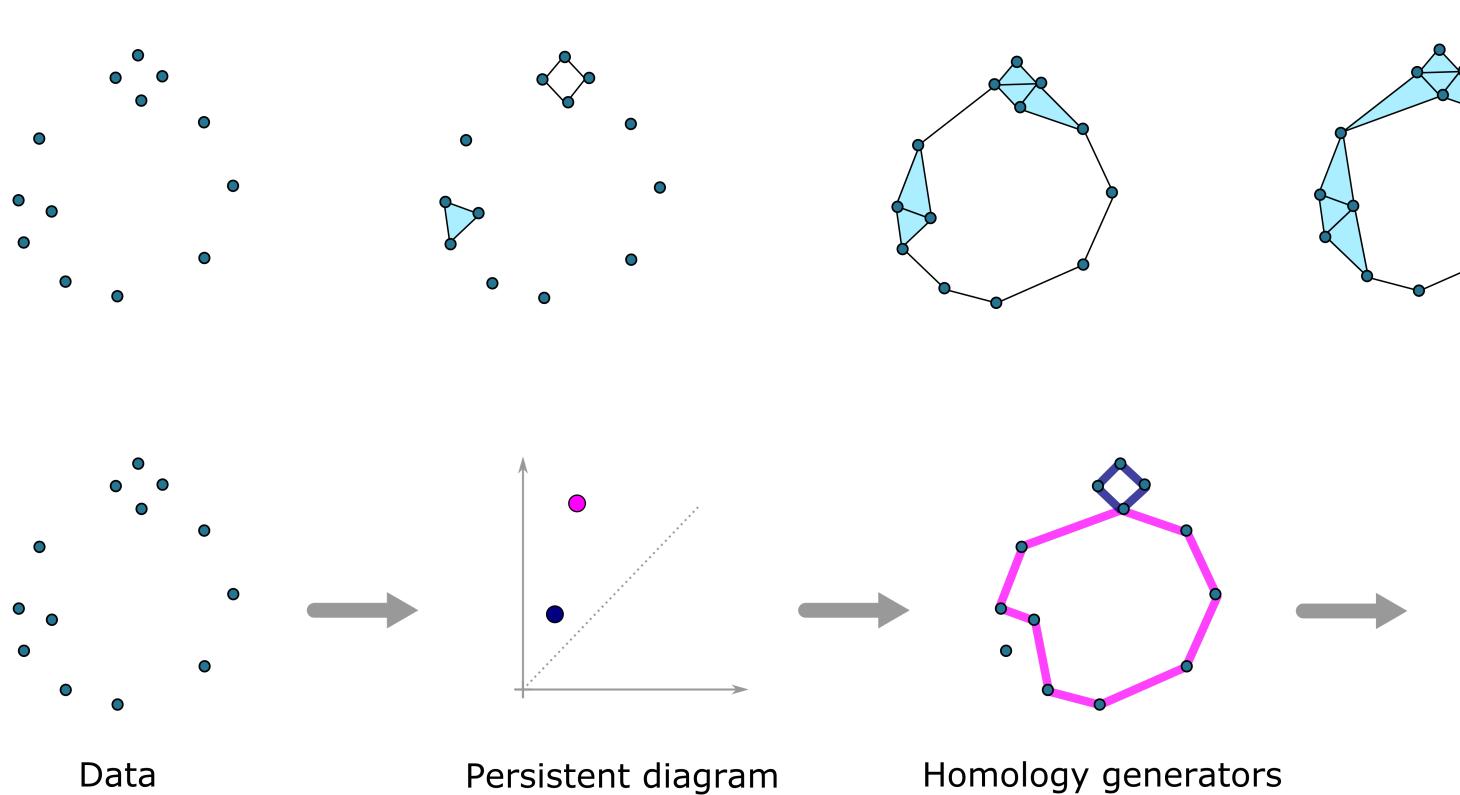
Interpretability: noisy homology classes



How to interpret complicated and diffused persistence diagrams? a) How to capture information from noisy homology classes? **b**)

Challenge 2





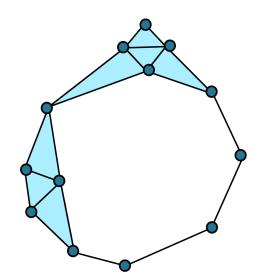
CD.Madsen

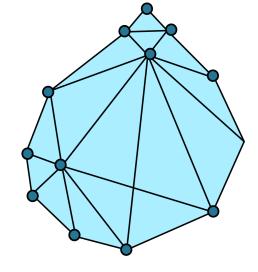
HR.Yoon

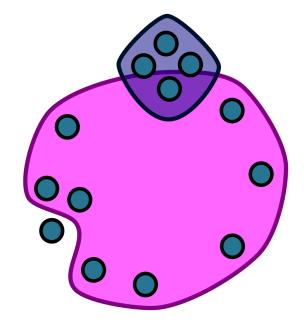
DO.Ajayi

MPH.Stumpf

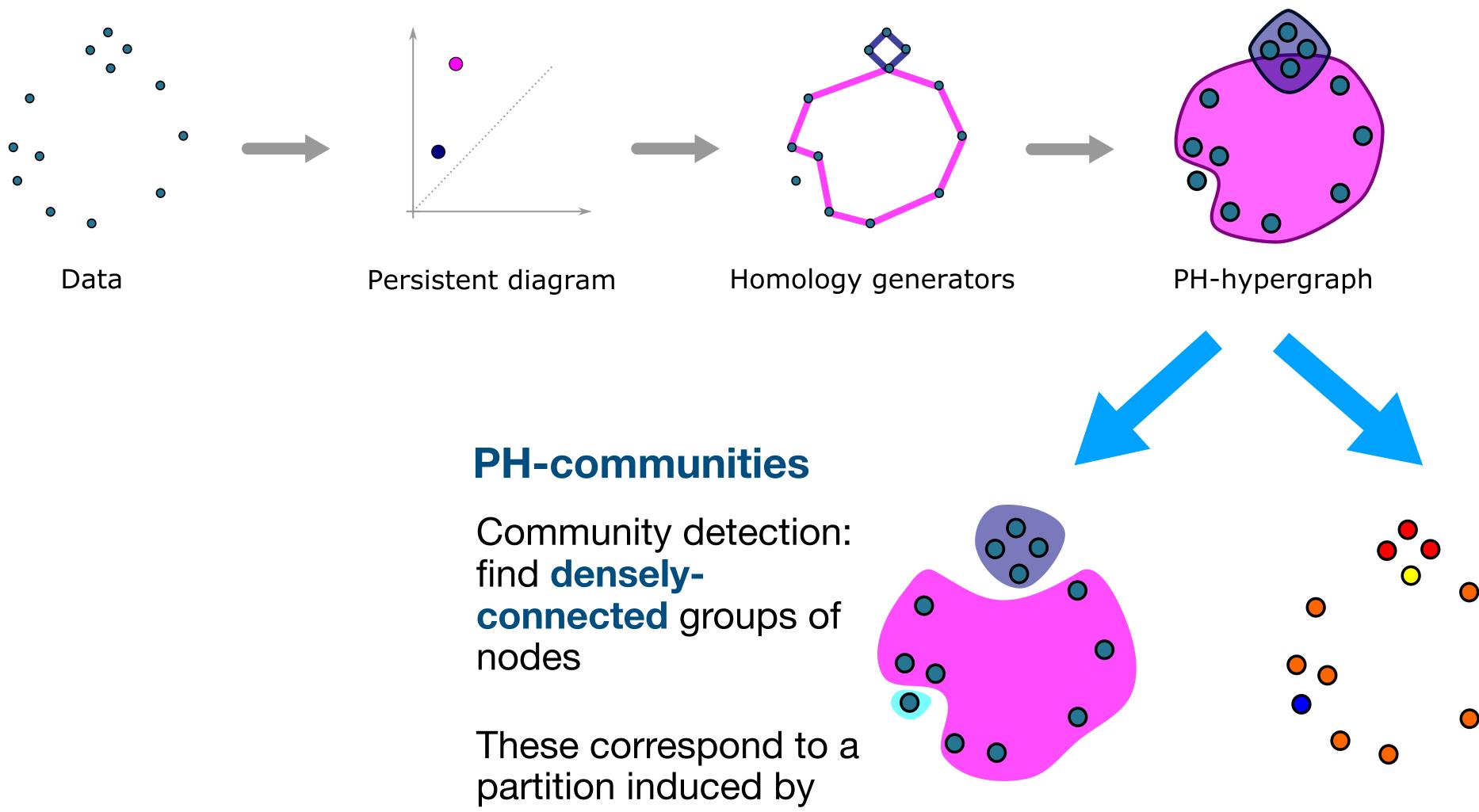
HA.Harrington







PH-hypergraph

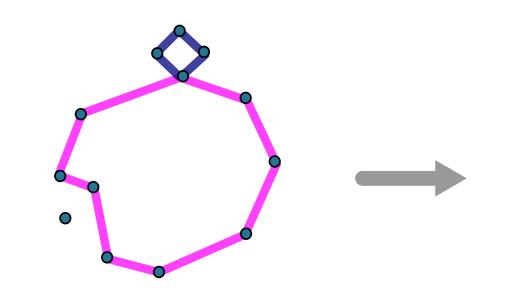


Node centrality

Rankings of nodes based on hyperedge membership and significance

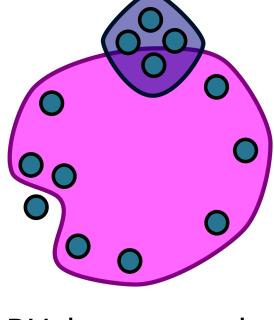
The importance of a node depends on the importance of its connections

PH-communities & centrality are robust to **noisy** data

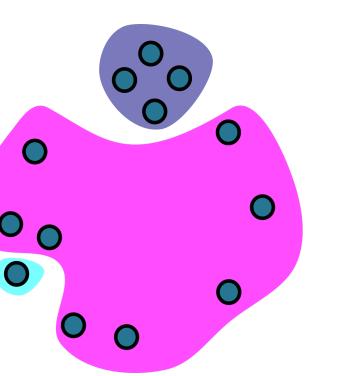


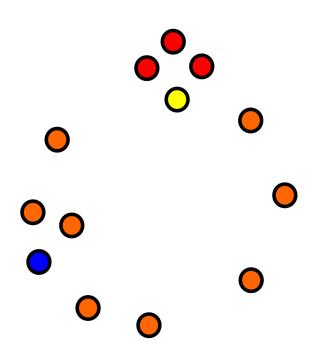
Homology generators

PH-communities & centrality are stable under different choices of homology generators

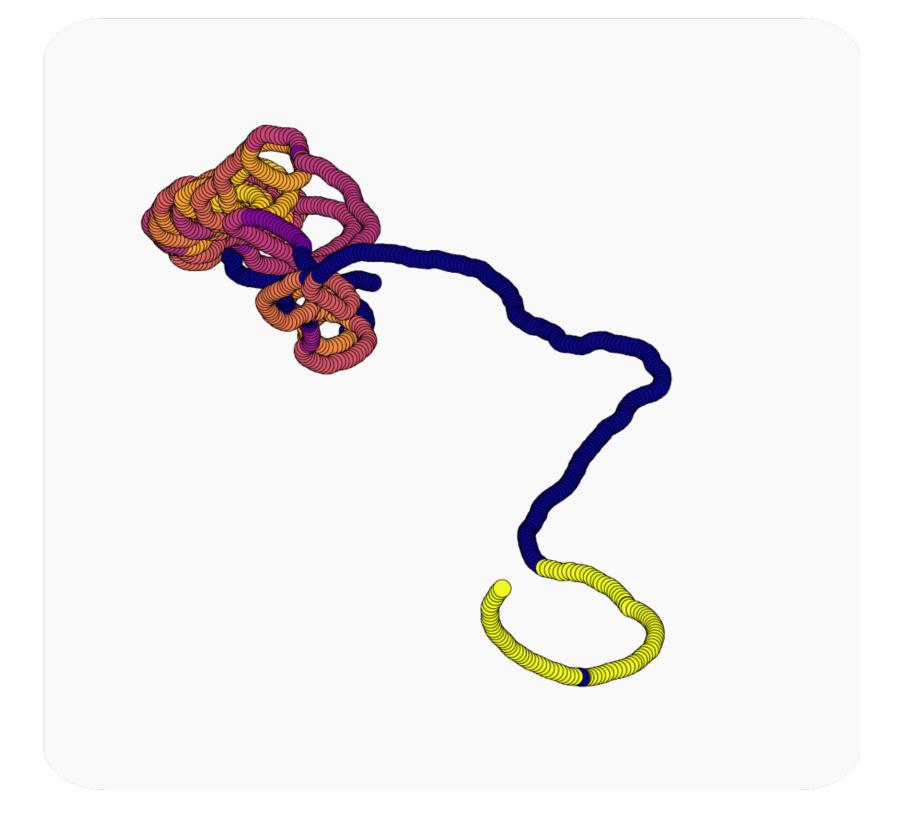


PH-hypergraph



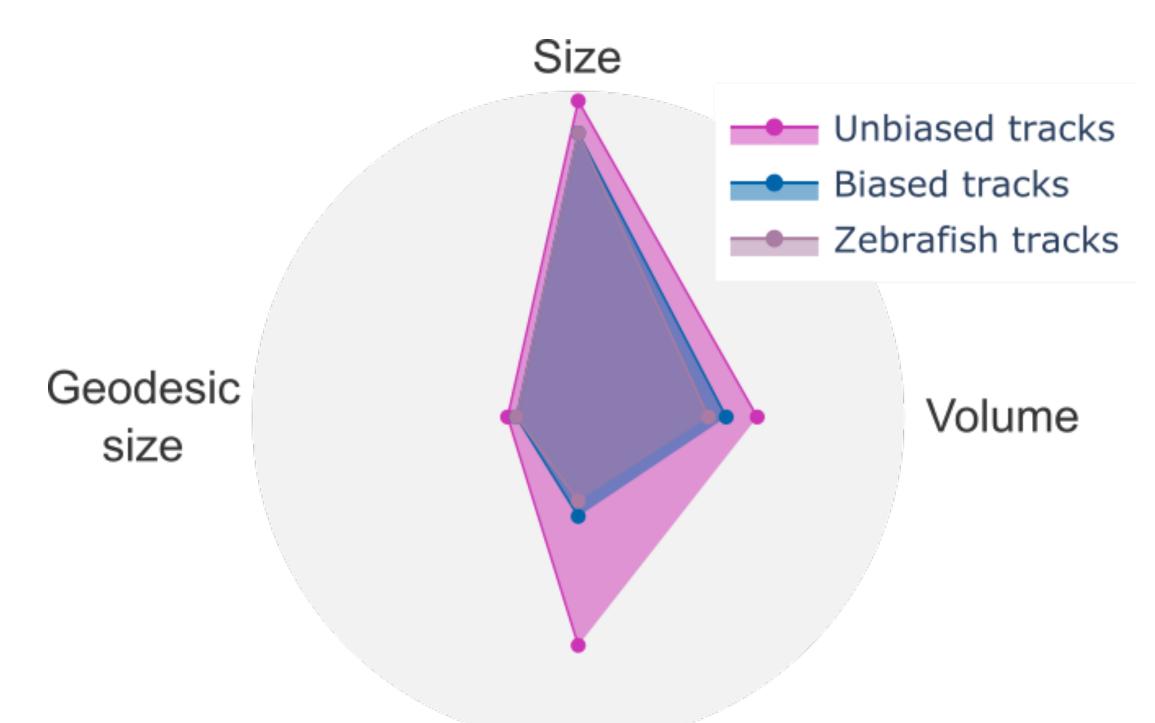


Problem 1: fragment animal trajectories into behavioural nodes



Node centrality distinguishes **different behaviours** in terms of **1**) intensity of **local** searches, 2) looping behaviour and 3) relocation

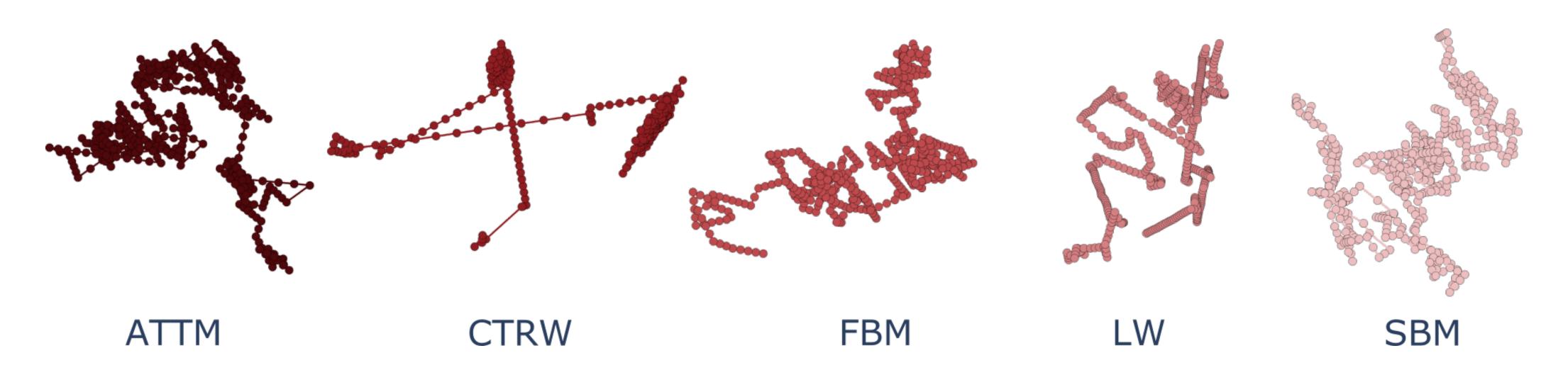
Problem 2: detect underlying random walk and quantify bias in movement



Geodesic Intersection

Communities analysis 1) identifies directional bias in neutrophils migration towards a wound (zebrafish) and 2) distinguishes anomalous diffusion trajectories

Anomalous diffusion trajectories

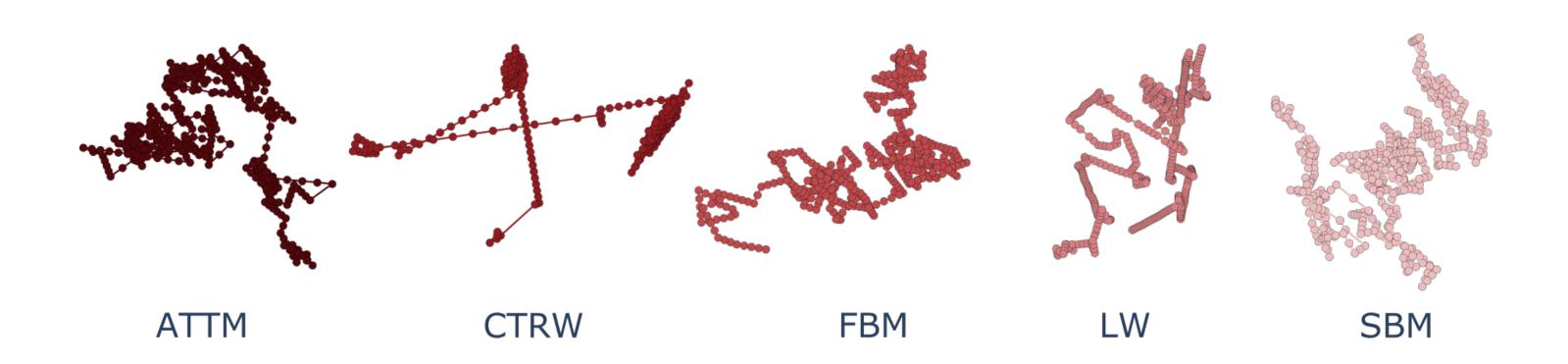


Challenge: distinguish different models from the trajectory (AnDi challenge^{1,2})

1) Munoz-Gil et al. "The anomalous diffusion challenge: single trajectory characterisation as a competition" In Emerging Topics in Artificial Intelligence 2020, SPIE, 2020. 2) Munoz-Gil et al. "Objective comparison of methods to decode anomalous diffusion." Nature communications 12.1

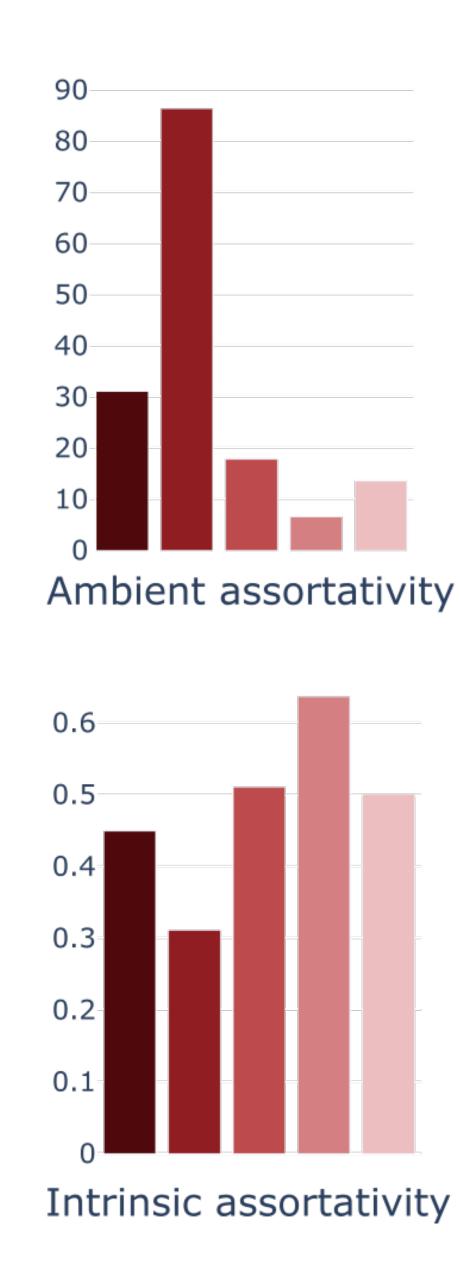
Anomalous diffusion: transport with MSD ~ t^{α} : ubiquitous in nature

Application: AnDi models



- 1. PH-community analysis detects model specific differences
- 2. Interpretation as **local structural features**
- 3. PH-communities and centrality fed to CNN predict underlying diffusion model with high accuracy (comparable to ranked participants in AnDi challenge^{1,2})

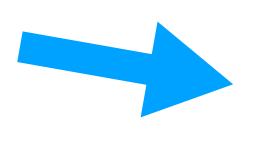
1) Munoz-Gil et al. "The anomalous diffusion challenge: single trajectory characterisation as a competition" In Emerging Topics in Artificial Intelligence 2020, SPIE, 2020. 2) Munoz-Gil et al. "Objective comparison of methods to decode anomalous diffusion." Nature communications 12.1



Topological Analysis of the Protein Universe

AlphaFold Protein Structure Database

Developed by DeepMind and EMBL-EBI

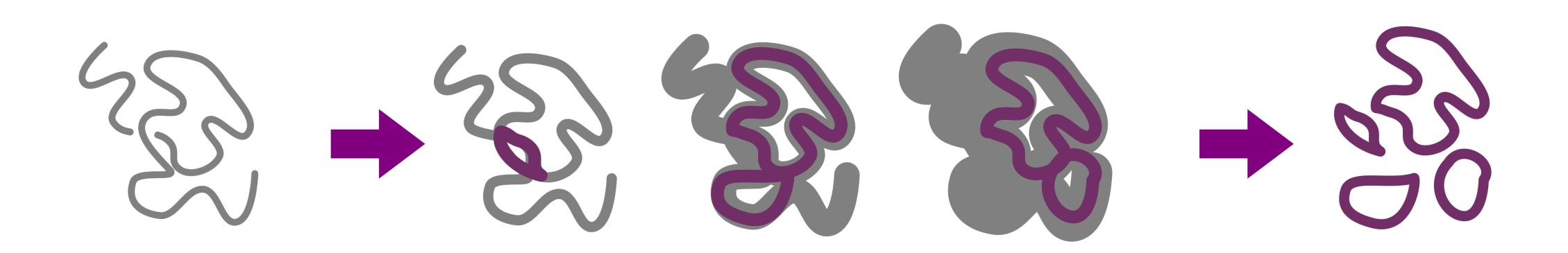


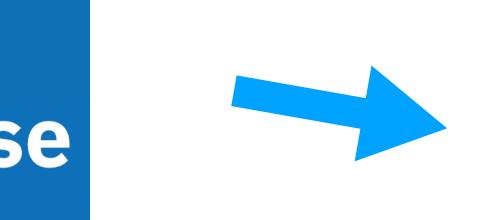
AlphaFold2: ~220 million predicted protein structures

Topological Analysis of the Protein Universe

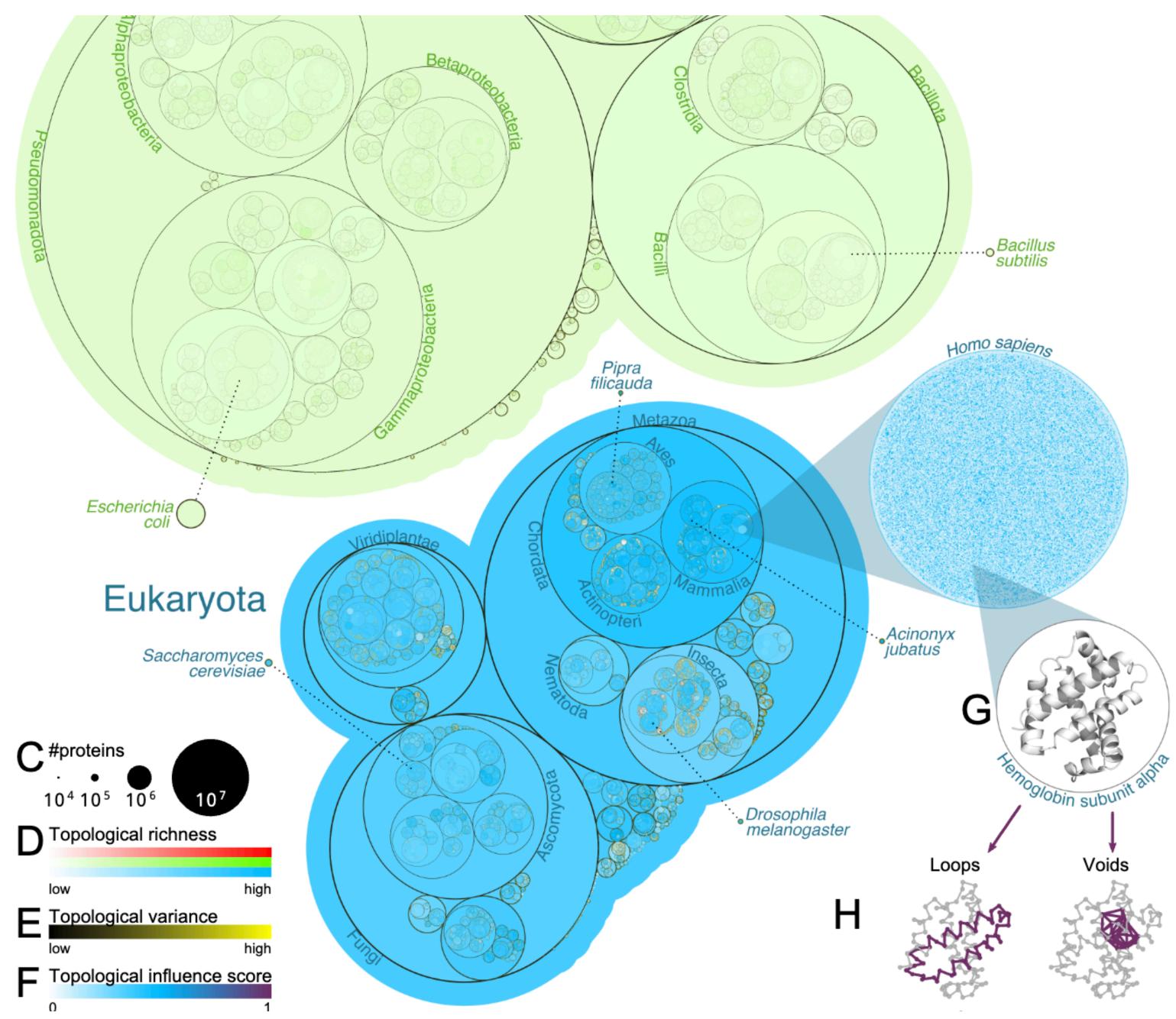
AlphaFold Protein Structure Database

Developed by DeepMind and EMBL-EBI





AlphaFold2: ~220 million predicted protein structures



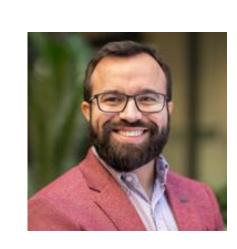
CD.Madsen

S.Zhang

L.Ham

AlphaFold2: ~220 million predicted protein structures

Analysed using persistent homology and PHhypergraphs

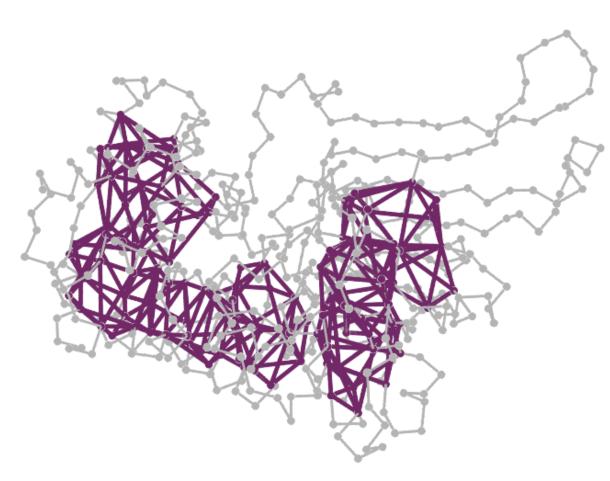


D.Pires

A.David

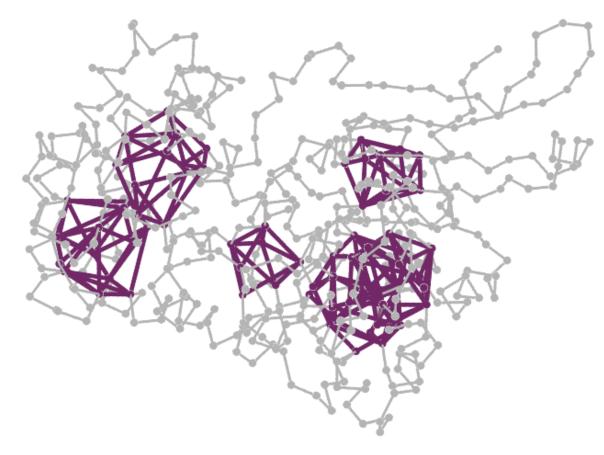
MPH.Stumpf

Thermophilic and mesophilic proteins are topologically different

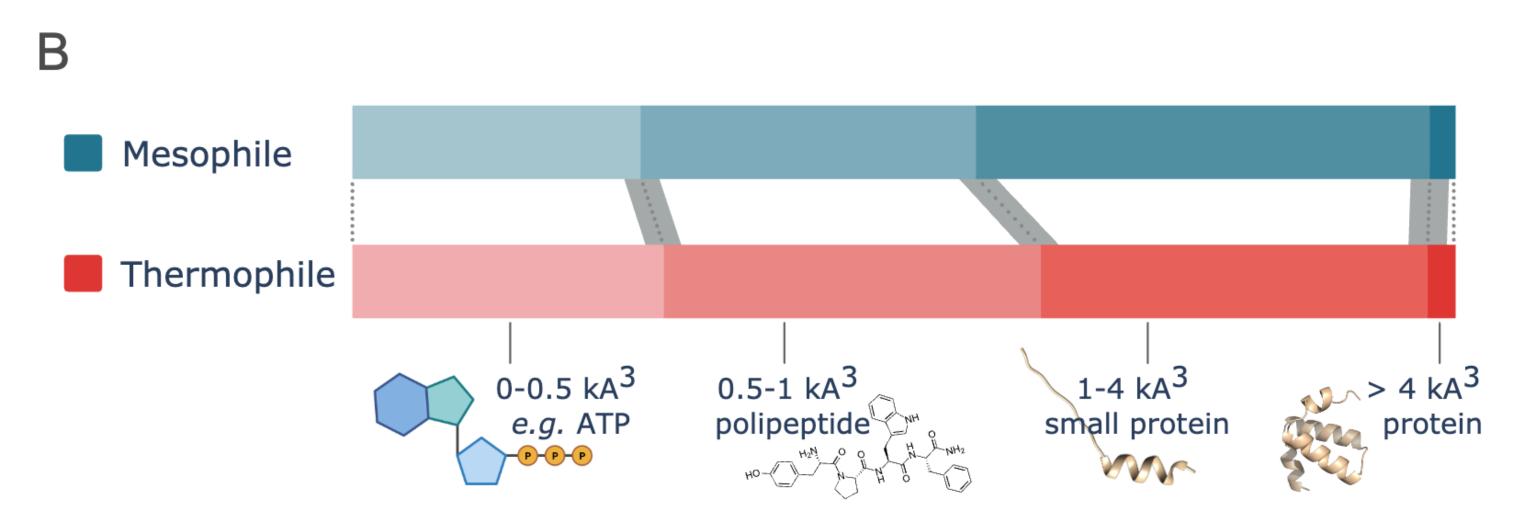


Α

E. coli (mesophile)

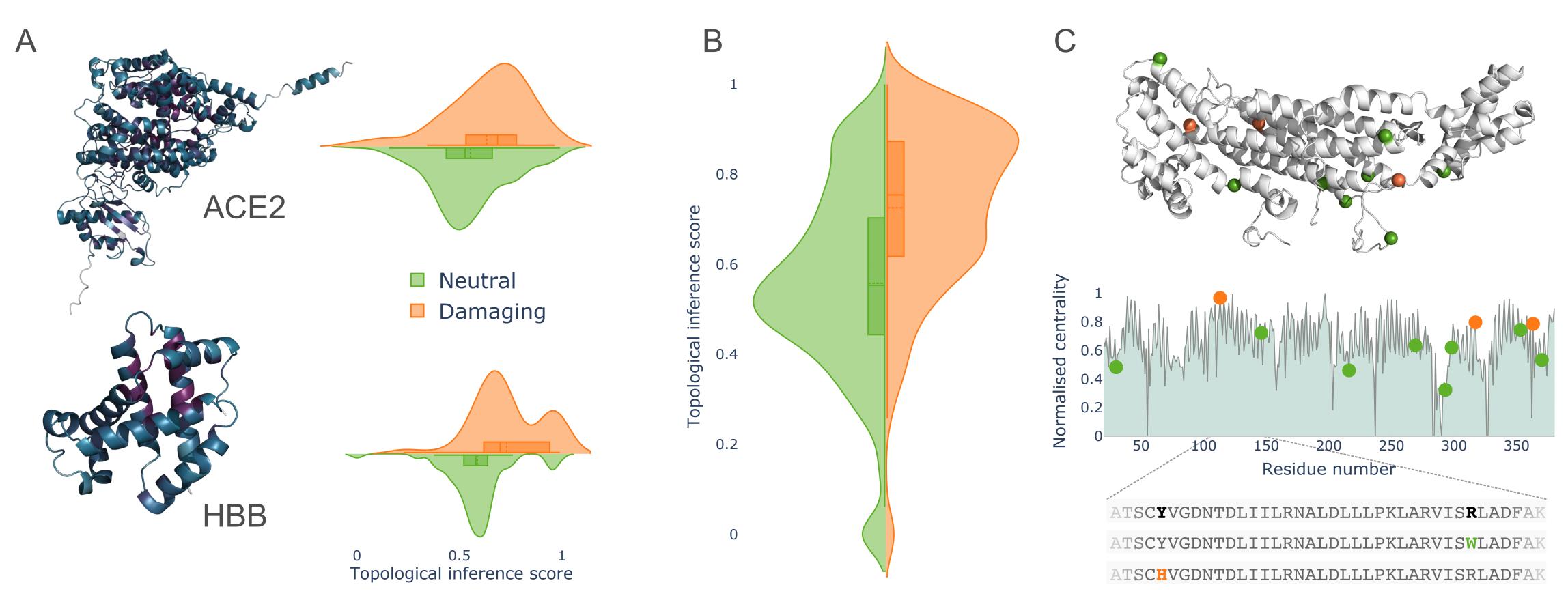


M. thermoacetica (thermophile)

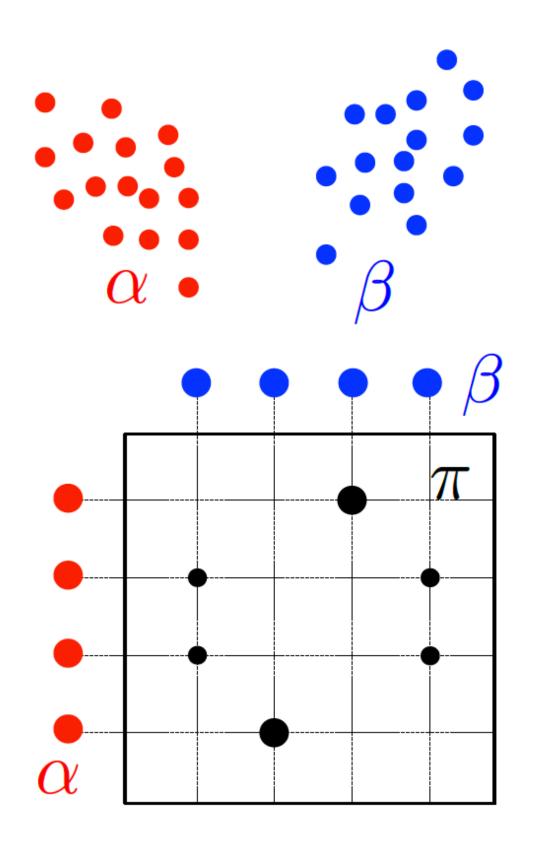


The volume of 2-dimensional persistent classes is smaller in thermophile enzymes

Topological features are enriched in damaging variants



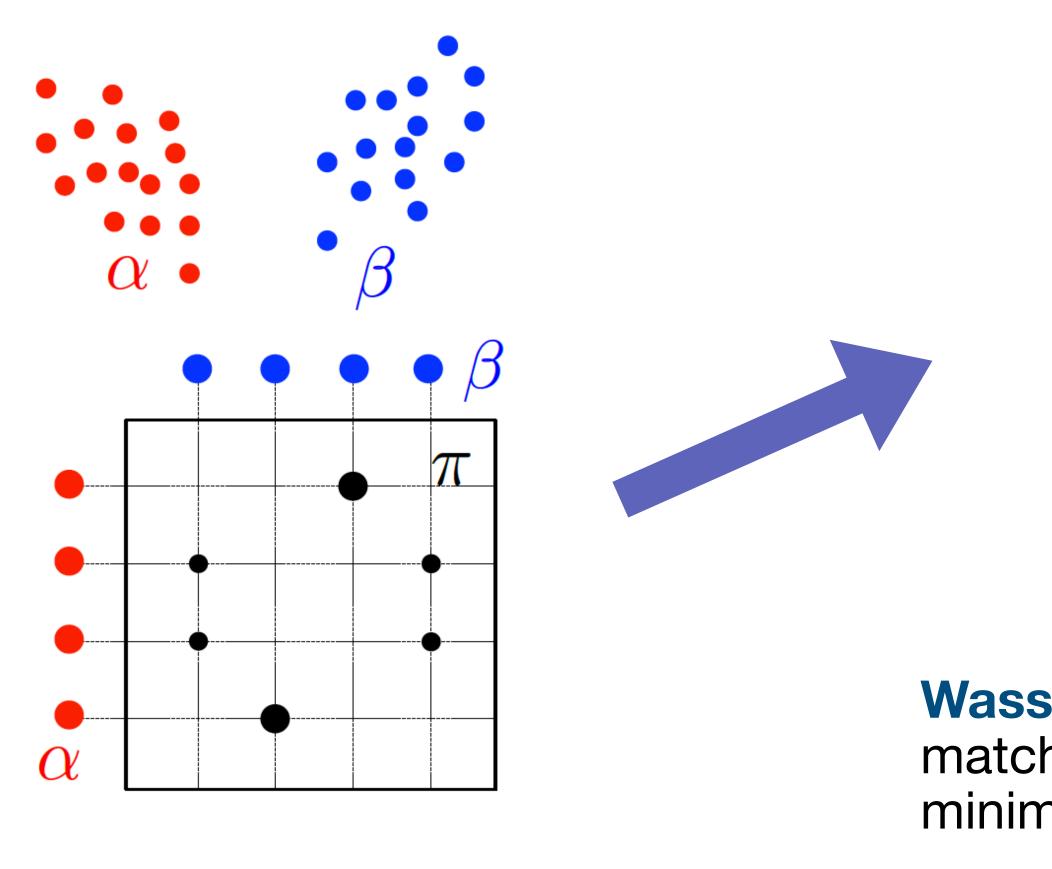
Centrality is higher in residues accommodating (structurally) damaging mutations



distance)

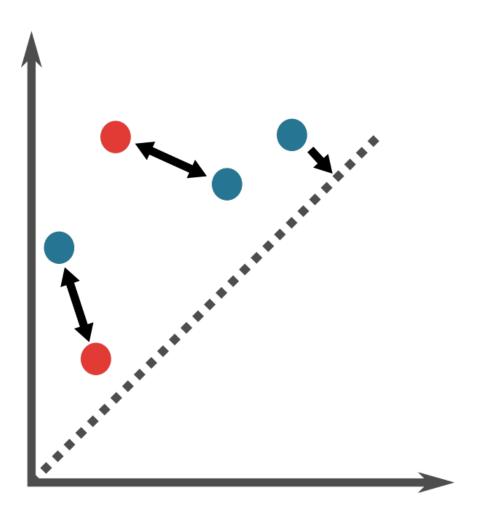
Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyré, Gabriel, and Marco Cuturi. Center for Research in Economics and Statistics Working Papers 2017-86 (2017).

Wasserstein distances/matchings: find the matching between two distributions (point clouds) that minimises "cost" (earth mover's



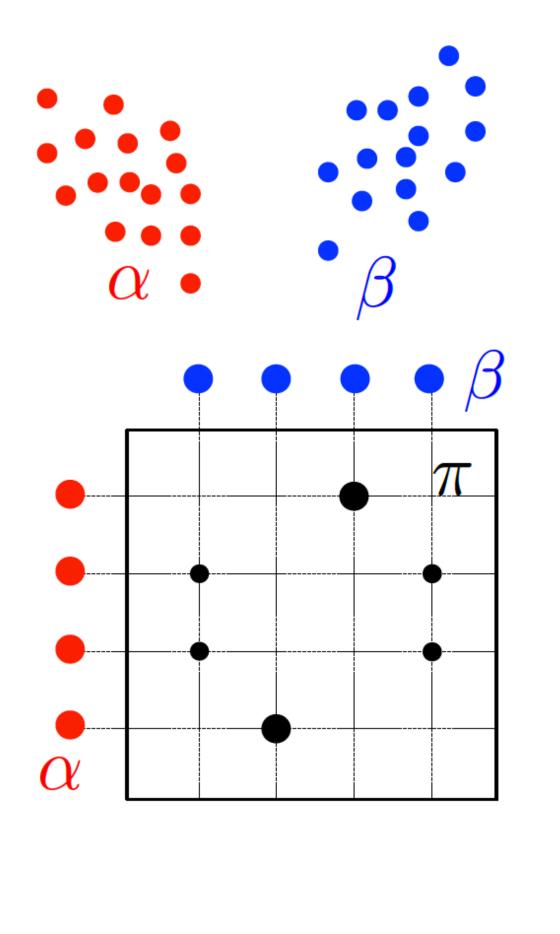
Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyré, Gabriel, and Marco Cuturi. Center for Research in Economics and Statistics Working Papers 2017-86 (2017).

Optimal transport



Wasserstein distances for persistent diagrams: matching between homology classes that minimises total distance.

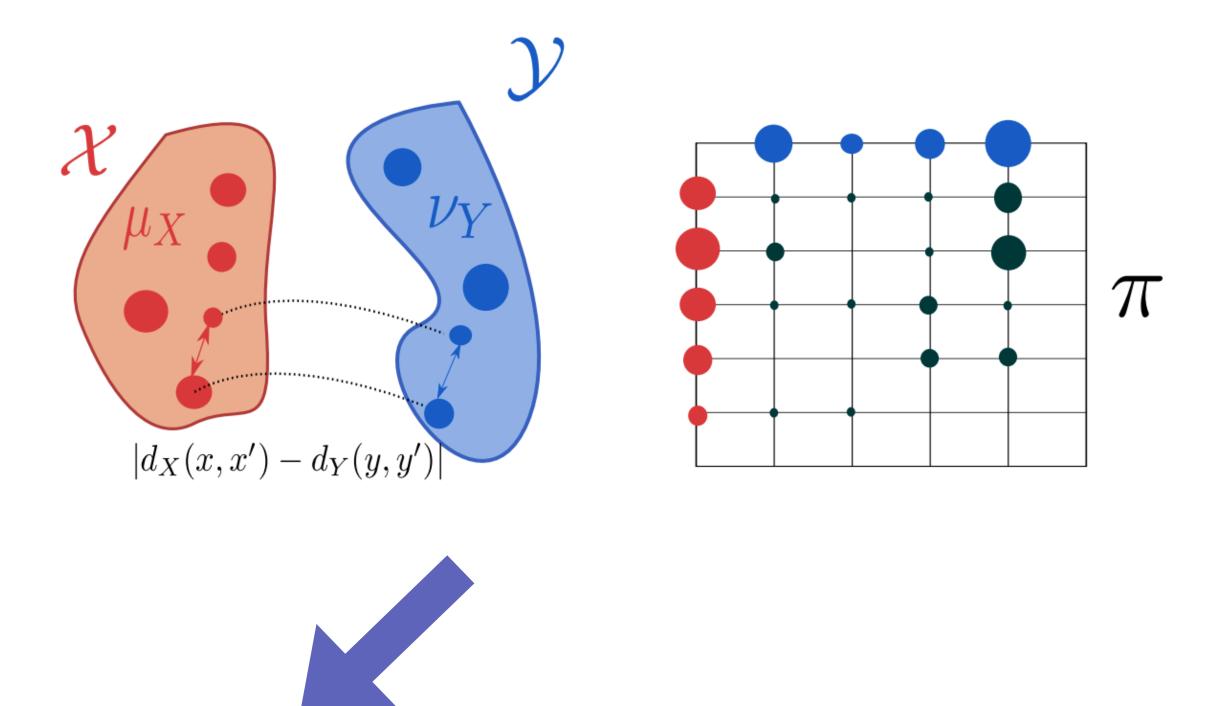
Points are allowed to be matched to the diagonal

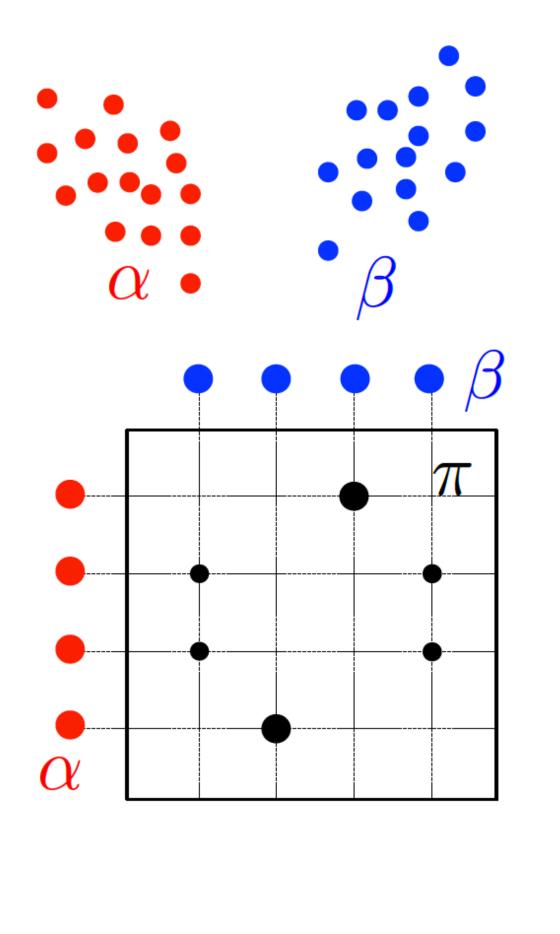


Gromov-Wasserstein: find matching that optimally preserves pairwise distances

Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyré, Gabriel, and Marco Cuturi. Center for Research in Economics and Statistics Working Papers 2017-86 (2017).

Optimal transport

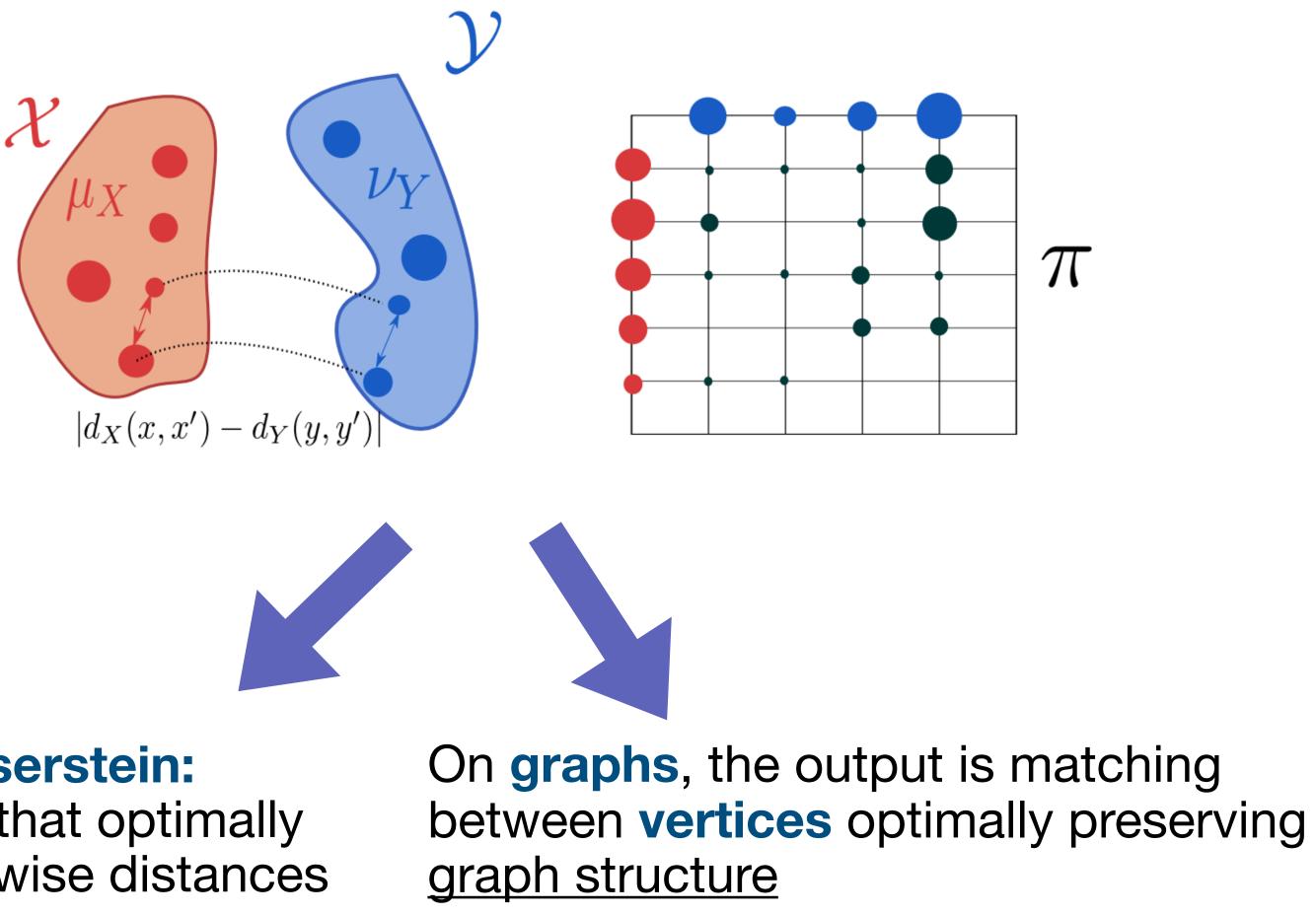


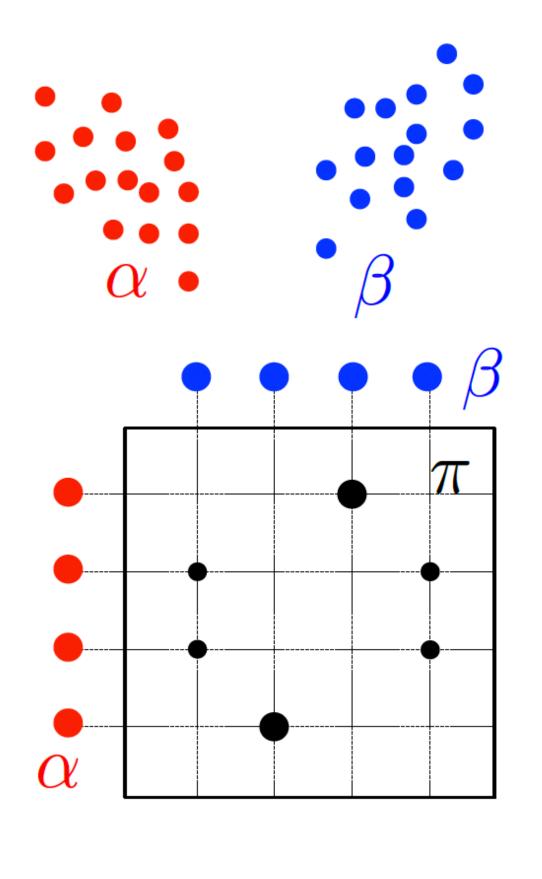


Gromov-Wasserstein: find matching that optimally preserves pairwise distances

Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyré, Gabriel, and Marco Cuturi. Center for Research in Economics and Statistics Working Papers 2017-86 (2017).

Optimal transport

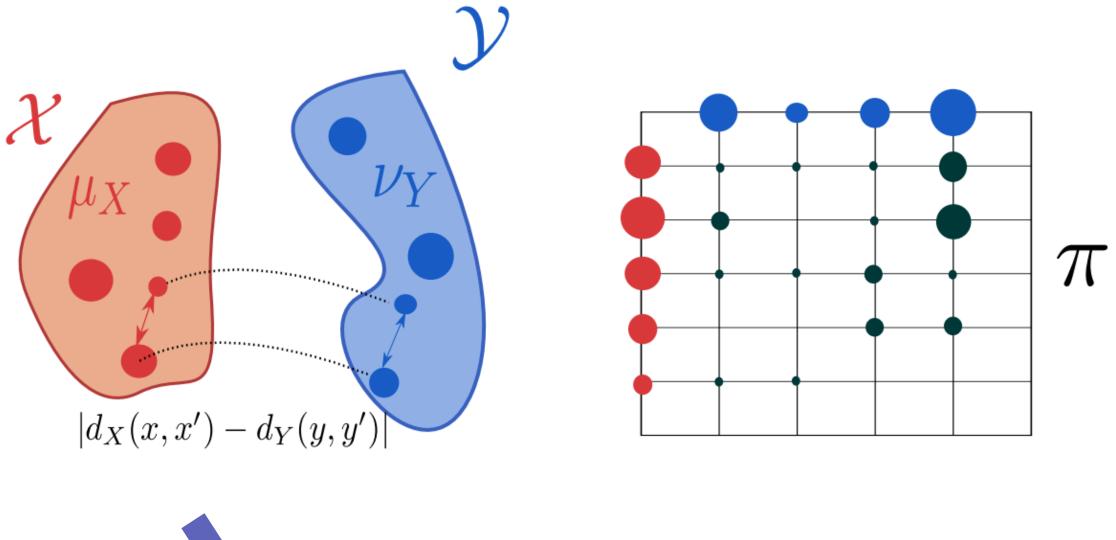




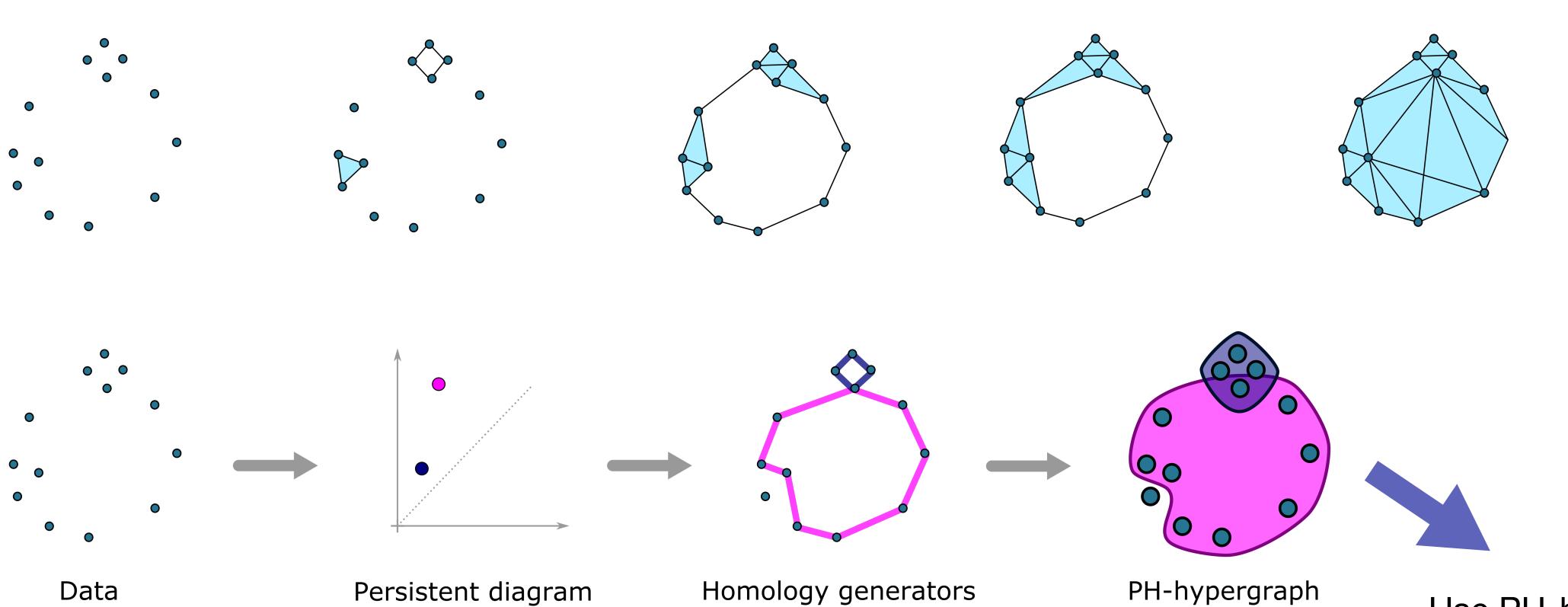
Recently generalised to hypergraphs: hyperCOT outputs coupled matchings of vertices and edges

Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyré, Gabriel, and Marco Cuturi. Center for Research in Economics and Statistics Working Papers 2017-86 (2017).

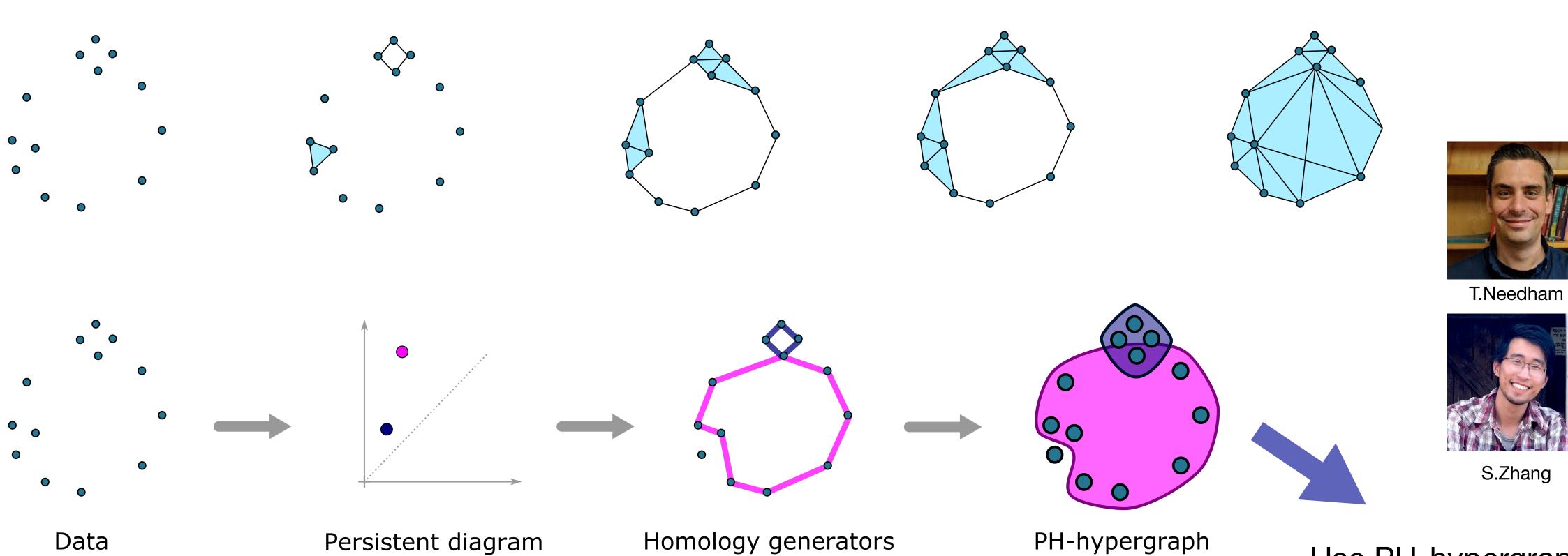
Optimal transport



Chowdhury, Samir, et al. "Hypergraph co-optimal transport: Metric and categorical properties." *arXiv preprint arXiv:2112.03904* (2021).

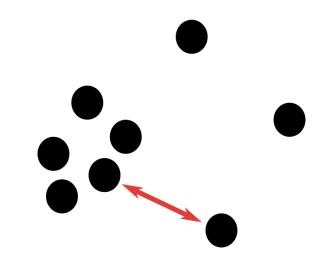


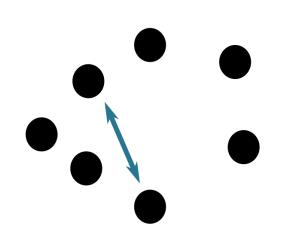
Use PH-hypergraph for **Topological Optimal Transport** theory



Use PH-hypergraph for **Topological Optimal Transport** theory

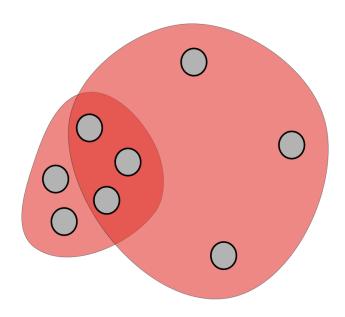
Topological Optimal Transport (tPOT)

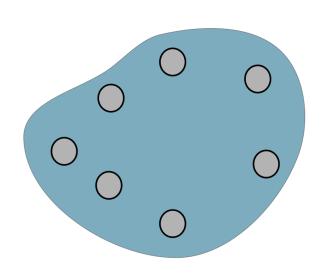




Topological Optimal Transport (tPOT)

PH-hypergraphs

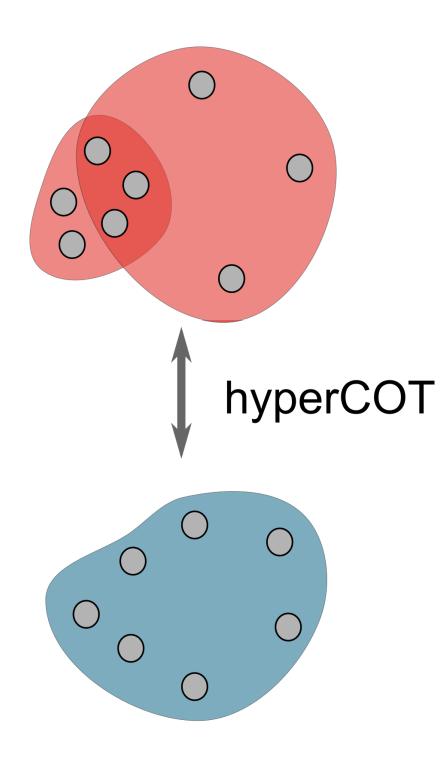




Ŧ

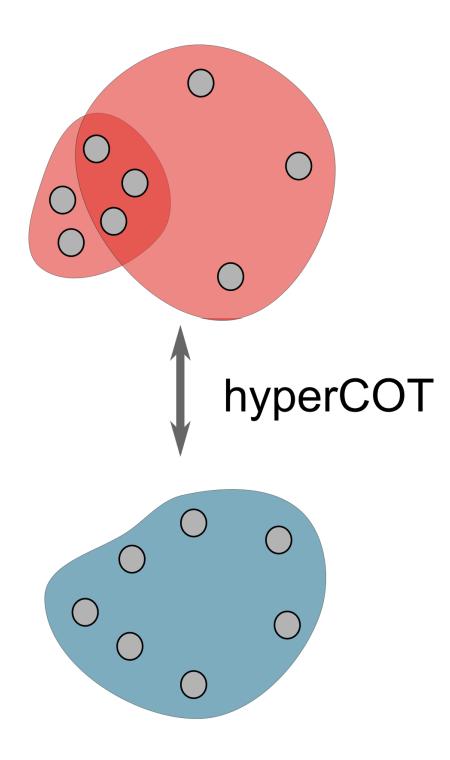
Topological Optimal Transport (tPOT)

PH-hypergraphs



Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

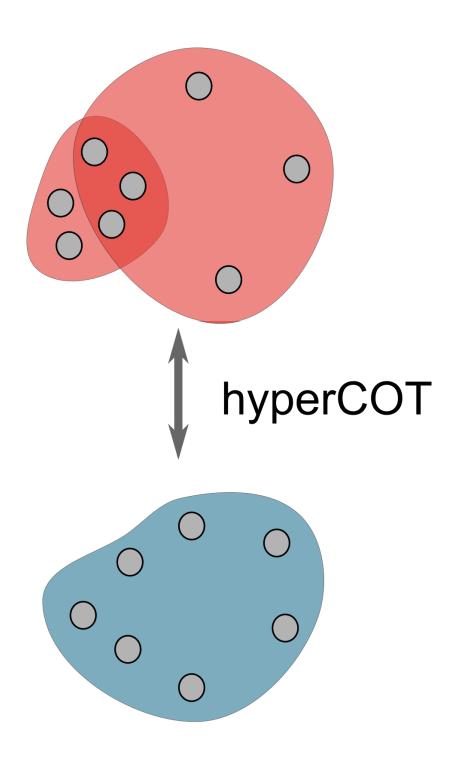
PH-hypergraphs



Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Problem 1: how to accurately *match* edges (= features)?

PH-hypergraphs

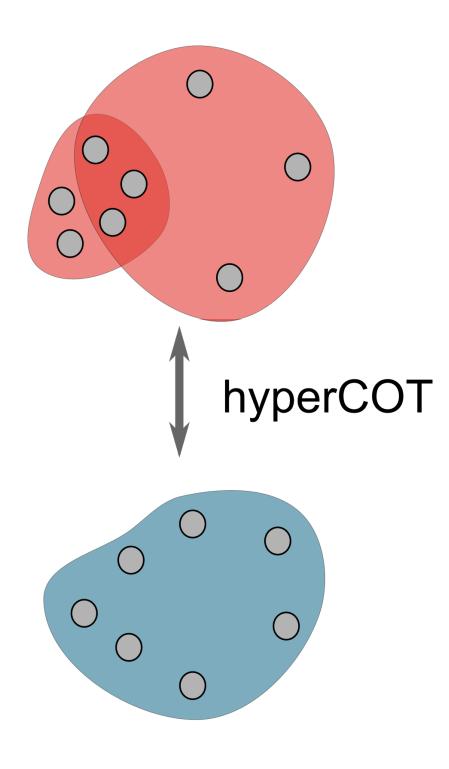


Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Problem 1: how to accurately *match* edges (= features)?

Note: weighting by persistence does not work!!

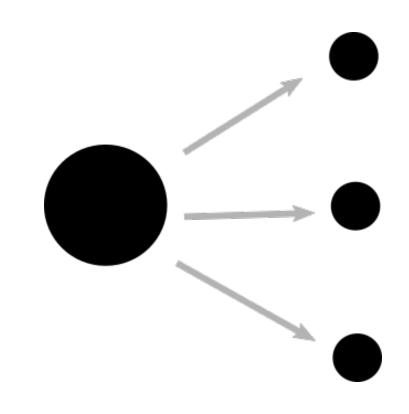
PH-hypergraphs



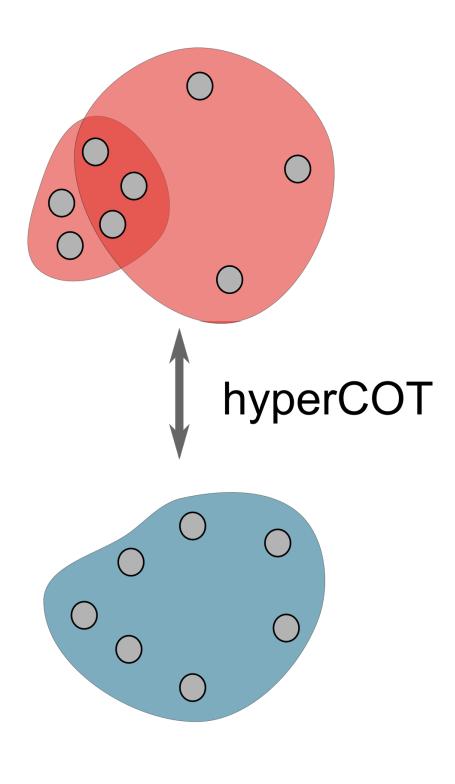
Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Problem 1: how to accurately *match* edges (= features)?

Note: weighting by persistence does not work!!



PH-hypergraphs



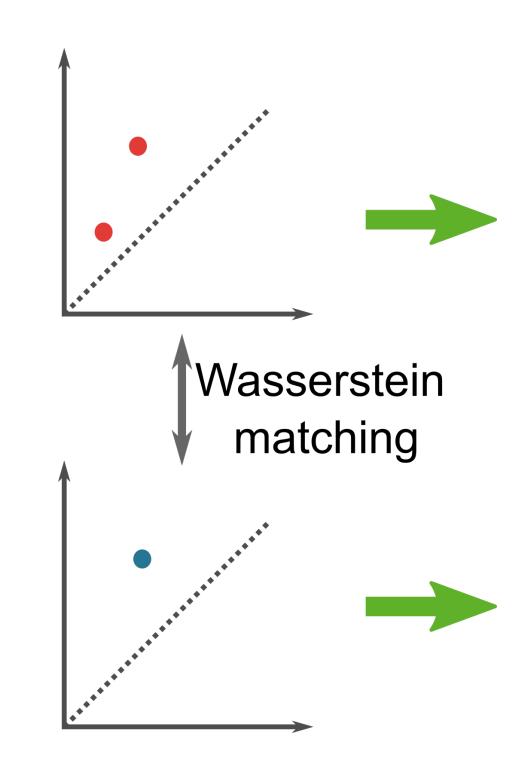
Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Problem 1: how to accurately *match* edges (= features)?

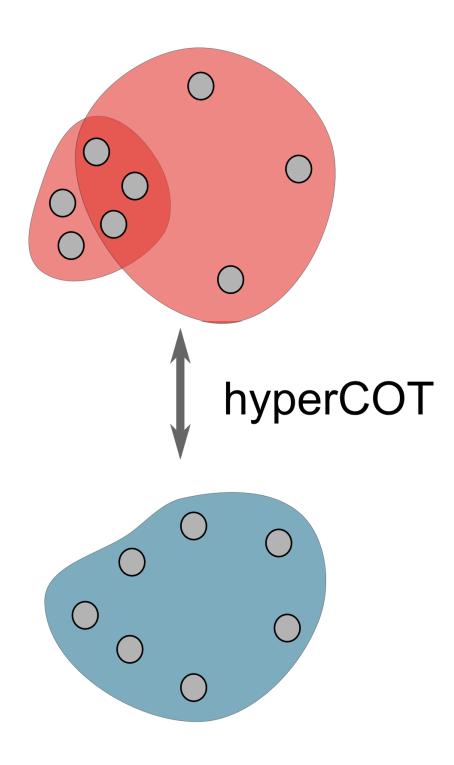
Note: weighting by persistence does not work!!

Problem 2: what about points not involved in any homology cycle?

Persistent diagrams

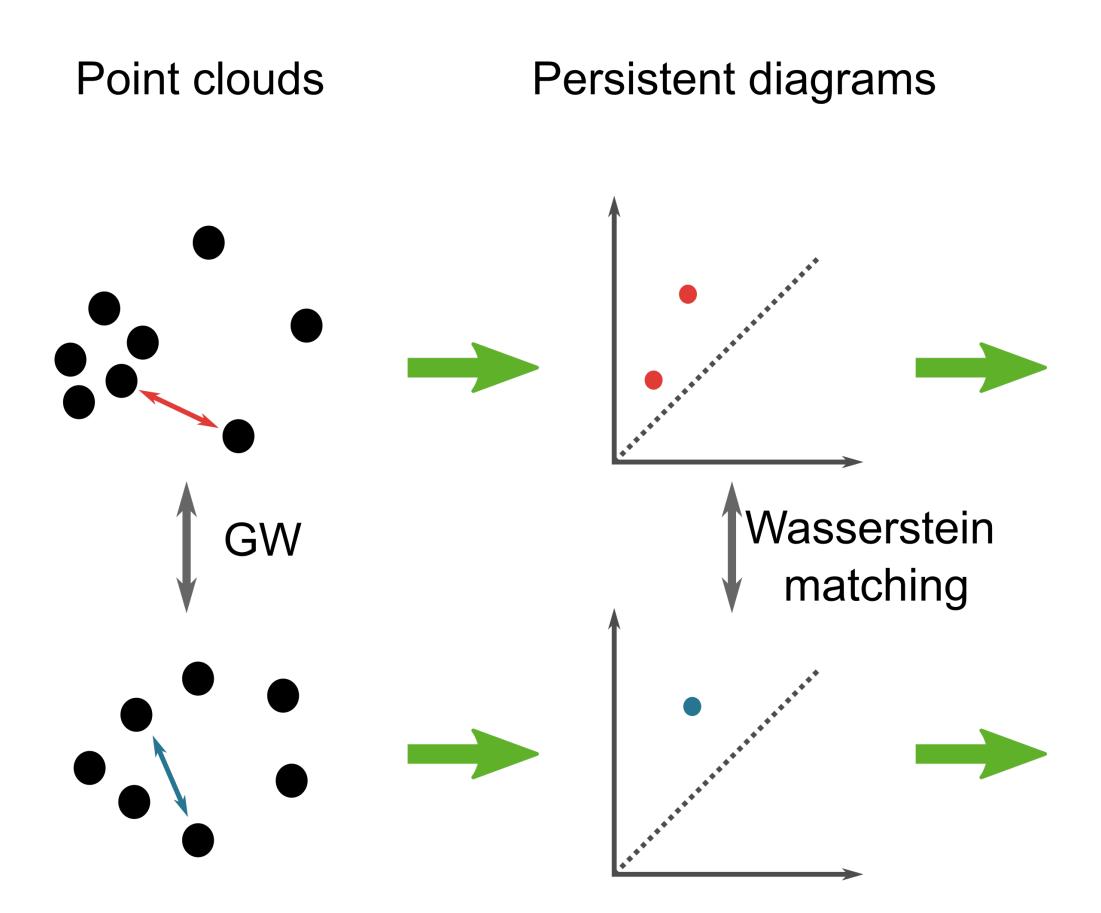


PH-hypergraphs

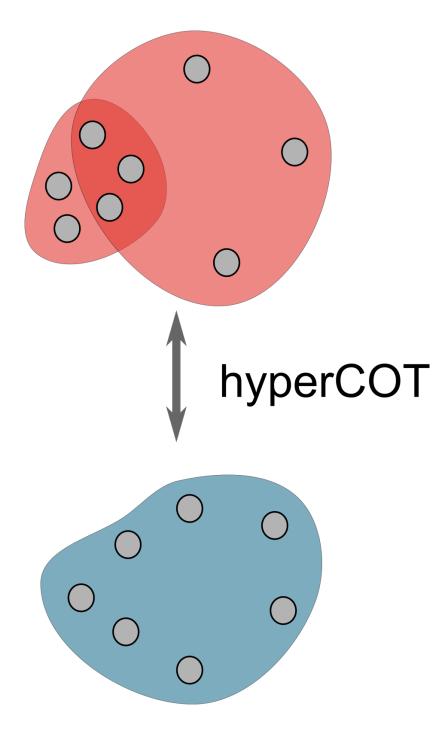


Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Solution 1: couple with Wasserstein matching on PDs!!

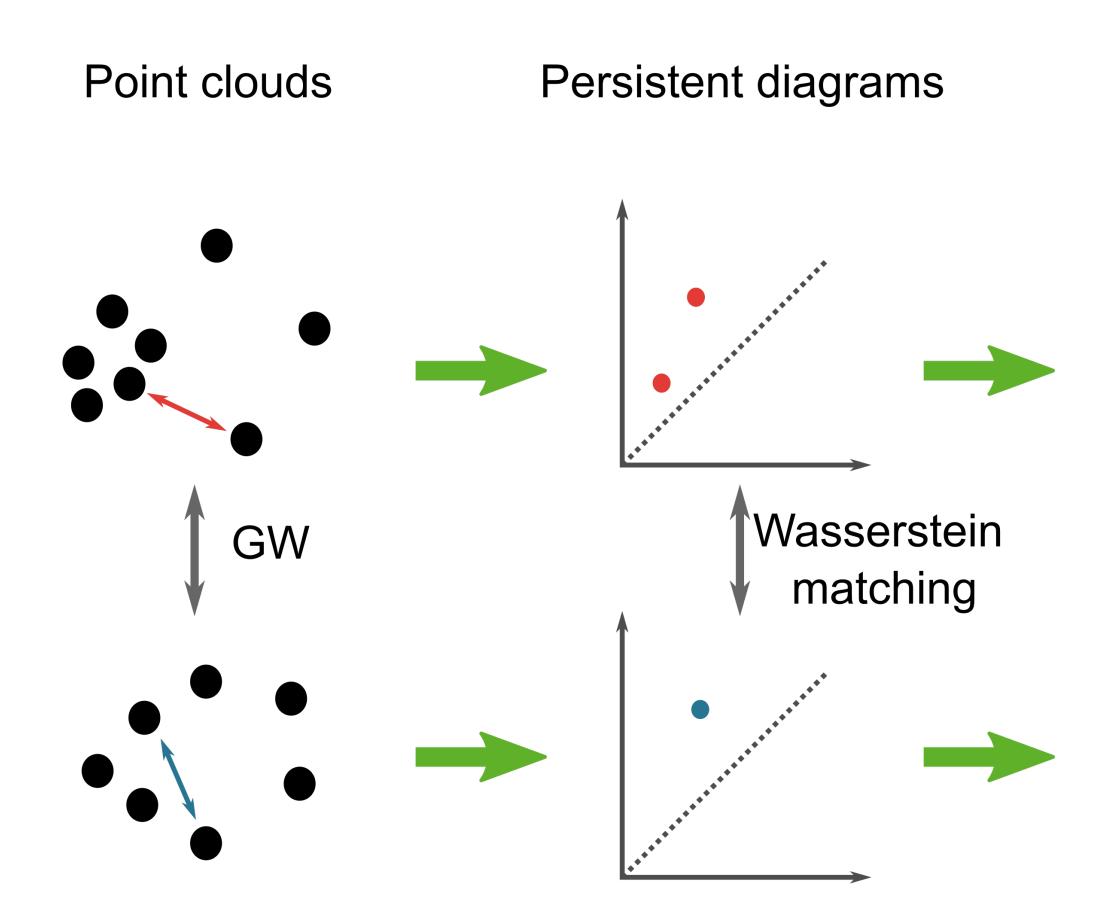


PH-hypergraphs



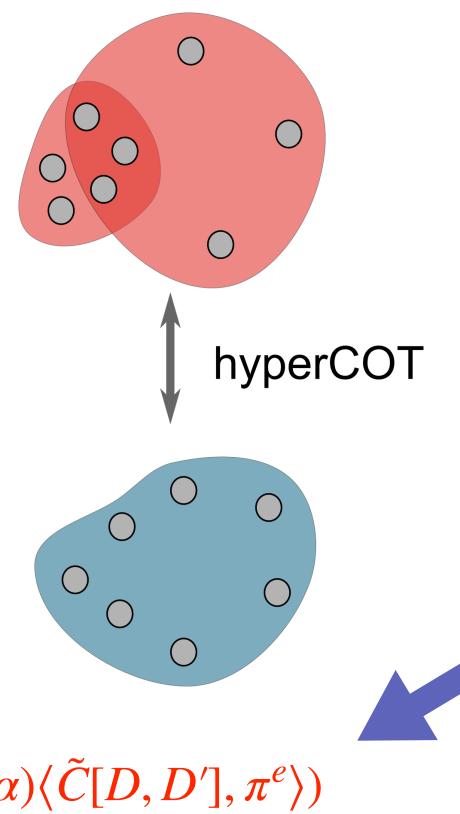
Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Solution 1: couple with Wasserstein matching on PDs!!



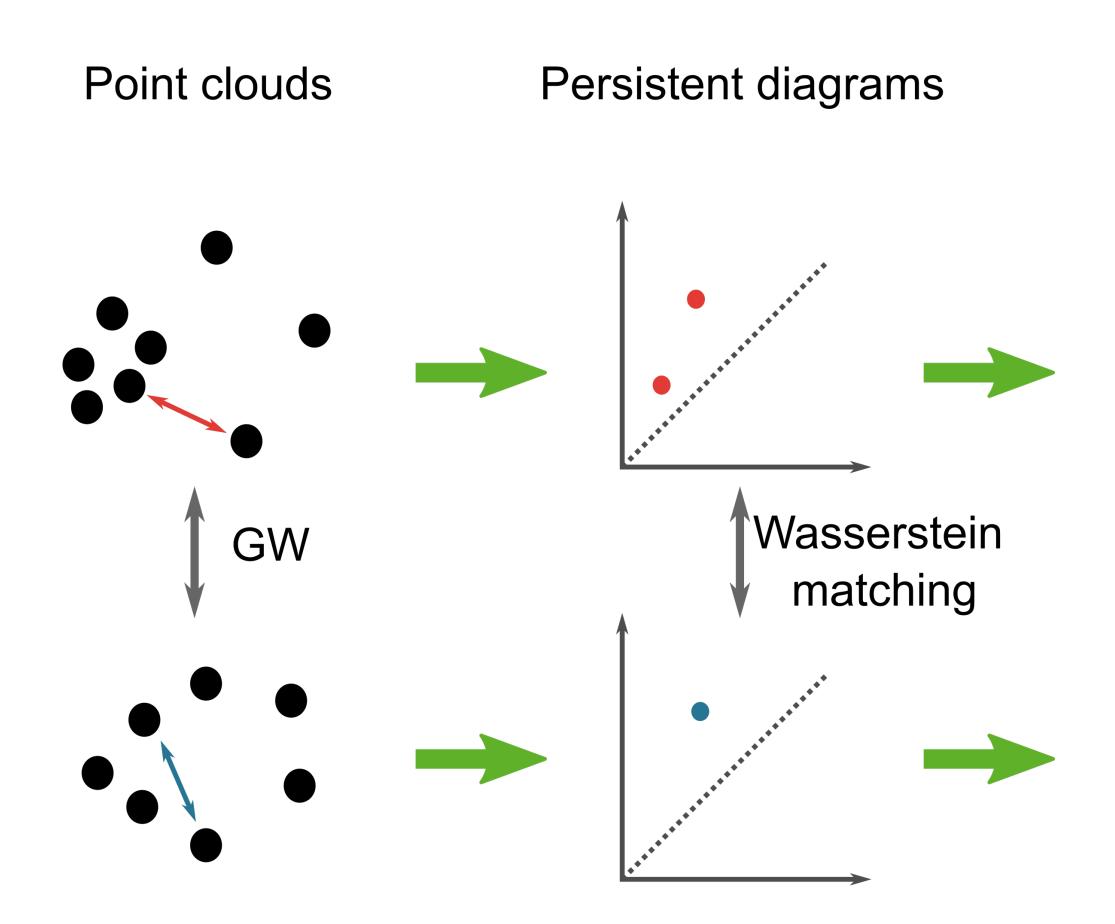
 $\min \lambda \langle \tilde{L}(X, X'), \pi^{\nu} \otimes \pi^{e} \rangle + (\alpha \langle L(C, C'), \pi^{\nu} \otimes \pi^{\nu} \rangle + (1 - \alpha) \langle \tilde{C}[D, D'], \pi^{e} \rangle)$ π^{v},π^{e}

PH-hypergraphs



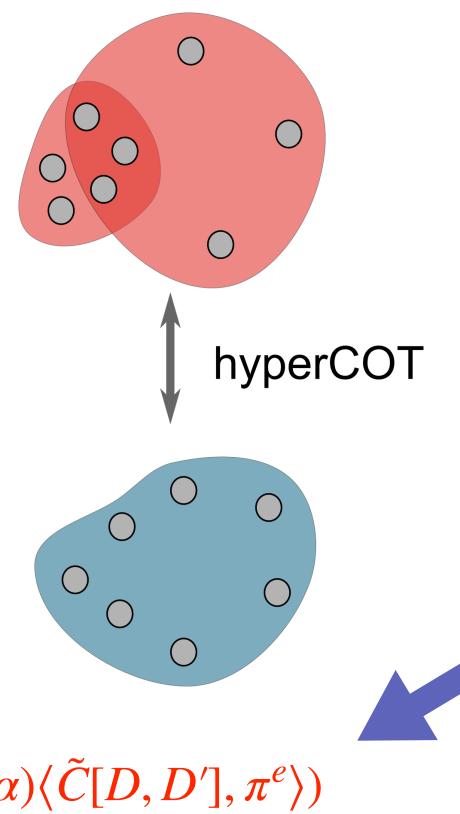
Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Solution 1: couple with Wasserstein matching on PDs!!



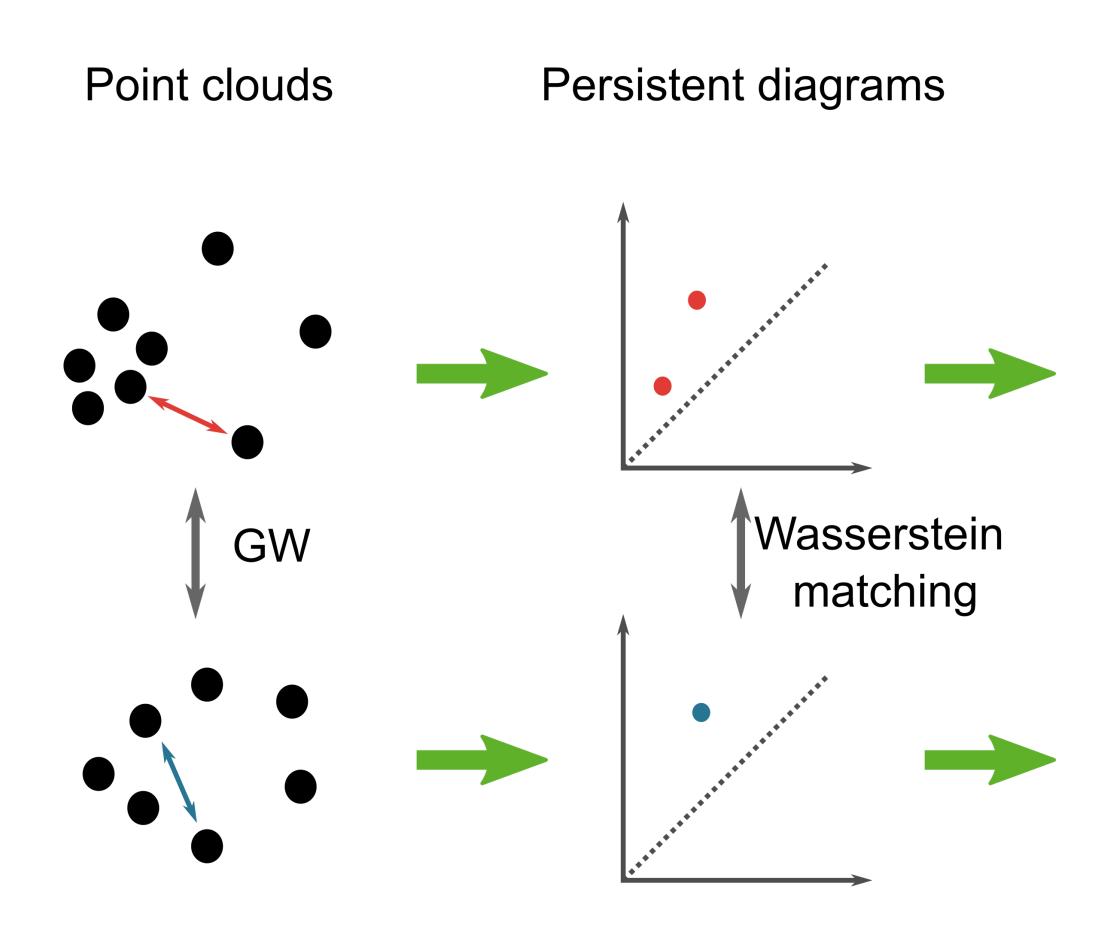
 $\min \lambda \langle \tilde{L}(X, X'), \pi^{\nu} \otimes \pi^{e} \rangle + (\alpha \langle L(C, C'), \pi^{\nu} \otimes \pi^{\nu} \rangle + (1 - \alpha) \langle \tilde{C}[D, D'], \pi^{e} \rangle)$ π^{ν},π^{e} hyperCOT on PH-hypergraphs

PH-hypergraphs



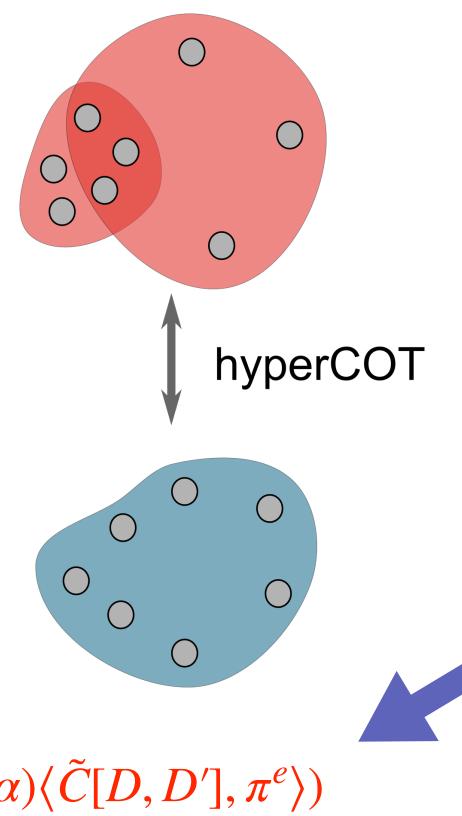
Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Solution 1: couple with Wasserstein matching on PDs!!



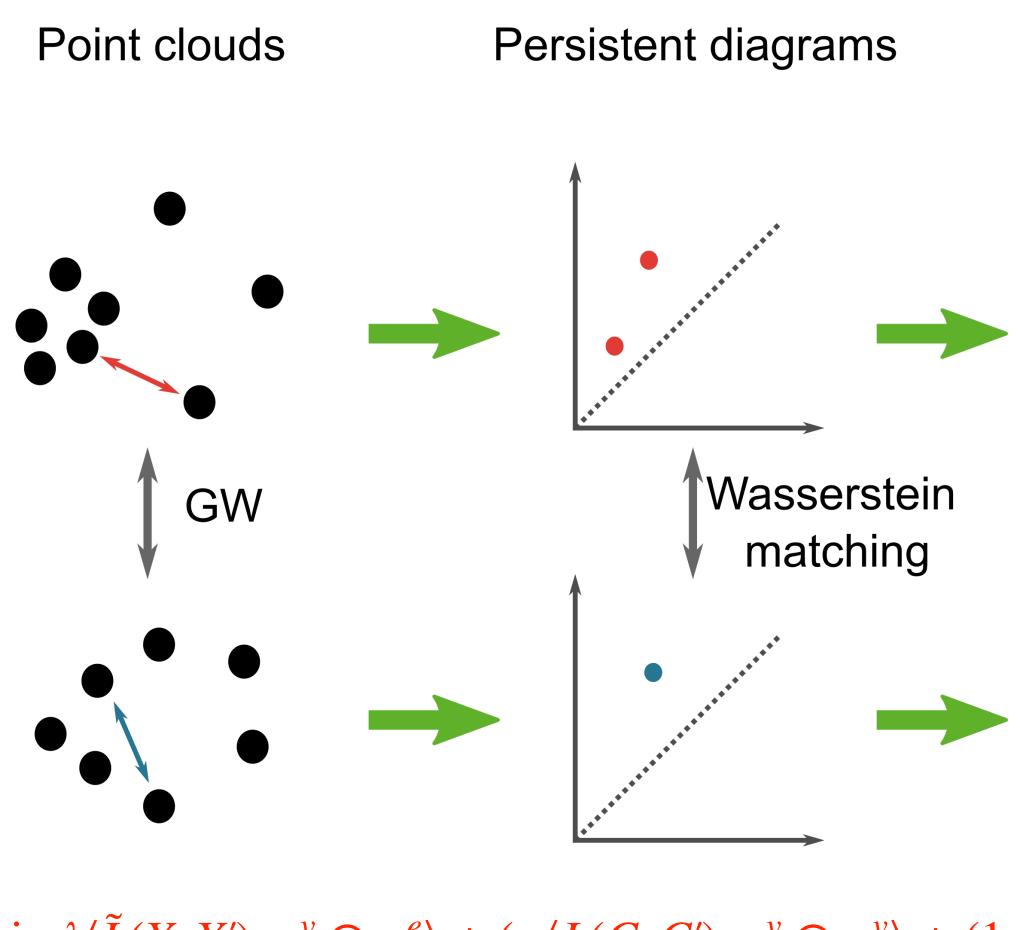
 $\min \lambda \langle \tilde{L}(X, X'), \pi^{\nu} \otimes \pi^{e} \rangle + (\alpha \langle L(C, C'), \pi^{\nu} \otimes \pi^{\nu} \rangle + (1 - \alpha) \langle \tilde{C}[D, D'], \pi^{e} \rangle)$ π^{ν},π^{e} hyperCOT on PH-hypergraphs GW on point clouds

PH-hypergraphs



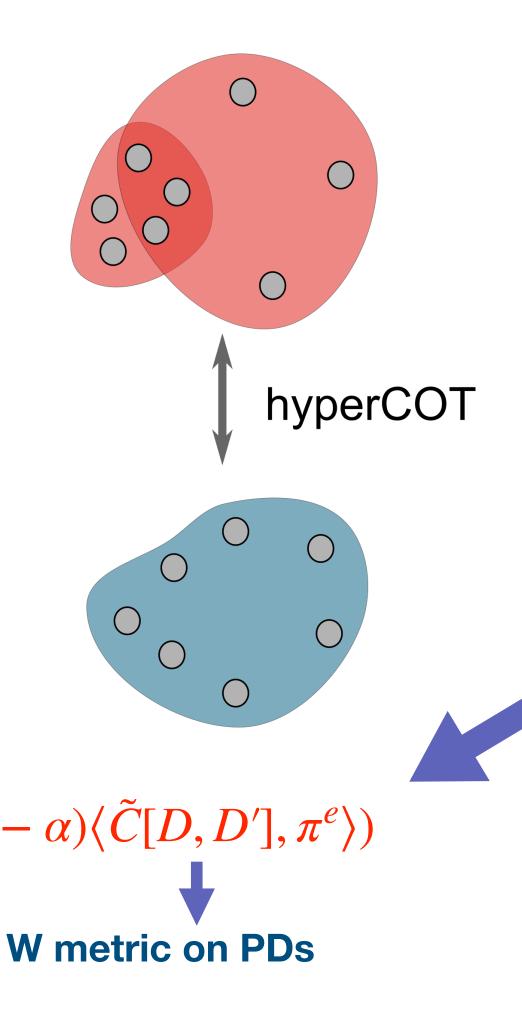
Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Solution 1: couple with Wasserstein matching on PDs!!



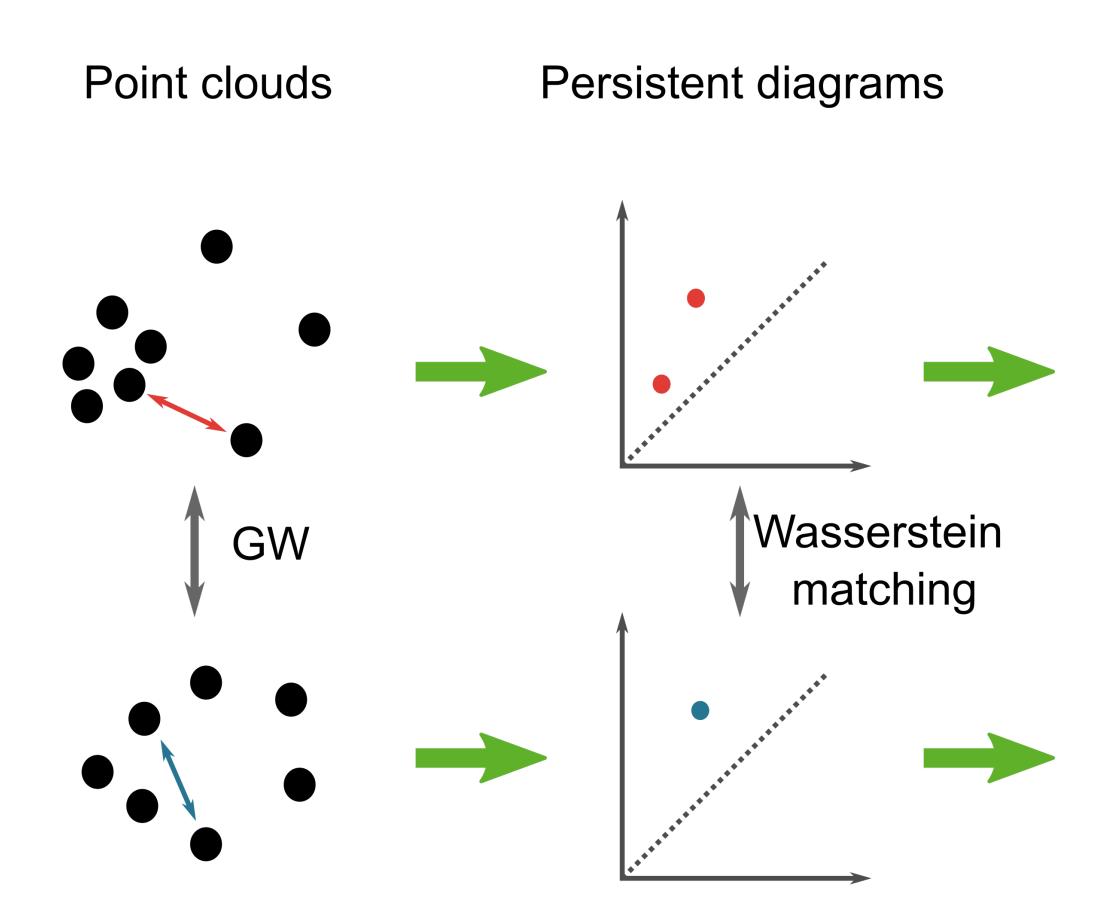
 $\min \lambda \langle \tilde{L}(X, X'), \pi^{\nu} \otimes \pi^{e} \rangle + (\alpha \langle L(C, C'), \pi^{\nu} \otimes \pi^{\nu} \rangle + (1 - \alpha) \langle \tilde{C}[D, D'], \pi^{e} \rangle)$ π^{v},π^{e} hyperCOT on PH-hypergraphs GW on point clouds

PH-hypergraphs



Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

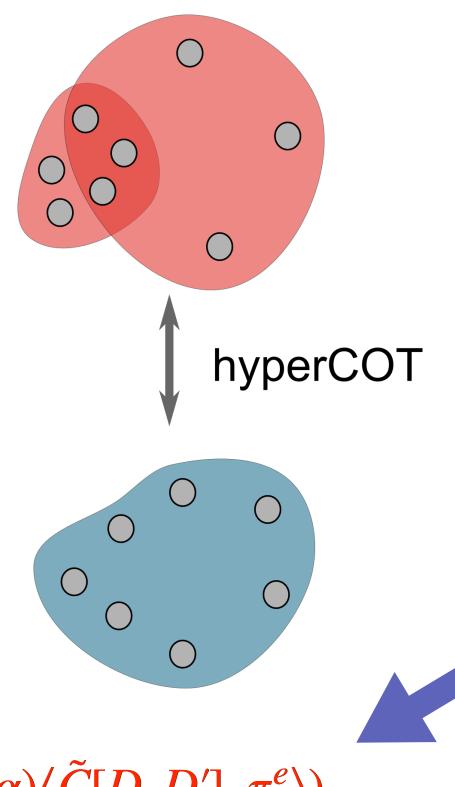
Solution 1: couple with Wasserstein matching on PDs!!



 $\min \lambda \langle \tilde{L}(X, X'), \pi^{\nu} \otimes \pi^{e} \rangle + (\alpha \langle L(C, C'), \pi^{\nu} \otimes \pi^{\nu} \rangle + (1 - \alpha) \langle \tilde{C}[D, D'], \pi^{e} \rangle)$ π^{v},π^{e}

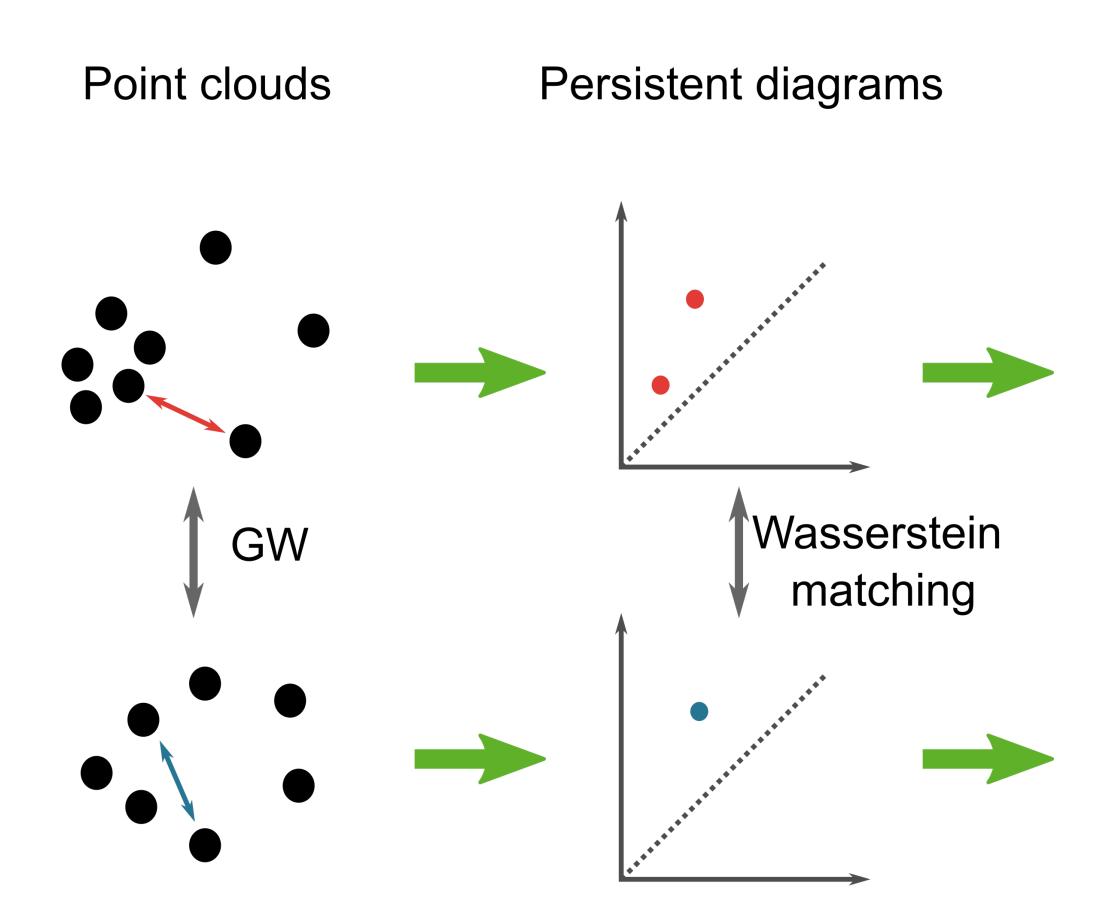
The parameter **a** interpolates between GW and W on PDs

PH-hypergraphs



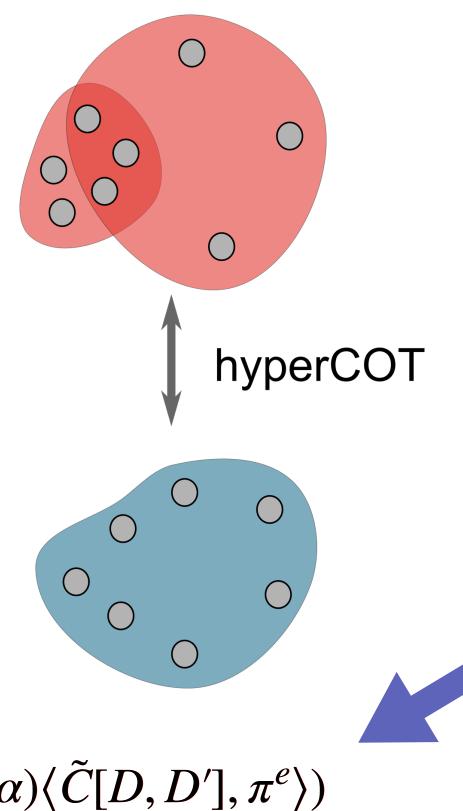
Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Solution 1: couple with Wasserstein matching on PDs!!



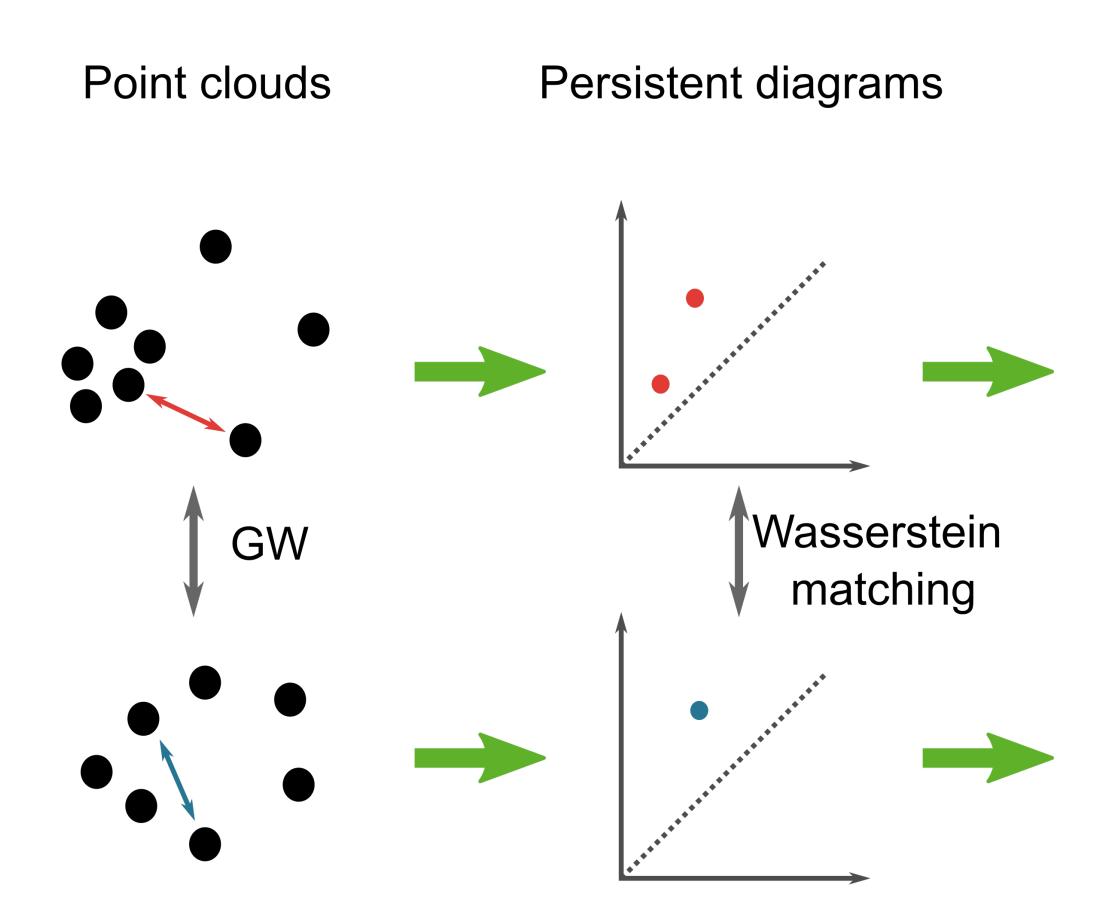
 $\min \lambda \langle \tilde{L}(X, X'), \pi^{\nu} \otimes \pi^{e} \rangle + (\alpha \langle L(C, C'), \pi^{\nu} \otimes \pi^{\nu} \rangle + (1 - \alpha) \langle \tilde{C}[D, D'], \pi^{e} \rangle)$ π^{v},π^{e} Coupling with hyperCOT

PH-hypergraphs



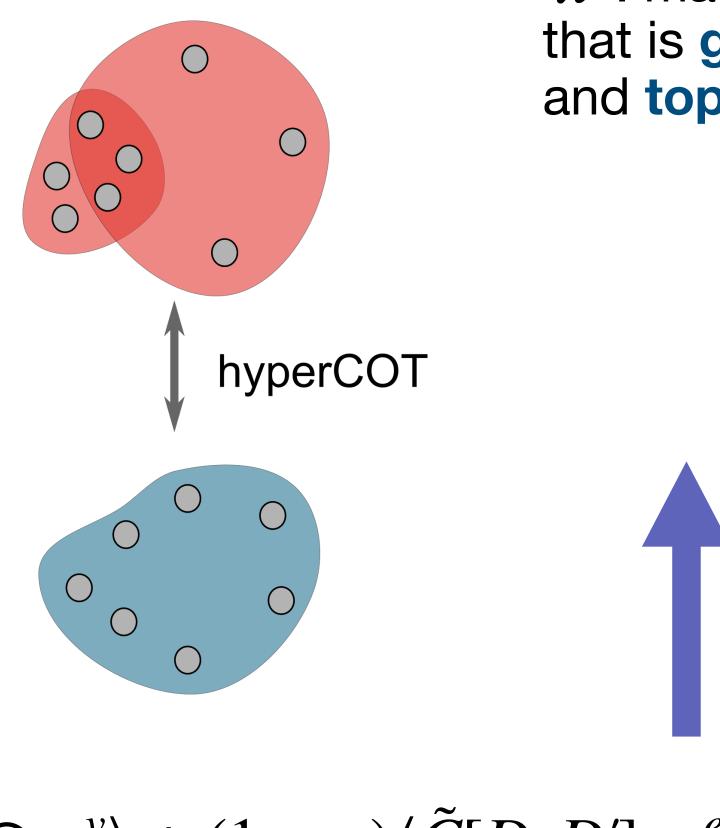
Idea: use transport theories (e.g. hyperCOT) on PH-hgs to transport point clouds based on topological features

Solution 1: couple with Wasserstein matching on PDs!!

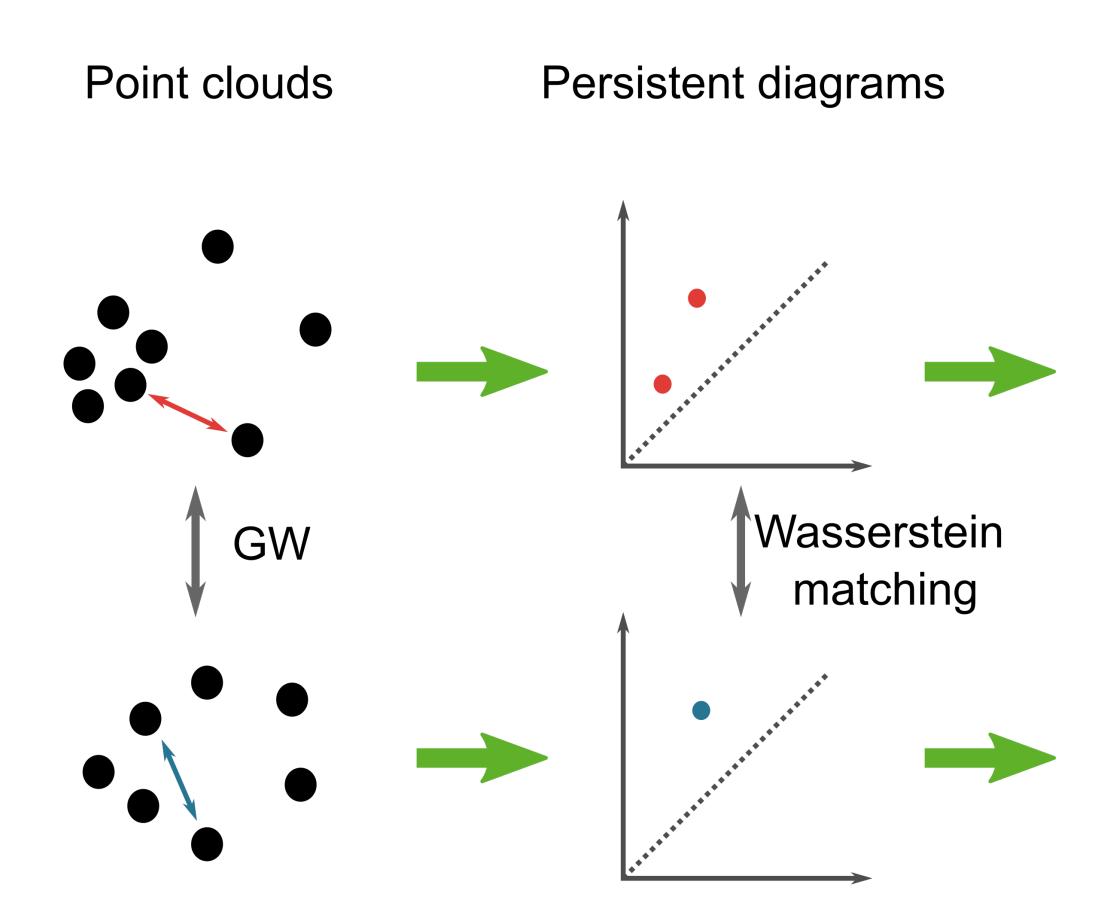


 $\min \lambda \langle \tilde{L}(X, X'), \pi^{v} \otimes \pi^{e} \rangle + (\alpha \langle L(C, C'), \pi^{v} \otimes \pi^{v} \rangle + (1 - \alpha) \langle \tilde{C}[D, D'], \pi^{e} \rangle)$ π^{v},π^{e}

PH-hypergraphs

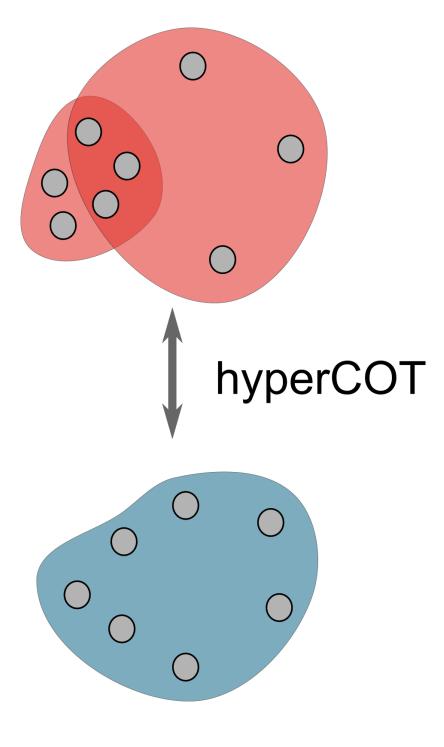


π^{v} : matching between points that is geometrically driven and topologically informed



 $\min \lambda \langle \tilde{L}(X, X'), \pi^{\nu} \otimes \pi^{e} \rangle + (\alpha \langle L(C, C'), \pi^{\nu} \otimes \pi^{\nu} \rangle + (1 - \alpha) \langle \tilde{C}[D, D'], \pi^{e} \rangle)$ π^{v},π^{e}

PH-hypergraphs

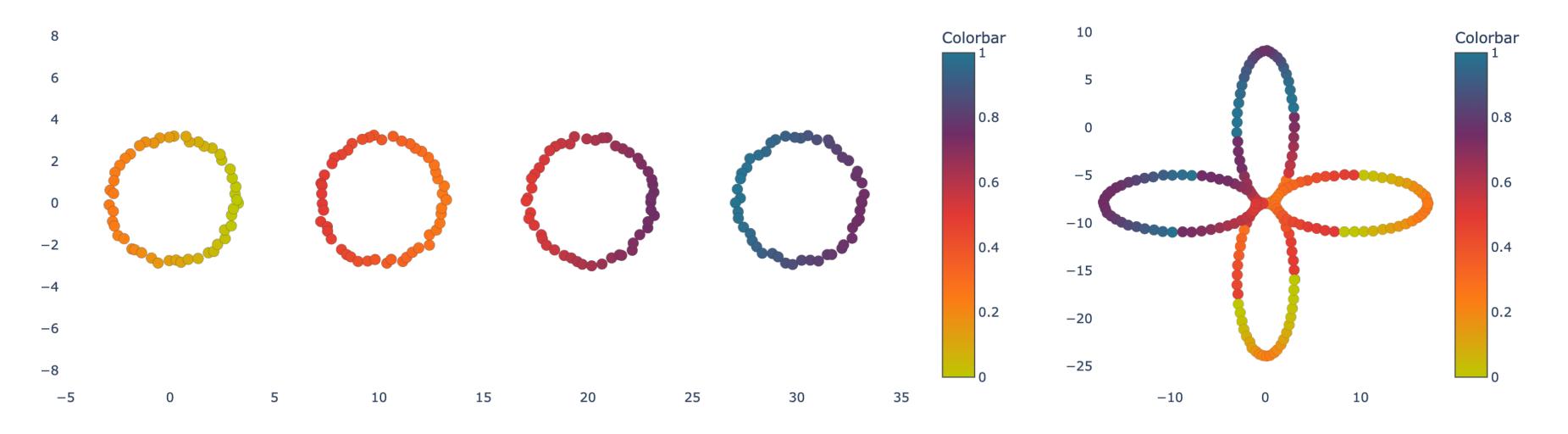


π^{ν} : matching between points that is geometrically driven and topologically informed

 π^{e} : matching between edges that is topologically driven and geometrically informed

Topological Optimal Transport (tPOT): examples

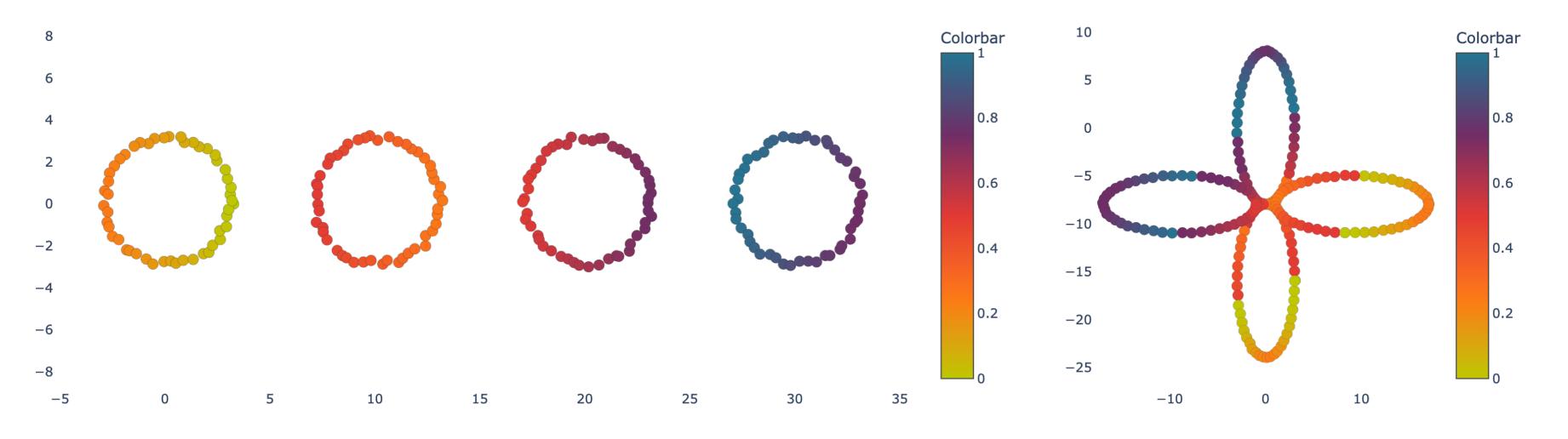
Source pointcloud



Target pointcloud: Gromow-Wasserstein

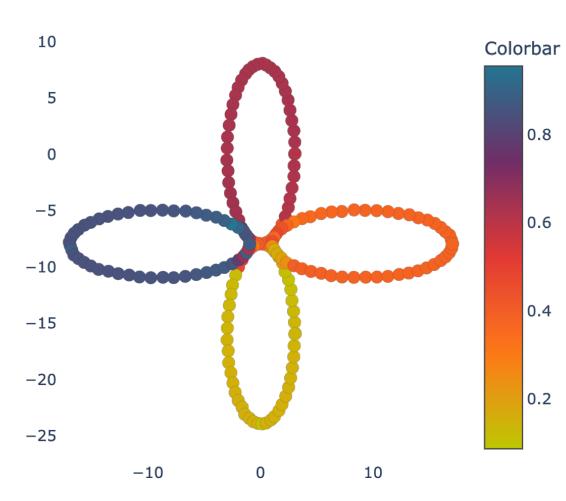
Topological Optimal Transport (tPOT): examples

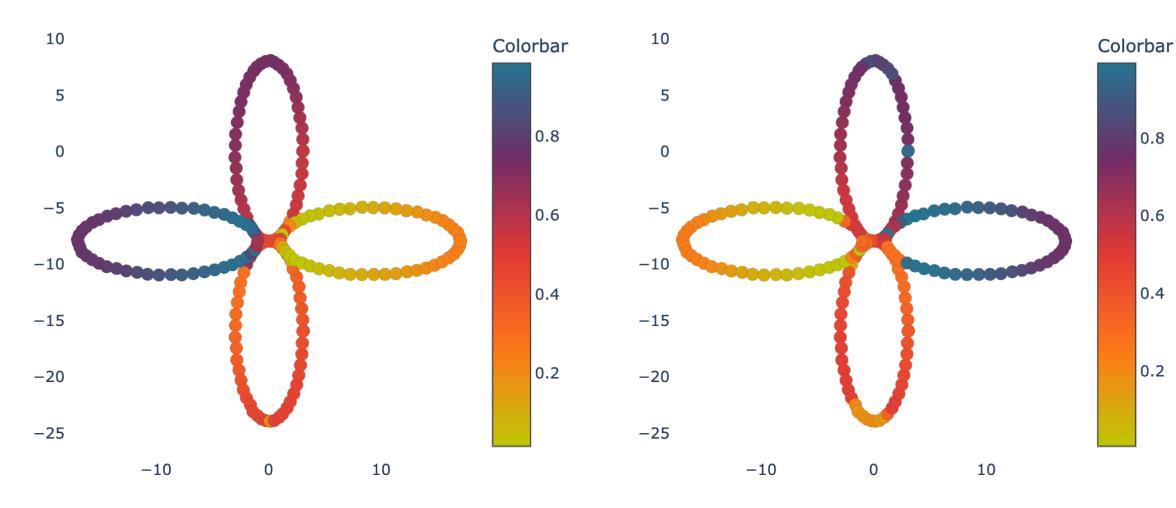
Source pointcloud



Target pointcloud: tPOT, $\alpha = 0$

Target pointcloud: tPOT, $\alpha = 0.3$





Target pointcloud: Gromow-Wasserstein

Target pointcloud: tPOT, $\alpha = 0.9$

0.8

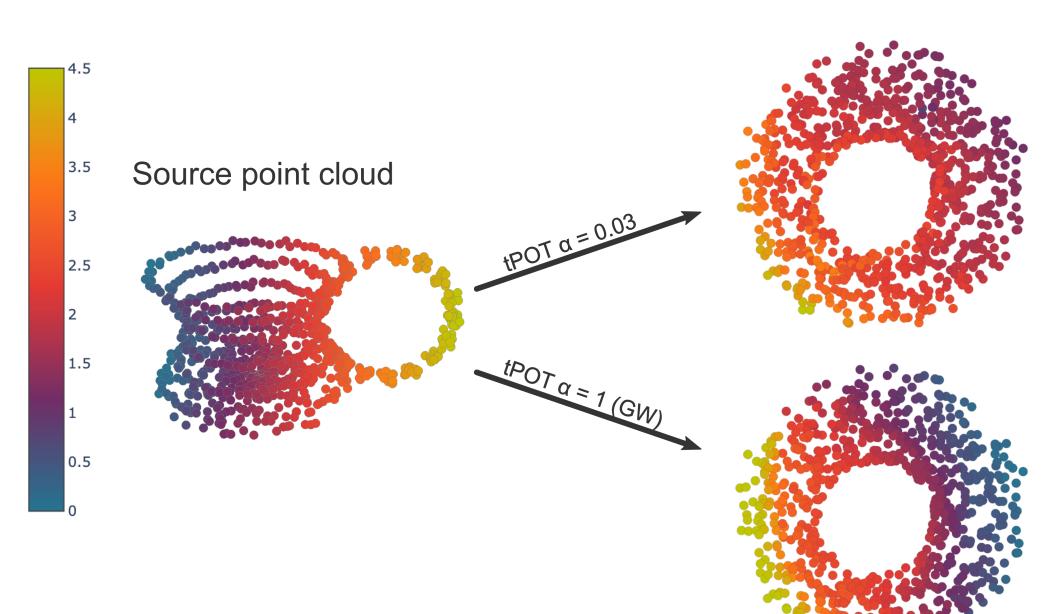
0.6

0.4

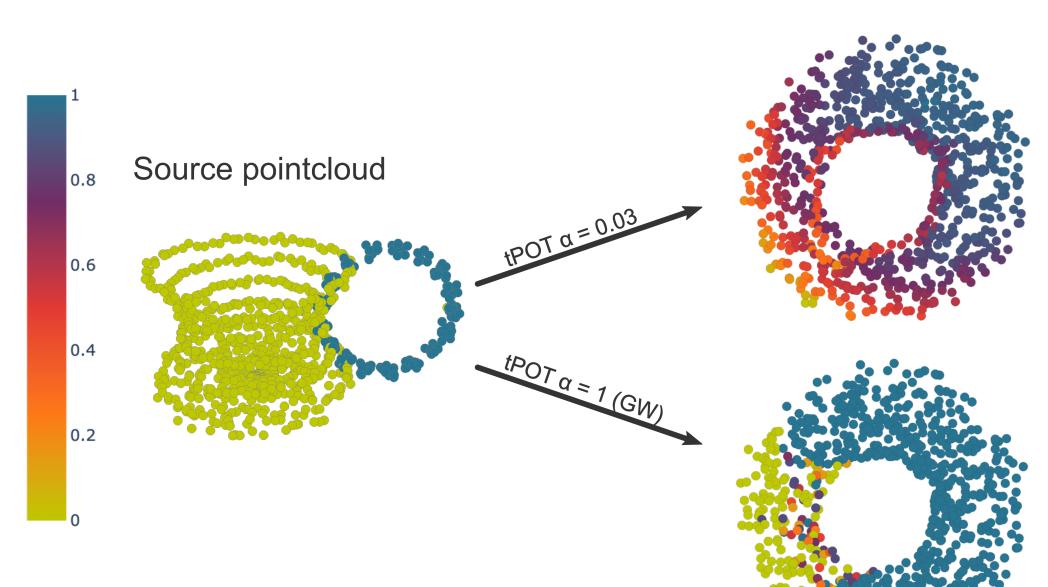
0.2

Topological Optimal Transport (tPOT): examples

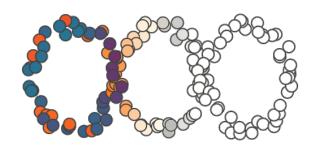
Target point cloud

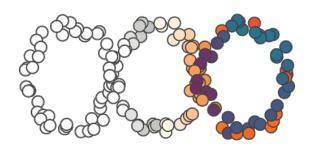


Target point cloud

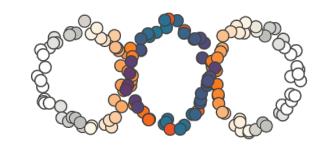


Source cycle

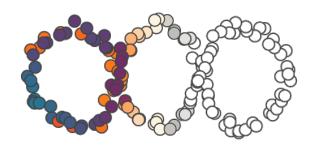


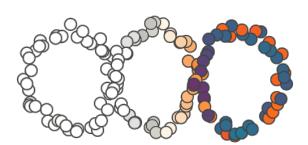


Wasserstein matching



Geometric matching



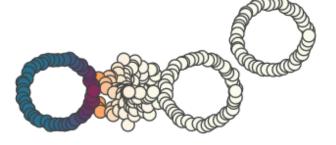


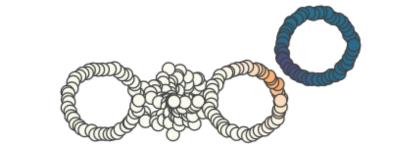
The **GW** component helps matching when classes are **topologically indistinguishable**

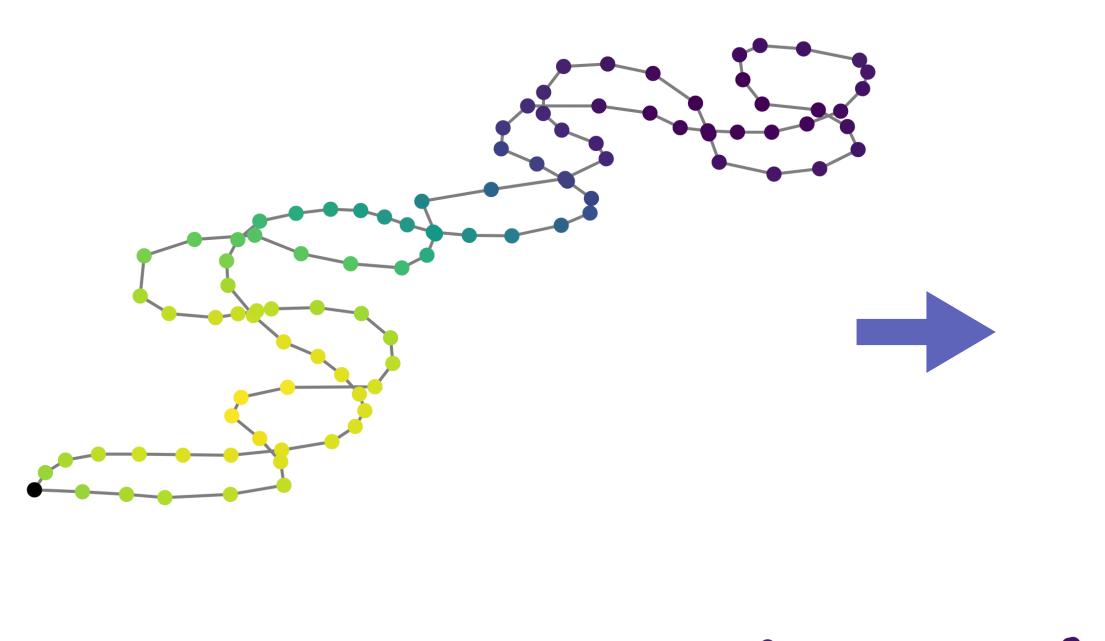
Wasserstein matching

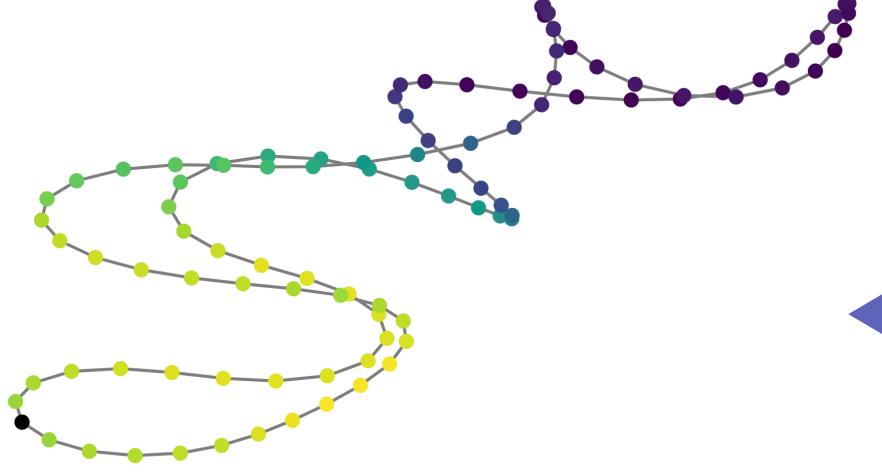


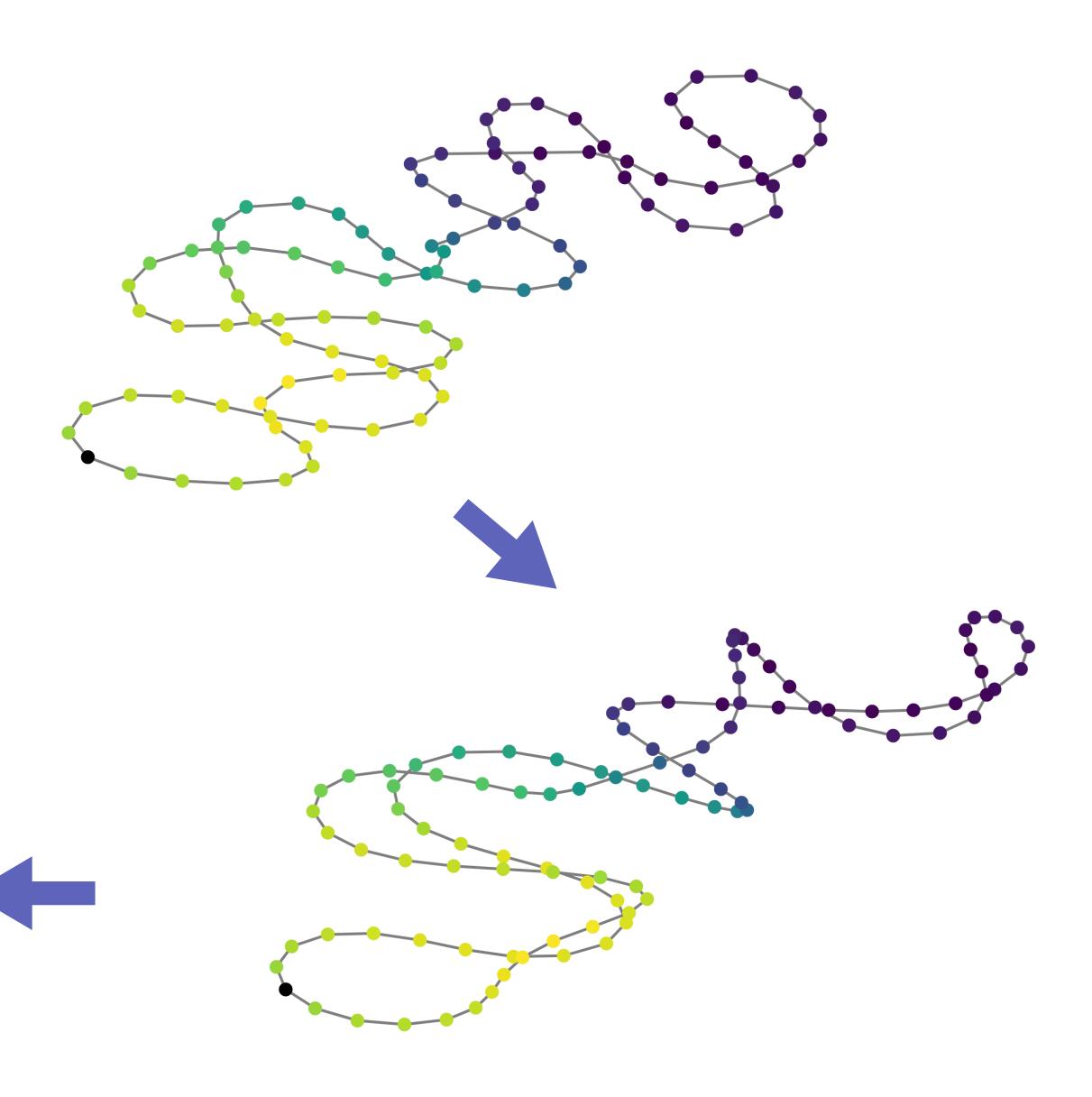
Geometric matching



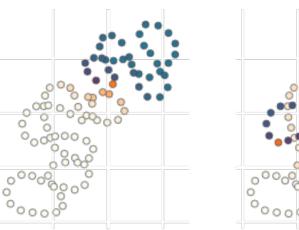


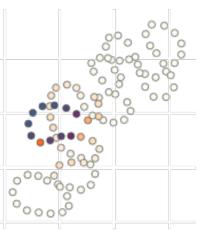






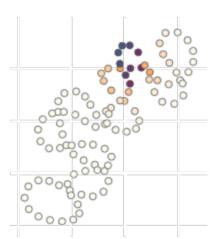
Cycle 1 Cycle 2

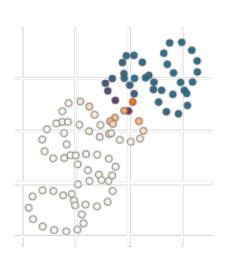




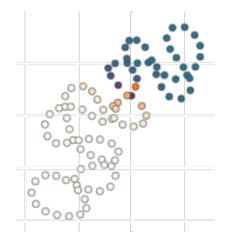
Target: Wasserstein matching

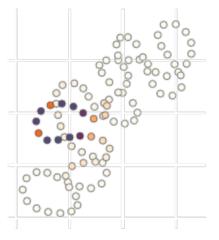
Source



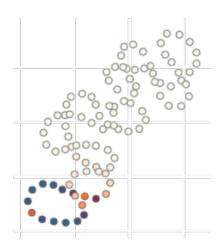


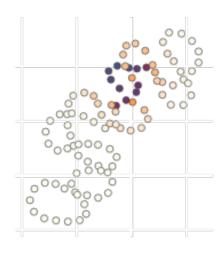
Target: geometric matching



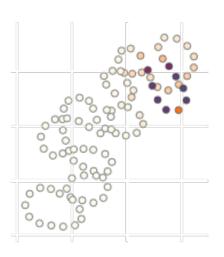


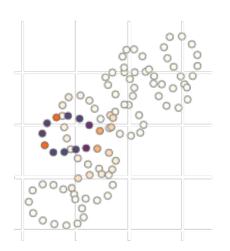
Cycle 5 Cycle 3 Cycle 6 Cycle 4

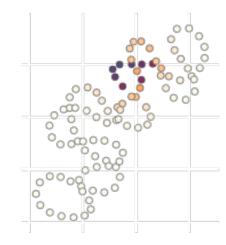


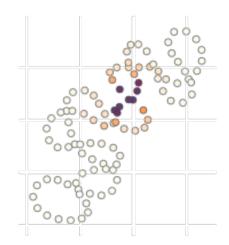


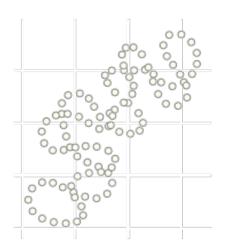


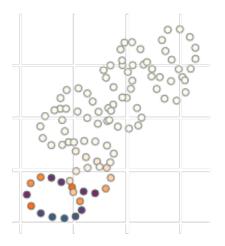


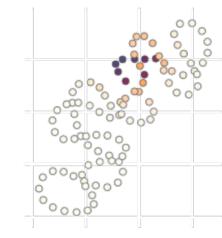


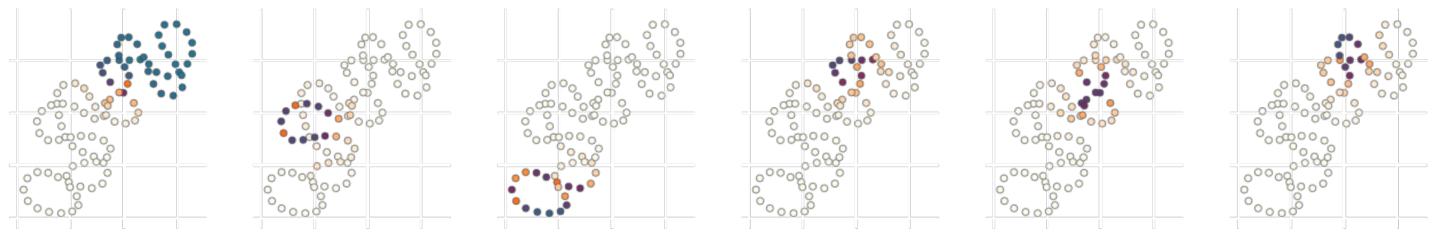


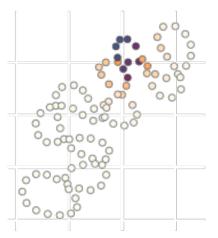




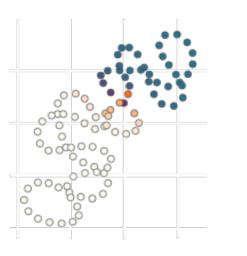


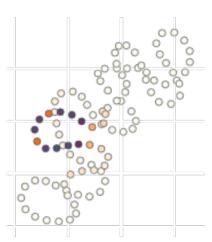




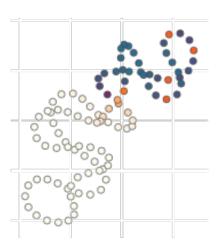


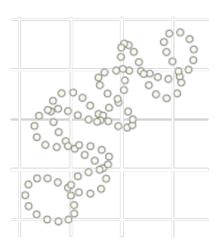
Cycle 1 Cycle 2





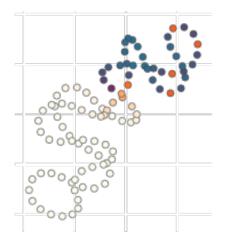
Target: Wasserstein matching

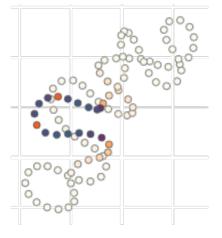


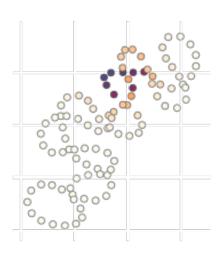


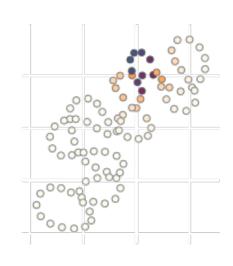
Target: geometric matching

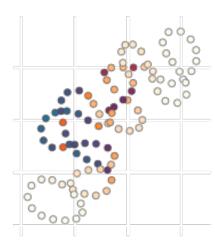
Source

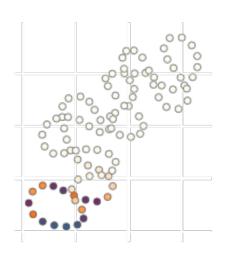


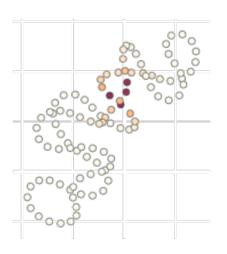


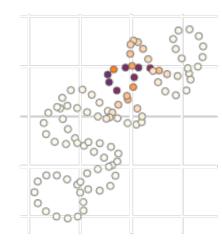


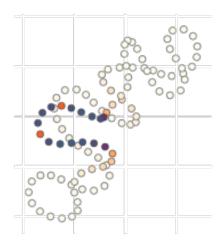


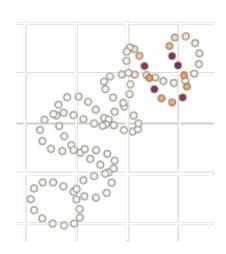


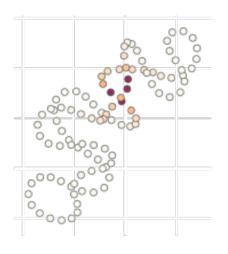


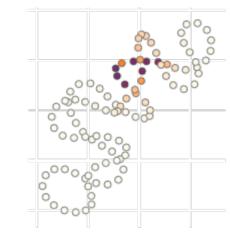


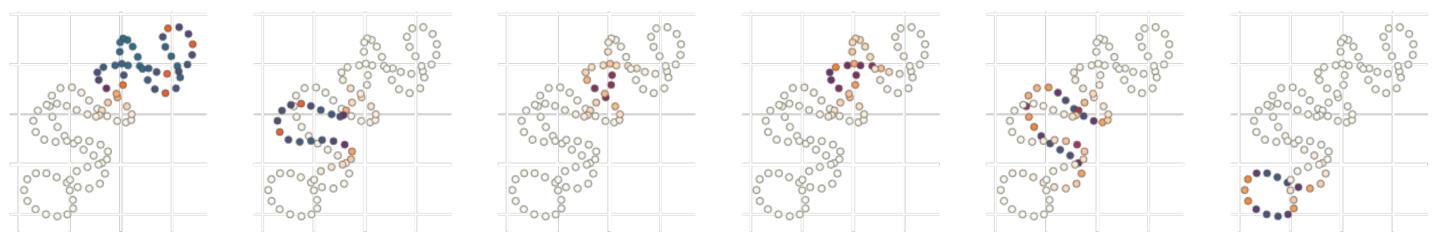


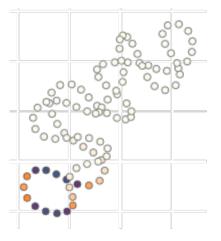




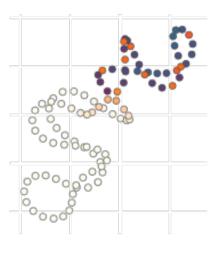


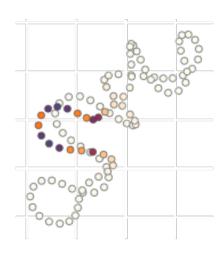






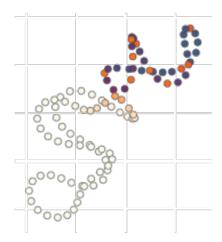
Cycle 2 Cycle 1

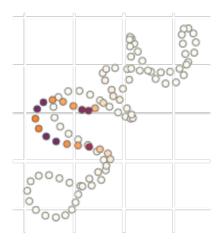




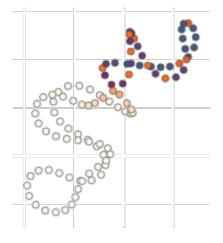
Target: Wasserstein matching

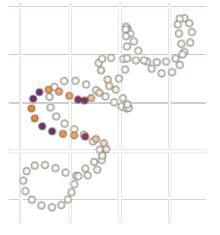
Source



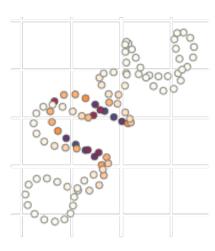


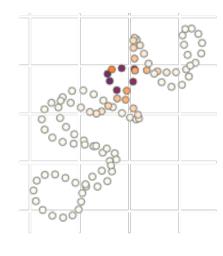
Target: geometric matching

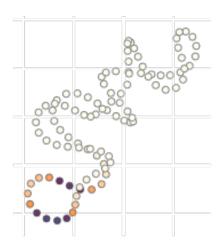


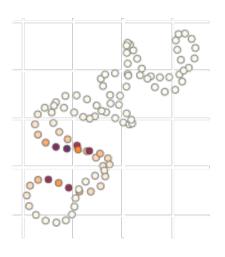


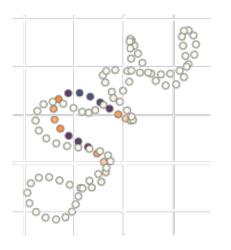
Cycle 6 Cycle 3 Cycle 4 Cycle 5

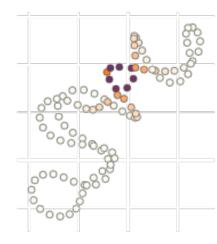


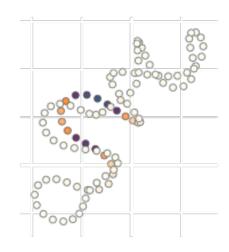


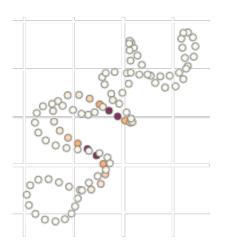


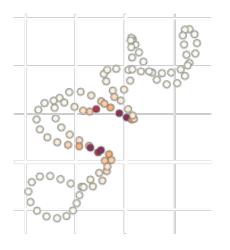


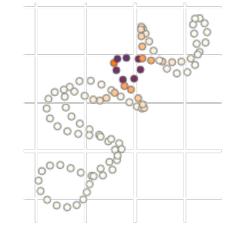


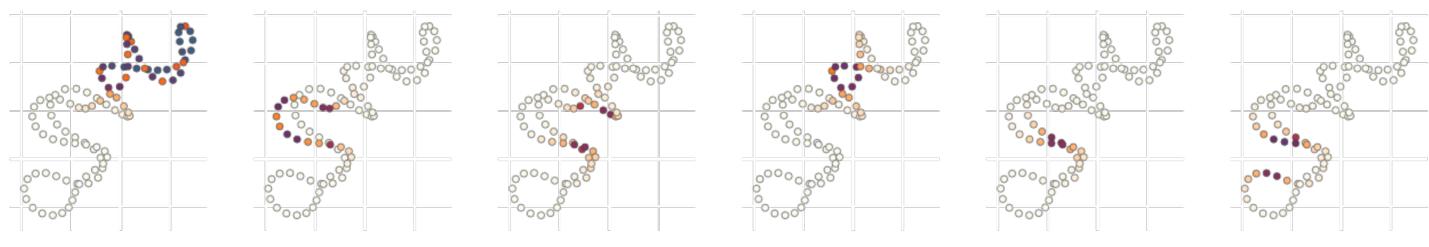


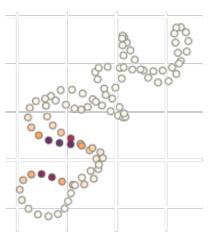




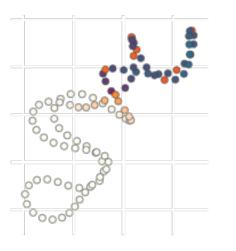


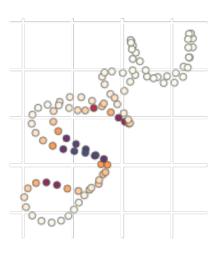




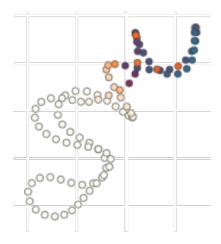


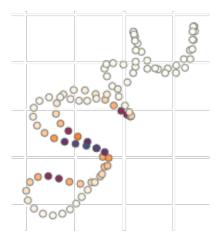
Cycle 1 Cycle 2



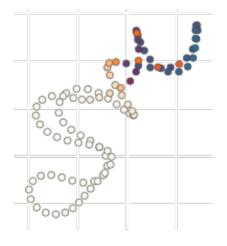


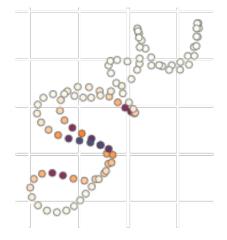
Source





Target: geometric matching





Cycle 6 Cycle 3 Cycle 4 Cycle 5

