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Topological Data Analysis (TDA)

Builds revealing shapes from data to find features persisting across multiple scales

Simplicial complexes: combinatorial approximations of data at different scales
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Topological Data Analysis (TDA)

Persistent homology (PH): algebraically describes the structure of data based on
topological teatures persisting across different scales.
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From a point cloud, to (filtered) simplicial complexes, to homology

Features are encoded in a persistent diagram (multi-set of topological features)
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Topological Data Analysis (TDA)

Persistent homology (PH): algebraically describes the structure of data based on
topological teatures persisting across different scales.
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Applications: oncological studies (1-2) pathology (3) brain (4-5) ecology (6) materials (7)...

Bukkuri, et al "Applications of topological data analysis in oncology." Frontiers in artificial intelligence 2021

Rabadan, Radul, et al. "Identification of relevant genetic alterations in cancer using topological data analysis." Nature communications 2020

Vipond, et al. "Multiparameter persistent homology landscapes identify immune cell spatial patterns in tumors.”" PNAS 2021

Saggar, Manish, et al. "Towards a new approach to reveal dynamical organization of the brain using topological data analysis." Nature communications 2018
Kanari, et al. "A topological representation of branching neuronal morphologies." Neuroinformatics 2018

McGuirl, et al. "Topological data analysis of zebrafish patterns.” PNAS 2020

Sarensen, Sgren S., et al. "Revealing hidden medium-range order in amorphous materials using topological data analysis." Science Advances 2020
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Interpretability: from algebraic summary to local structure

Homology generators: subsets of data giving rise to topological classes, i.e. those
points forming cycles representing homology classes




Interpretability: from algebraic summary to local structure

Homology generators: subsets of data giving rise to topological classes, /.e. those
points forming cycles representing homology classes
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Interpretability: from algebraic summary to local structure

Homology generators: subsets of data giving rise to topological classes, /.e. those
points forming cycles representing homology classes
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Interpretability: from algebraic summary to local structure

Homology generators: subsets of data giving rise to topological classes, i.e. those
points forming cycles representing homology classes
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Interpretability: from algebraic summary to local structure

Homology generators: subsets of data giving rise to topological classes, /.e. those
points forming cycles representing homology classes

Challenge 1

a) Homology generators are not unique:
their analysis might introduce biases

b) Finding optimal cycles is NP-hard?:
there i1s no natural preferred choice

Noisy torus with
homology generator

Lead to geometric interpretation of structural features

1) Li, Lu, et al. Frontiers in artificial intelligence (2021): 73.
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Interpretability: noisy homology classes

Death time

Protein structure Point Cloud Persistent diagram
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Interpretability: noisy homology classes

Death time

Protein structure Point Cloud Persistent diagram

Challenge 2

a) How to interpret complicated and diffused persistence diagrams?
b) How to capture information from noisy homology classes?
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Persistent homology and the PH-hypergraph
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Persistent diagram Homology generators
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Persistent homology and the PH-hypergraph

Persistent diagram Homology generators PH-hypergraph
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Persistent homology and the PH-hypergraph

e

Persistent diagram Homology generators

PH-communities

Community detection:
find densely-
connected groups of
nodes

These correspond to a
partition induced by
higher-order
interactions
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PH-hypergraph

¥

Node centrality

Rankings of nodes
based on hyperedge
membership and
significance

The importance of a
node depends on the
importance of its
connections



Persistent homology and the PH-hypergraph

I e
PH-communities & . o
centrality are robust to
noisy data Homology generators PH-hypergraph

T —

PH-communities &
centrality are stable under
different choices of
homology generators

G
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Persistent homology and the PH-hypergraph

Problem 1: fragment animal trajectories Problem 2: detect underlying random walk
into behavioural nodes and quantify bias iIn movement
Size

== Unbiased tracks
m®= Biased tracks
—®— Zebrafish tracks

Geodesic
_ Volume
size
Geodesic Intersection
Node centrality distinguishes different Communities analysis 1) identifies directional bias in
behaviours in terms of 1) intensity of local neutrophils migration towards a wound (zebrafish) and

searches, 2) looping behaviour and 3) relocation 2) distinguishes anomalous diffusion trajectories
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Anomalous diffusion trajectories

Anomalous diffusion: transport with MSD ~ ¢“: ubiquitous in nature
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Challenge: distinguish different models from the trajectory (AnDi challenge-?)

1) Munoz-Gil et al. "The anomalous diffusion challenge: single trajectory characterisation as a competition" In Emerging Topics in Artificial Intelligence 2020, SPIE, 2020.
2) Munoz-Gil et al. “Objective comparison of methods to decode anomalous diffusion." Nature communications 12.1



Application: AnDi models 0
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1) Munoz-Gil et al. "The anomalous diffusion challenge: single trajectory characterisation as a competition" In Emerging Topics in Artificial Intelligence 2020, SPIE, 2020.
2) Munoz-Gil et al. “Objective comparison of methods to decode anomalous diffusion." Nature communications 12.1



Persistent homology and the PH-hypergraph
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Topological Analysis of the Protein Universe

AlphaFold AlphaFold2: ~220
Protein Structure Database [ SEAIAC M.

protein structures

Developed by DeepMind and EMBL-EBI
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Topological Analysis of the Protein Universe

AlphaFold AlphaFold2: ~220

million predicted

Protein Structure Database orotein structures

Developed by DeepMind and EMBL-EBI
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Thermophilic and mesophilic proteins are topologically different

The volume of 2-dimensional persistent

classes is smaller in thermophile
E. coli (mesophile) M. thermoacetica (thermophile) enzymes
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Topological features are enriched in damaging variants
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Centrality is higher in residues accommodating (structurally) damaging mutations
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Optimal transport
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Optimal transport
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Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyre, Gabriel, and Marco Cuturi. Center for Research in Economics
and Statistics Working Papers 2017-86 (2017).
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Optimal transport

O
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® ® Wasserstein distances for persistent diagrams:
Y matching between homology classes that

minimises total distance.

Points are allowed to be matched to the diagonal

Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyre, Gabriel, and Marco Cuturi. Center for Research in Economics
and Statistics Working Papers 2017-86 (2017).
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Optimal transport
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Gromov-Wasserstein:
find matching that optimally
preserves pairwise distances

Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyre, Gabriel, and Marco Cuturi. Center for Research in Economics
and Statistics Working Papers 2017-86 (2017).
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Optimal transport
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Gromov-Wasserstein: On graphs, the output is matching
find matching that optimally between vertices optimally preserving

preserves pairwise distances graph structure

Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyre, Gabriel, and Marco Cuturi. Center for Research in Economics
and Statistics Working Papers 2017-86 (2017).
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Optimal transport
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Recently generalised to hypergraphs: hyperCOT outputs
coupled matchings of vertices and edges

Chowdhury, Samir, et al. "Hypergraph co-optimal transport: Metric and
categorical properties." arXiv preprint arXiv:2112.03904 (2021).

Figures taken from Vayer, Titouan, et al. arXiv preprint arXiv:1811.02834 (2018) and Peyre, Gabriel, and Marco Cuturi. Center for Research in Economics
and Statistics Working Papers 2017-86 (2017).
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Persistent homology and the PH-hypergraph
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Persistent diagram Homology generators PH-hypergraph

Use PH-hypergraph for
Topological Optimal
Transport theory



Persistent homology and the PH-hypergraph

Persistent diagram Homology generators PH-hypergraph

Use PH-hypergraph for
Topological Optimal
Transport theory



Topological Optimal Transport (tPOT)



Topological Optimal Transport (tPOT)

PH-hypergraphs
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Topological Optimal Transport (tPOT)

PH-hypergraphs

Idea: use transport theories
(€.g. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

‘ hyperCOT




Topological Optimal Transport (tPOT)

PH-hypergraphs

‘ hyperCOT

Idea: use transport theories
(€.g. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Problem 1: how to accurately
match edges (= features)?



Topological Optimal Transport (tPOT)

PH-hypergraphs

‘ hyperCOT

O
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Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Problem 1: how to accurately
match edges (= features)?

Note: weighting by persistence
does not work!!



Topological Optimal Transport (tPOT)

PH-hypergraphs
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Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Problem 1: how to accurately
match edges (= features)?

Note: weighting by persistence
does not work!!




Topological Optimal Transport (tPOT)

PH-hypergraphs

‘ hyperCOT

O

O
O

Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Problem 1: how to accurately
match edges (= features)?

Note: weighting by persistence
does not work!!

Problem 2: what about points
not involved in any homology
cycle?



Topological Optimal Transport (tPOT)

Persistent diagrams PH-hypergraphs

Idea: use transport theories
(€.g. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

‘Wasserstein ‘ hyperCOT

matching Solution 1: couple with

Wasserstein matching on PDsl!!
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Point clouds

Topological Optimal Transport (tPOT)

Persistent

|

diagrams

\Wasserstein
matching

—

PH-hypergraphs

Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Solution 1: couple with
Wasserstein matching on PDsl!!

Solution 2: Couple with GW on
point clouds!



Topological Optimal Transport (tPOT)

Point clouds Persistent diagrams PH-hypergraphs
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Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Solution 1: couple with
Wasserstein matching on PDsl!!

Solution 2: Couple with GW on
point clouds!



Topological Optimal Transport (tPOT)

Point clouds Persistent diagrams PH-hypergraphs
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hyperCOT on PH-hypergraphs

Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Solution 1: couple with
Wasserstein matching on PDsl!!

Solution 2: Couple with GW on
point clouds!



Topological Optimal Transport (tPOT)

Point clouds Persistent diagrams PH-hypergraphs
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hyperCOT on PH-hypergraphs GW on point clouds

Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Solution 1: couple with
Wasserstein matching on PDsl!!

Solution 2: Couple with GW on
point clouds!



Topological Optimal Transport (tPOT)

Point clouds Persistent diagrams
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hyperCOT on PH-hypergraphs GW on point clouds

v

W metric on PDs

Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Solution 1: couple with
Wasserstein matching on PDsl!!

Solution 2: Couple with GW on
point clouds!



Topological Optimal Transport (tPOT)

Point clouds Persistent diagrams PH-hypergraphs
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The parameter a interpolates between GW and W on PDs

Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Solution 1: couple with
Wasserstein matching on PDsl!!

Solution 2: Couple with GW on
point clouds!



Topological Optimal Transport (tPOT)

Point clouds Persistent diagrams PH-hypergraphs
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Coupling with hyperCOT

Idea: use transport theories
(e.g9. hyperCOT) on PH-hgs to
transport point clouds based
on topological features

Solution 1: couple with
Wasserstein matching on PDsl!!

Solution 2: Couple with GW on
point clouds!



Topological Optimal Transport (tPOT)

Point clouds Persistent diagrams PH-hypergraphs
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Topological Optimal Transport (tPOT)

Point clouds Persistent diagrams PH-hypergraphs

7t matching between points
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Topological Optimal Transport (tPOT): examples

Source pointcloud Target pointcloud: Gromow-Wasserstein
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Topological Optimal Transport (tPOT): examples
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Topological Optimal Transport (tPOT): examples

Target point cloud Target point cloud

1

©  Source point cloud 0s Source pointcloud
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Geometric cycle matching
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Source

Target: Wasserstein
matching

Target: geometric
matching

Geometric cycle matching

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
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Source

Target: Wasserstein
matching

Target: geometric
matching

Geometric cycle matching
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Geometric cycle matching

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
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Geometric cycle matching
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Thanks!!



