On the Complexity of Computing Gödel Numbers

Vasco Brattka

Universität der Bundeswehr München, Germany University of Cape Town, South Africa

Online Machine Learning Seminar
14 June 2023

- Given a prefix of a sequence of numbers

$$
3,9,15,21, \ldots
$$

one can ask how the sequence continues?

- Provided the input sequence is total computable, the answer could be a Gödel number for it.
- This and similar questions have been intensively studied in algorithmic learning theory.
- Gold proved 1967 that one cannot even learn the Gödel number in the limit, in the situation above.
- We want to classify the Weihrauch complexity of the above problem.
- In this way we get a better understanding of the mixture of topological and computability-theoretic features that are involved in this problem.

Gödelization and Kolmogorov complexity

- Let $\varphi: \mathbb{N} \rightarrow \mathcal{P}$ be some standard Gödel numbering of the set \mathcal{P} of partial computable functions.
- We call the following problem the Gödelization problem

$$
\mathrm{G}: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}, p \mapsto\left\{i \in \mathbb{N}: \varphi_{i}=p\right\}
$$

where $\operatorname{dom}(\mathrm{G})$ contains all total computable functions p.

- For our purposes the Kolmogorov complexity is the problem

$$
\mathrm{K}: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}, p \mapsto \min \mathrm{G}(p)
$$

with $\operatorname{dom}(K)=\operatorname{dom}(G)$.

- Hoyrup and Rojas (2017) have coined the following slogan: The only useful additional information carried by a program compared to the natural number sequence it represents, is an upper bound on the Kolmogorov complexity of the sequence.

Variants of the Gödelization problem

- We also look at the following variant of G :

$$
\begin{aligned}
& \qquad \mathrm{G}_{\geq}: \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightrightarrows \mathbb{N},(p, m) \mapsto\left\{i \in \mathbb{N}: \varphi_{i}=p\right\}, \\
& \text { where } \operatorname{dom}(\mathrm{G})=\{(p, m): K(p) \leq m\} .
\end{aligned}
$$

- And we study the following variant of K :

$$
\mathrm{K} \geq: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}, p \mapsto\{m \in \mathbb{N}: \mathrm{K}(p) \leq m\}
$$

with $\operatorname{dom}\left(K_{\geq}\right)=\operatorname{dom}(G)$.

- These problems are related in the Weihrauch lattice as follows:

Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$ be two multi-valued functions.

- f is Weihrauch reducible to $g, f \leq_{W} g$, if there are computable $H, K: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ such that $H\langle\mathrm{id}, G K\rangle \vdash f$ whenever $G \vdash g$.
- We write $f \leq_{W}^{*} g$ for the continuous version of Weihrauch reducibility, where H, K are chosen to be continuous.
- We write $f<_{\mathrm{W}}^{p} g$ if H K can be chosen to be $-\equiv{ }_{\mathrm{W}}, \equiv_{\mathrm{W}}^{*}$, and \equiv_{W}^{p} denote the corresponding equivalences.
- The distributive lattice induced by ${L_{W}}_{W}$ is usually referred to as

Weihrauch Reducibility

Let $f: \subseteq X \rightrightarrows Y$ and $g: \subseteq Z \rightrightarrows W$ be two multi-valued functions.

- f is Weihrauch reducible to $g, f \leq_{\mathrm{W}} g$, if there are computable $H, K: \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ such that $H\langle\mathrm{id}, G K\rangle \vdash f$ whenever $G \vdash g$.
- We write $f \leq_{W}^{*} g$ for the continuous version of Weihrauch reducibility, where H, K are chosen to be continuous.
- We write $f \leq_{\mathrm{W}}^{p} g$ if H, K can be chosen to be computable relative to $p \in \mathbb{N}^{\mathbb{N}}$.
- $\equiv{ }_{\mathrm{W}}$, \equiv_{W}^{*}, and \equiv_{W}^{p} denote the corresponding equivalences.
- The distributive lattice induced by \leq_{W} is usually referred to as Weihrauch lattice.
- Limited principle of omniscience:

$$
\operatorname{LPO}: \mathbb{N}^{\mathbb{N}} \rightarrow\{0,1\}, \operatorname{LPO}(p)=1: \Longleftrightarrow p=\widehat{0}
$$

- Lesser limited principle of omniscience:
$\operatorname{LLPO}: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows\{0,1\}, \operatorname{LLPO}\left\langle p_{0}, p_{1}\right\rangle:=\left\{i \in\{0,1\}: p_{i}=\widehat{0}\right\}$, with $\operatorname{dom}(\mathrm{LLPO})=\left\{\left\langle p_{0}, p_{1}\right\rangle \in \mathbb{N}^{\mathbb{N}}: \neg\left(p_{0} \neq \widehat{0} \wedge p_{1} \neq \widehat{0}\right)\right\}$.
- Closed choice on \mathbb{N} is

$$
C_{\mathbb{N}}: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}, p \mapsto\{n \in \mathbb{N}:(\forall k) p(k) \neq n\}
$$

with $\operatorname{dom}\left(C_{\mathbb{N}}\right)=\left\{p \in \mathbb{N}^{\mathbb{N}}: \operatorname{range}(p) \varsubsetneqq \mathbb{N}\right\}$,

- Compact choice \mathbb{N} is

$$
\mathrm{K}_{\mathbb{N}}: \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightrightarrows \mathbb{N},(p, m) \mapsto\{n \leq m:(\forall k) p(k) \neq n\}
$$

$$
\text { with } \operatorname{dom}\left(\mathrm{K}_{\mathbb{N}}\right)=\left\{(p, m) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}: \operatorname{range}(p) \varsubsetneqq\{0, \ldots, m\}\right\}
$$

- Weak Kőnig's lemma: WKL : $\subseteq \operatorname{Tr} \rightrightarrows 2^{\mathbb{N}}, T \mapsto[T]$
- Limit: $\lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}},\left\langle x_{n}\right\rangle \mapsto \lim _{n \rightarrow \infty} x_{n}$.

Borel complexity and Weihrauch complexity

The jump f^{\prime} of a problem is a strengthening of f :

- a name of an input x for f^{\prime} is a sequence $\left(p_{n}\right)$ in $\mathbb{N}^{\mathbb{N}}$ that converge to a name $p \in \mathbb{N}^{\mathbb{N}}$ of an input in the sense of f.

Theorem (B. 2005, Pauly, de Brecht 2014 and Kihara 2015)

1. f is computably Σ_{n+2}^{0}-measurable $\Longleftrightarrow f \leq_{\mathrm{W}} \lim ^{(n)}$.
2. f is computably $\left(\Sigma_{n+2}^{0}, \Sigma_{n+2}^{0}\right)$-measurable $\Longleftrightarrow f \leq{ }_{W} C_{\mathbb{N}}^{(n)}$.

Weihrauch and Borel complexity

Reverse mathematics and Weihrauch complexity

Weihrauch complexity refines Borel complexity very much in the same way as many-one complexity refines arithmetical complexity. B. and Rakotoniaina (2017) have shown that

$$
\mathrm{K}_{\mathbb{N}} \leq_{\mathrm{w}} \mathrm{C}_{\mathbb{N}} \leq_{\mathrm{W}} \mathrm{~K}_{\mathbb{N}}^{\prime} \leq_{\mathrm{W}} \mathrm{C}_{\mathbb{N}}^{\prime} \leq_{\mathrm{w}} \cdots
$$

and concluded that this is the proper Weihrauch analogue of the Paris-Harrington hierarchy of induction and boundedness problems

$$
\mathrm{B} \Sigma_{1}^{0} \leftarrow \mathrm{I} \Sigma_{1}^{0} \leftarrow \mathrm{~B} \Sigma_{2}^{0} \leftarrow \mathrm{I} \Sigma_{2}^{0} \leftarrow \ldots
$$

as they are used in reverse mathematics.

Weihrauch degree	Reverse mathematics axioms
$C_{\mathbb{N}}$	$A T R_{0}$
$\lim ^{\circ}$	$A C A_{0}$
$W K L$	$W K L_{0}^{*}$
$C_{\mathbb{N}}^{(n)}$	$I \Sigma_{n+1}^{0}$
$K_{\mathbb{N}}^{(n)}$	$B \Sigma_{n+1}^{0}$
id	$R C A_{0}^{*}$

Computability classes and Weihrauch complexity

Classes of computable problems can be easily characterized in Weihrauch complexity:

Theorem (B., de Brecht and Pauly 2012)

1. f is limit computable $\Longleftrightarrow f \leq_{\mathrm{W}}$ lim.
2. f is finite mind change computable $\Longleftrightarrow f \leq_{W} C_{\mathbb{N}}$.
3. f is non-deterministically computable $\Longleftrightarrow f \leq_{W}$ WKL.

- Gold's result can be translated into $G \not \leq W C_{\mathbb{N}}$.
- We will use the problems $K_{\mathbb{N}}$ and $C_{\mathbb{N}}$ as a benchmark to classify the Gödel problem.

- The equivalence $\mathrm{K}_{\geq} \equiv{ }_{\mathrm{W}}^{*} \mathrm{G}$ validates Hoyrup and Rojas slogan topologically.
\rightarrow Which is the minimal oracle among $\emptyset, \phi^{\prime}, \phi^{\prime \prime}, \ldots$ that validates the picture above in place of $*$?

- The equivalence $K_{\geq} \equiv_{W}^{*} G$ validates Hoyrup and Rojas slogan topologically.
- Which is the minimal oracle among $\emptyset, \emptyset^{\prime}, \emptyset^{\prime \prime}, \ldots$ that validates the picture above in place of $*$?

Optimal oracles

- The oracle $\emptyset^{\prime \prime}$ makes totality decidable and this yields easy proofs of the equivalences.
- Surprisingly, this can also be done with \emptyset^{\prime}, but the proofs are slightly more difficult in this case.

Optimal oracles

- The oracle $\emptyset^{\prime \prime}$ makes totality decidable and this yields easy proofs of the equivalences.
- Surprisingly, this can also be done with \emptyset^{\prime}, but the proofs are slightly more difficult in this case.

Upper bound with respect to the halting problem

Proposition

$K \leq{ }_{W}^{\emptyset^{\prime}} C_{\mathbb{N}}$.

Proof.

- We go through all Gödel numbers $i=0,1,2, \ldots$ one by one.
- For each i we check for each $n=0,1,2, \ldots$ whether $n \in \operatorname{dom}\left(\varphi_{i}\right)$ (with the help of the halting problem) and whether $\varphi_{i}(n)=p(n)$.
- If so, then we write i to the output q and we move on to the next n.
- If one of these tests fails, then we move on to the next i.
- This procedure stops going to the next i when the smallest i with $\varphi_{i}=p$ is reached.
- Altogether, this gives a finite mind change computation for K.

Lower bound with respect to the halting problem

Proposition

$\mathrm{C}_{\mathbb{N}} \leq_{\mathrm{W}}^{\emptyset^{\prime}} \mathrm{K}_{\geq}$.

Proof.

- We use a variant of the set of random natural numbers:

$$
R:=\left\{\langle k, n\rangle \in \mathbb{N}: \min \left\{i \in \mathbb{N}: \varphi_{i}(k)=n\right\} \geq n\right\}
$$

- For each k there are infinitely many n with $\langle k, n\rangle \in R$.
- R is co-c.e. and hence $R \leq_{\mathrm{T}} \emptyset^{\prime}$.
- We use the boundedness problem $B \equiv{ }_{W} C_{\mathbb{N}}$, which is the problem: given a monotone increasing bounded sequence $p \in \mathbb{N}^{\mathbb{N}}$, find an upper bound $b \in \mathbb{N}$.
- We prove $B \leq_{W}^{R} \mathrm{~K}_{\geq}$: inspecting the numbers $p(0), p(1), p(2), \ldots$ we construct $q(0), q(1), q(2), \ldots$ such that $b=K(q)$ is an upper bound for p.
- This can be done such that q is eventually constant and hence actually computable.

Optimal oracles

- We have established the upper equivalences.
- We still need to prove G_{\geq}is computable relative to the halting problem.

Computability with respect to the halting problem

Proposition

G_{\geq}is computable with respect to the halting problem \emptyset^{\prime}.
Proof. We use a variant of the amalgamation technique.

- We consider the compatibility relation on \mathcal{P} :

$$
f \approx g: \Longleftrightarrow(\forall n \in \operatorname{dom}(f) \cap \operatorname{dom}(g)) f(n)=g(n) .
$$

- $C:=\left\{\langle i, j\rangle \in \mathbb{N}: \varphi_{i} \approx \varphi_{j}\right\}$ is co-c.e. and hence $C \leq_{\mathrm{T}} \emptyset^{\prime}$.
- Let (p, m) be an input for G_{\geq}, i.e., $\mathrm{K}(p) \leq m$.
- For $i \leq m$ that we consider the pockets:

$$
P_{i}:=\left\{j \leq m: \varphi_{i} \approx \varphi_{j}\right\}
$$

- P_{i} is called compatible, if $\varphi_{j_{0}} \approx \varphi_{j_{1}}$ holds for all $j_{0}, j_{1} \in P_{i}$.
- Among P_{0}, \ldots, P_{m} we remove all incompatible pockets and all double occurrences of the same pocket.
- This yields a list of $P_{i_{0}}, \ldots, P_{i_{k}}$ of pairwise different pockets, which are all compatible by themselves.

Computability with respect to the halting problem

- No pocket in our list is a subset of another pocket.
- Among the pockets $P_{i_{0}}, \ldots, P_{i_{k}}$ in our list

1. exactly one contains at least one code j with $\varphi_{j}=p$ and all codes j in this pocket satisfy $\varphi_{j} \approx p$,
2. all other pockets contain at least one j with $\varphi_{j} \not \approx p$.

- P_{i} is called compatible with p, if $p \approx \varphi_{j}$ for all $j \in P_{i}$.
- 1. and 2. guarantee that there is exactly one pocket P_{i} among the $P_{i_{0}}, \ldots, P_{i_{k}}$ that is compatible with p and contains a Gödel number of p.
- A prefix of p is sufficient to identify P_{i} as we just need to find an incompatible member in all the other pockets.
- From the index i we can compute a Gödel number $r(i)$ of p : for each input $n \in \mathbb{N}$ we search for some $j \in P_{i}$ such that $n \in \operatorname{dom}\left(\varphi_{j}\right)$ and we produce $\varphi_{j}(n)$ as result.
- Hence, $r(i) \in G_{\geq}\langle p, m\rangle$. (We note that $r(i) \leq m$ is not required and might not hold.)

Optimal oracles

- We now want to study the situation in the computable case.
- We know $G \not Z_{W} C_{\mathbb{N}}$ by Gold (1967) and $G_{\geq} \leq{ }_{W} C_{\mathbb{N}}$ by Freivald and Wiehagen (1979).

The computability-theoretic situation

- $\mathrm{K} \leq_{W} C_{\mathbb{N}}^{\prime}$ can be proved observing that $\mathrm{C}_{\mathbb{N}}^{\prime} \equiv{ }_{W} \lim \inf _{\mathbb{N}}$. We just write all Gödel numbers i onto the output that match the input for longer and longer prefixes of the input p. The least cluster point is the smallest Gödel number of p.
- $\mathrm{K}_{\geq} \not Z_{\mathrm{W}} \mathrm{K}_{\mathbb{N}}^{\prime}$ can be proved by a finite extension construction using that $\mathrm{K}_{\mathbb{N}}^{\prime} \equiv_{\mathrm{W}} \mathrm{BWT}_{\mathbb{N}}$ (the Bolzano-Weierstraß theorem on \mathbb{N}).
- Hence the classification of $K_{\geq} \leq_{W} G \leq_{W} K$ is optimal with respect to our benchmark problems.
- $G_{\geq} \leq_{W}$ LPO* * can be proved with the amalgamation technique.
- $\mathrm{G}_{\geq} \not Z_{\mathrm{W}} \mathrm{K}_{\mathbb{N}}$ can be proved with a finite extension construction.
- G_{\geq}is hence continuous, but not computable.
- The problems G_{\geq}, K_{\geq}, G and K can all be separated from each other with respect to $\leq \mathrm{w}$.

Closure properties of Gödelization

- By \widehat{G} we denote the parallelization of G
- By $G \star G$ we denote the compositional product of G by itself
- By G^{*} we denote the finite parallelization of G
- By $\left.f\right|_{c}$ we denote the restriction to computable inputs of f

- $\left.(G \star G)\right|_{c} \equiv{ }_{W} G$
- $\mathrm{G}^{*} \equiv_{\mathrm{W}}$ G
- Open question: Does $\mathrm{G} \star \mathrm{G} \equiv{ }_{\mathrm{W}} \mathrm{G}$ hold?

Closure properties of Gödelization

- By \widehat{G} we denote the parallelization of G
- By $G \star G$ we denote the compositional product of G by itself
- By G* we denote the finite parallelization of G
- By $\left.f\right|_{c}$ we denote the restriction to computable inputs of f
- $\left.\widehat{\mathrm{G}}\right|_{\mathrm{c}} \equiv_{\mathrm{W}} \mathrm{G}<{ }_{\mathrm{W}} \widehat{\mathrm{G}}$
- $\left.(G \star G)\right|_{c} \equiv_{W} G$
- $\mathrm{G}^{*} \equiv_{\mathrm{W}}$ G
- Open question: Does $\mathrm{G} \star \mathrm{G} \equiv_{\mathrm{W}} \mathrm{G}$ hold?

Closure properties of Gödelization

- By \widehat{G} we denote the parallelization of G
- By $G \star G$ we denote the compositional product of G by itself
- By G* we denote the finite parallelization of G
- By $\left.f\right|_{c}$ we denote the restriction to computable inputs of f
- $\left.\widehat{\mathrm{G}}\right|_{\mathrm{c}} \equiv_{\mathrm{W}} \mathrm{G}<{ }_{\mathrm{W}} \widehat{\mathrm{G}}$
(parallelization)
- $\left.(G \star G)\right|_{c} \equiv_{W} G$
- $\mathrm{G}^{*} \equiv_{\mathrm{W}} \mathrm{G}$
- Open question: Does $\mathrm{G} \star \mathrm{G} \equiv_{\mathrm{W}} \mathrm{G}$ hold?

Proposition

DIS $\not \leq_{W} G$, but $\mathrm{LPO} \leq_{W} \mathrm{~K}$.
Proof. DIS $\leq_{W} G$ would imply NON $\leq_{W} \widehat{G}$, since $\widehat{D I S} \equiv_{W}$ NON. But since $\left.\widehat{G}\right|_{c} \leq{ }_{W} G$, this is impossible!
LPO $\leq_{W} K$ is easy to see, as there is a specific smallest Gödel number i of the zero sequence $p \in \mathbb{N}^{\mathbb{N}}$.

DIS is the weakest natural discontinuous problem with respect to topological Weihrauch reducibility (in $Z F+D C+A D$). Hence, Gödelization G has no useful natural lower bounds (besides id)!
\square
G is effectively discontinuous, but not computably so

Proposition

DIS $\not \leq{ }_{W} G$, but $\mathrm{LPO} \leq{ }_{W} \mathrm{~K}$.
Proof. DIS $\leq_{W} G$ would imply NON $\leq_{W} \widehat{G}$, since $\widehat{D I S} \equiv_{W}$ NON. But since $\left.\widehat{\mathrm{G}}\right|_{\mathrm{c}} \leq_{W} \mathrm{G}$, this is impossible!
LPO $\leq_{W} K$ is easy to see, as there is a specific smallest Gödel number i of the zero sequence $p \in \mathbb{N}^{\mathbb{N}}$.

DIS is the weakest natural discontinuous problem with respect to topological Weihrauch reducibility (in ZF+DC+AD). Hence, Gödelization G has no useful natural lower bounds (besides id)!

Corollary
G is effectively discontinuous, but not computably so.
This means DIS $\leq_{W}^{*} G$, but DIS $\not \mathbb{K}_{W} G$.

Proposition

DIS $\not \leq_{W} G$, but $\mathrm{LPO} \leq_{W} \mathrm{~K}$.
Proof. DIS $\leq_{W} G$ would imply NON $\leq_{W} \widehat{G}$, since $\widehat{\text { DIS }} \equiv_{W}$ NON. But since $\left.\widehat{\mathrm{G}}\right|_{\mathrm{c}} \leq_{W} \mathrm{G}$, this is impossible!
LPO $\leq_{W} K$ is easy to see, as there is a specific smallest Gödel number i of the zero sequence $p \in \mathbb{N}^{\mathbb{N}}$.

DIS is the weakest natural discontinuous problem with respect to topological Weihrauch reducibility (in ZF+DC+AD). Hence, Gödelization G has no useful natural lower bounds (besides id)!

Corollary

G is effectively discontinuous, but not computably so.
This means DIS $\leq_{W}^{*} G$, but DIS $\not Z_{W} G$.

Motivation for closed and compact choice as benchmark

Recall that the first-order part of a problem f can be defined by

$$
{ }^{1} f:=\max _{\leq_{\mathrm{W}}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{W}} f\right\}
$$

It was introduced by Dzhafarov, Solomon, and Yokoyama (2019).

Theorem (Valenti 2021, Soldà and Valenti 2022)

For all $n \in \mathbb{N}$:

1. ${ }^{1}\left(\lim ^{(n)}\right) \equiv_{\mathrm{sW}} \mathrm{C}_{\mathbb{N}}^{(n)}$, in particular ${ }^{1} \lim \equiv_{\mathrm{sW}} \mathrm{C}_{\mathbb{N}}$,
2. ${ }^{1}\left(\mathrm{WKL}^{(n)}\right) \equiv_{\mathrm{sW}} \mathrm{K}_{\mathbb{N}}^{(n)}$, in particular ${ }^{1} \mathrm{WKL} \equiv_{\mathrm{sW}} \mathrm{K}_{\mathbb{N}}$.

Corollary

$\mathrm{G} \leq \mathrm{w}_{\mathrm{W}} \mathrm{lim}^{\prime}$, but $\mathrm{G} \not \leq \mathrm{W}$ WKL'
2. $\mathrm{G}_{\geq} \leq_{W} \lim$, but $\mathrm{G}_{\geq} \not \leq_{\mathrm{W}} \mathrm{WKL}$.

Motivation for closed and compact choice as benchmarks

Recall that the first-order part of a problem f can be defined by

$$
{ }^{1} f:=\max _{\leq_{\mathrm{W}}}\left\{g: \subseteq \mathbb{N}^{\mathbb{N}} \rightrightarrows \mathbb{N}: g \leq_{\mathrm{W}} f\right\}
$$

It was introduced by Dzhafarov, Solomon, and Yokoyama (2019).

Theorem (Valenti 2021, Soldà and Valenti 2022)

For all $n \in \mathbb{N}$:

1. ${ }^{1}\left(\lim ^{(n)}\right) \equiv_{\mathrm{sW}} \mathrm{C}_{\mathbb{N}}^{(n)}$, in particular ${ }^{1} \lim \equiv_{\mathrm{sW}} \mathrm{C}_{\mathbb{N}}$,
2. ${ }^{1}\left(\mathrm{WKL}^{(n)}\right) \equiv_{\mathrm{sW}} \mathrm{K}_{\mathbb{N}}^{(n)}$, in particular ${ }^{1} \mathrm{WKL} \equiv_{\mathrm{sW}} \mathrm{K}_{\mathbb{N}}$.

Corollary

1. $\mathrm{G} \leq_{\mathrm{W}} \lim ^{\prime}$, but $\mathrm{G} \not \mathbb{L}_{\mathrm{W}} \mathrm{WKL}^{\prime}$,
2. $\mathrm{G} \geq \leq_{\mathrm{W}} \lim$, but $\mathrm{G} \geq \not \mathbb{Z}_{\mathrm{W}} \mathrm{WKL}$.

Motivation for closed and compact choice as benchmarks

Theorem

For all $n \in \mathbb{N}$ we obtain:

1. $C_{\mathbb{N}}^{(n)} \star C_{\mathbb{N}}^{(n)} \equiv{ }_{W} C_{\mathbb{N}}^{(n)}$,
2. $\mathrm{K}_{\mathbb{N}}^{(n)} \star \mathrm{K}_{\mathbb{N}}^{(n)} \equiv_{\mathrm{W}} \mathrm{K}_{\mathbb{N}}^{(n)}$.

- The first claim was known (B., Hölzl and Kuyper, 2017, unpublished) and is also included in Soldà and Valenti (2022).
- The second claim seems to be new and can be proved using the methods of Soldà and Valenti. This corrects an incorrect statement by B., and Gherardi (2021), as $\mathrm{K}_{\mathbb{N}}$ is actually incomplete.

Corollary

- $\mathrm{LPO}^{\circ} \equiv_{W} \mathrm{C}_{\mathbb{N}}$
- LLPO $^{\diamond} \equiv_{W} \mathrm{~K}_{\mathbb{N}}$
(Neumann and Pauly 2018)
(Soldà and Valenti 2022)

When do Weihrauch degrees correspond to axiom systems

Thesis

A Weihrauch degree d legitimately corresponds to an axiom system A (of reverse mathematics) if

1. $d \equiv{ }_{\mathrm{W}} t$ for a sufficiently strong interpretation t of a theorem T that is also equivalent to A over RCA_{0},
2. $d \star d \equiv_{\mathrm{W}} d$.

- Closure of d under compositional product corresponds to the theory of A being closed under deduction
\rightarrow A theorem T and its contrapositive form $T^{\text {contra }}$ are
equivalent over RCA_{0}, but their direct translations into Weihrauch degrees t and $t^{\text {contra }}$ might satisfy $t \not \equiv{ }_{\mathrm{W}} t^{\text {contra }}$
- Hence we need "sufficiently strong" interpretations of the theorem

When do Weihrauch degrees correspond to axiom systems

Thesis

A Weihrauch degree d legitimately corresponds to an axiom system A (of reverse mathematics) if

1. $d \equiv{ }_{\mathrm{W}} t$ for a sufficiently strong interpretation t of a theorem T that is also equivalent to A over RCA_{0},
2. $d \star d \equiv_{\mathrm{W}} d$.

- Closure of d under compositional product corresponds to the theory of A being closed under deduction.
- A theorem T and its contrapositive form $T^{\text {contra }}$ are equivalent over RCA_{0}, but their direct translations into Weihrauch degrees t and $t^{\text {contra }}$ might satisfy $t \not \equiv \mathrm{~W} t^{\text {contra }}$.
- Hence we need "sufficiently strong" interpretations of the theorem.

When do Weihrauch degrees correspond to axiom system

Thesis

A Weihrauch degree d legitimately corresponds to an axiom system A (of reverse mathematics) if

1. $d \equiv_{\mathrm{W}} t$ for a sufficiently strong interpretation t of a theorem T that is also equivalent to A over RCA_{0},
2. $d \star d \equiv_{\mathrm{W}} d$.

Weihrauch degree	Reverse mathematics axioms
$\mathrm{C}_{\mathbb{N}^{N}}$	ATR_{0}
lim^{\diamond}	ACA_{0}
WKL	WKL_{0}^{*}
$\mathrm{C}_{\mathbb{N}}^{(n)}$	$I \Sigma_{n+1}^{0}$
$\mathrm{~K}_{\mathbb{N}}^{(n)}$	$\mathrm{B} \mathrm{\Sigma}_{n+1}^{0}$
id	RCA_{0}^{*}

References

- V. Brattka, The Discontinuity Problem, Journal of Symbolic Logic (2022) (electronically published).
- V. Brattka and G. Gherardi, Completion of Choice, Annals of Pure and Applied Logic 172:3 (2021) 102914.
- V. Brattka and T. Rakotoniaina, On the Uniform Computational Content of Ramsey's Theorem, Journal of Symbolic Logic 82:4 (2017) 1278-1316.
- D. Dzhafarov, R. Solomon, and K. Yokoyama, On the first-order parts of Weihrauch degrees, in preparation, 2019.
- M. Hoyrup and C. Rojas, On the information carried by programs about the objects they compute, Theory of Computing Systems 61:4 (2017) 1214-1236.
- E. Neumann and A. Pauly, A topological view on algebraic computation models, Journal of Complexity 44 (2018) 1-22
- G. Soldà and M. Valenti, Algebraic properties of the first-order part of a problem, 2022, https://arxiv.org/abs/2203.16298.
- M. Valenti, A journey through computability, topology and analysis, University of Udine, PhD thesis, 2021.

