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;
Introduction

I Given a prefix of a sequence of numbers

3, 9, 15, 21, ...,

one can ask how the sequence continues?

I Provided the input sequence is total computable, the answer
could be a Gödel number for it.

I This and similar questions have been intensively studied in
algorithmic learning theory.

I Gold proved 1967 that one cannot even learn the Gödel
number in the limit, in the situation above.

I We want to classify the Weihrauch complexity of the above
problem.

I In this way we get a better understanding of the mixture of
topological and computability-theoretic features that are
involved in this problem.



;
Gödelization and Kolmogorov complexity

I Let ϕ : N→ P be some standard Gödel numbering of the set
P of partial computable functions.

I We call the following problem the Gödelization problem

G :⊆ NN ⇒ N, p 7→ {i ∈ N : ϕi = p},
where dom(G) contains all total computable functions p.

I For our purposes the Kolmogorov complexity is the problem

K :⊆ NN → N, p 7→ min G(p),

with dom(K) = dom(G).

I Hoyrup and Rojas (2017) have coined the following slogan:

The only useful additional information carried by a program
compared to the natural number sequence it represents, is an
upper bound on the Kolmogorov complexity of the sequence.



;
Variants of the Gödelization problem

I We also look at the following variant of G:

G≥ :⊆ NN × N⇒ N, (p,m) 7→ {i ∈ N : ϕi = p},
where dom(G) = {(p,m) : K (p) ≤ m}.

I And we study the following variant of K:

K≥ :⊆ NN ⇒ N, p 7→ {m ∈ N : K(p) ≤ m},
with dom(K≥) = dom(G).

I These problems are related in the Weihrauch lattice as follows:

G≥

K≥

G

K



;
Weihrauch Reducibility

Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be two multi-valued functions.

K HG

F

p F (p)

I f is Weihrauch reducible to g , f ≤W g , if there are computable
H,K :⊆ NN → NN such that H〈id,GK 〉 ` f whenever G ` g .

I We write f ≤∗W g for the continuous version of Weihrauch
reducibility, where H,K are chosen to be continuous.

I We write f ≤p
W g if H,K can be chosen to be computable

relative to p ∈ NN.

I ≡W, ≡∗W, and ≡p
W denote the corresponding equivalences.

I The distributive lattice induced by ≤W is usually referred to
as Weihrauch lattice.
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Typical problems in the Weihrauch lattice

I Limited principle of omniscience:
LPO : NN → {0, 1}, LPO(p) = 1 :⇐⇒ p = 0̂

I Lesser limited principle of omniscience:
LLPO :⊆ NN ⇒ {0, 1}, LLPO〈p0, p1〉 := {i ∈ {0, 1} : pi = 0̂},
with dom(LLPO) = {〈p0, p1〉 ∈ NN : ¬(p0 6= 0̂ ∧ p1 6= 0̂)}.

I Closed choice on N is

CN :⊆ NN ⇒ N, p 7→ {n ∈ N : (∀k) p(k) 6= n},
with dom(CN) = {p ∈ NN : range(p) $ N},

I Compact choice N is

KN :⊆ NN × N⇒ N, (p,m) 7→ {n ≤ m : (∀k) p(k) 6= n},
with dom(KN) = {(p,m) ∈ NN × N : range(p) $ {0, ...,m}}.

I Weak Kőnig’s lemma: WKL :⊆ Tr⇒ 2N,T 7→ [T ]

I Limit: lim :⊆ NN → NN, 〈xn〉 7→ limn→∞ xn.
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Borel complexity and Weihrauch complexity

The jump f ′ of a problem is a strengthening of f :

I a name of an input x for f ′ is a sequence (pn) in NN that
converge to a name p ∈ NN of an input in the sense of f .

Theorem (B. 2005, Pauly, de Brecht 2014 and Kihara 2015)

1. f is computably Σ0
n+2–measurable ⇐⇒ f ≤W lim(n).

2. f is computably (Σ0
n+2,Σ0

n+2)–measurable ⇐⇒ f ≤W C
(n)
N .
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Weihrauch and Borel complexity
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Reverse mathematics and Weihrauch complexity

Weihrauch complexity refines Borel complexity very much in the same
way as many-one complexity refines arithmetical complexity. B. and
Rakotoniaina (2017) have shown that

KN≤W CN≤W K′N≤W C′N≤W ...

and concluded that this is the proper Weihrauch analogue of the
Paris-Harrington hierarchy of induction and boundedness problems

BΣ0
1 ← IΣ0

1 ← BΣ0
2 ← IΣ0

2 ← ...

as they are used in reverse mathematics.

Weihrauch degree Reverse mathematics axioms

CNN ATR0

lim� ACA0

WKL WKL∗0
C
(n)
N IΣ0

n+1

K
(n)
N BΣ0

n+1

id RCA∗0
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Computability classes and Weihrauch complexity

Classes of computable problems can be easily characterized in Weihrauch
complexity:

Theorem (B., de Brecht and Pauly 2012)

1. f is limit computable ⇐⇒ f ≤W lim.

2. f is finite mind change computable ⇐⇒ f ≤W CN.

3. f is non-deterministically computable ⇐⇒ f ≤W WKL.

I Gold’s result can be translated into G 6≤W CN.

I We will use the problems KN and CN as a benchmark to classify the
Gödel problem.



;
The topological situation

C′N

K′N

CN

KN

idG≥

K≥ ≡∗W G ≡∗W K ≡∗W

≡∗W

I The equivalence K≥ ≡∗W G validates Hoyrup and Rojas slogan
topologically.

I Which is the minimal oracle among ∅, ∅′, ∅′′, ... that validates
the picture above in place of ∗?
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Optimal oracles

C′N

K′N

CN

KN

idG≥

K≥ ≡∅
′′

W G ≡∅′′W K ≡∅′′W

≡∅′′W

I The oracle ∅′′ makes totality decidable and this yields easy
proofs of the equivalences.

I Surprisingly, this can also be done with ∅′, but the proofs are
slightly more difficult in this case.
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Upper bound with respect to the halting problem

Proposition

K ≤∅′W CN.

Proof.

I We go through all Gödel numbers i = 0, 1, 2, ... one by one.

I For each i we check for each n = 0, 1, 2, ... whether
n ∈ dom(ϕi ) (with the help of the halting problem) and
whether ϕi (n) = p(n).

I If so, then we write i to the output q and we move on to the
next n.

I If one of these tests fails, then we move on to the next i .

I This procedure stops going to the next i when the smallest i
with ϕi = p is reached.

I Altogether, this gives a finite mind change computation for K.

�
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Lower bound with respect to the halting problem

Proposition

CN ≤∅
′

W K≥.

Proof.
I We use a variant of the set of random natural numbers:

R := {〈k , n〉 ∈ N : min{i ∈ N : ϕi (k) = n} ≥ n}.
I For each k there are infinitely many n with 〈k , n〉 ∈ R.
I R is co-c.e. and hence R ≤T ∅′.
I We use the boundedness problem B≡W CN, which is the

problem: given a monotone increasing bounded sequence
p ∈ NN, find an upper bound b ∈ N.

I We prove B ≤R
W K≥: inspecting the numbers

p(0), p(1), p(2), ... we construct q(0), q(1), q(2), ... such that
b = K(q) is an upper bound for p.

I This can be done such that q is eventually constant and hence
actually computable.

�
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Optimal oracles

C′N

K′N

CN

KN

idG≥

K≥ ≡∅
′

W G ≡∅′W K ≡∅′W

≡∅′W

I We have established the upper equivalences.

I We still need to prove G≥ is computable relative to the
halting problem.



;
Computability with respect to the halting problem

Proposition

G≥ is computable with respect to the halting problem ∅′.

Proof. We use a variant of the amalgamation technique.

I We consider the compatibility relation on P:

f ≈ g :⇐⇒ (∀n ∈ dom(f ) ∩ dom(g)) f (n) = g(n).

I C := {〈i , j〉 ∈ N : ϕi ≈ ϕj} is co-c.e. and hence C ≤T ∅′.
I Let (p,m) be an input for G≥, i.e., K(p) ≤ m.

I For i ≤ m that we consider the pockets:

Pi := {j ≤ m : ϕi ≈ ϕj}
I Pi is called compatible, if ϕj0 ≈ ϕj1 holds for all j0, j1 ∈ Pi .

I Among P0, ...,Pm we remove all incompatible pockets and all
double occurrences of the same pocket.

I This yields a list of Pi0 , ...,Pik of pairwise different pockets,
which are all compatible by themselves.
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Computability with respect to the halting problem

I No pocket in our list is a subset of another pocket.
I Among the pockets Pi0 , ...,Pik in our list

1. exactly one contains at least one code j with ϕj = p and all
codes j in this pocket satisfy ϕj ≈ p,

2. all other pockets contain at least one j with ϕj 6≈ p.

I Pi is called compatible with p, if p ≈ ϕj for all j ∈ Pi .

I 1. and 2. guarantee that there is exactly one pocket Pi among
the Pi0 , ...,Pik that is compatible with p and contains a Gödel
number of p.

I A prefix of p is sufficient to identify Pi as we just need to find
an incompatible member in all the other pockets.

I From the index i we can compute a Gödel number r(i) of p:
for each input n ∈ N we search for some j ∈ Pi such that
n ∈ dom(ϕj) and we produce ϕj(n) as result.

I Hence, r(i) ∈ G≥〈p,m〉. (We note that r(i) ≤ m is not
required and might not hold.) �
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Optimal oracles

C′N

K′N

CN

KN

idG≥

K≥ ≡∅
′
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I We now want to study the situation in the computable case.

I We know G 6≤W CN by Gold (1967) and G≥≤W CN by
Freivald and Wiehagen (1979).
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The computability-theoretic situation

C′N
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The computability-theoretic situation

I K≤W C′N can be proved observing that C′N≡W lim infN. We
just write all Gödel numbers i onto the output that match the
input for longer and longer prefixes of the input p. The least
cluster point is the smallest Gödel number of p.

I K≥ 6≤W K′N can be proved by a finite extension construction
using that K′N≡W BWTN (the Bolzano-Weierstraß theorem
on N).

I Hence the classification of K≥≤W G≤W K is optimal with
respect to our benchmark problems.

I G≥≤W LPO∗ can be proved with the amalgamation
technique.

I G≥ 6≤W KN can be proved with a finite extension construction.

I G≥ is hence continuous, but not computable.

I The problems G≥,K≥,G and K can all be separated from
each other with respect to ≤W.
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Closure properties of Gödelization

I By Ĝ we denote the parallelization of G

I By G ? G we denote the compositional product of G by itself

I By G∗ we denote the finite parallelization of G

I By f |c we denote the restriction to computable inputs of f

I Ĝ|c≡W G<W Ĝ (parallelization)

I (G ? G)|c≡W G (compositional products)

I G∗≡W G (finite parallelization)

I Open question: Does G ? G≡W G hold?
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Lower bounds

Proposition

DIS 6≤W G, but LPO≤W K.

Proof. DIS≤W G would imply NON≤W Ĝ, since D̂IS≡W NON.
But since Ĝ|c≤W G, this is impossible!
LPO≤W K is easy to see, as there is a specific smallest Gödel
number i of the zero sequence p ∈ NN. �

DIS is the weakest natural discontinuous problem with respect to
topological Weihrauch reducibility (in ZF+DC+AD). Hence,
Gödelization G has no useful natural lower bounds (besides id)!

Corollary

G is effectively discontinuous, but not computably so.

This means DIS ≤∗W G, but DIS 6≤W G.
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The computability-theoretic situation
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Motivation for closed and compact choice as benchmarks

Recall that the first-order part of a problem f can be defined by

1f := max≤W{g :⊆ NN ⇒ N : g ≤W f }.

It was introduced by Dzhafarov, Solomon, and Yokoyama (2019).

Theorem (Valenti 2021, Soldà and Valenti 2022)

For all n ∈ N:

1. 1(lim(n))≡sW C
(n)
N , in particular 1 lim≡sW CN,

2. 1(WKL(n))≡sW K
(n)
N , in particular 1WKL≡sW KN.

Corollary

1. G≤W lim′, but G 6≤W WKL′,

2. G≥≤W lim, but G≥ 6≤W WKL.
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Motivation for closed and compact choice as benchmarks

Theorem

For all n ∈ N we obtain:

1. C
(n)
N ? C

(n)
N ≡W C

(n)
N ,

2. K
(n)
N ? K

(n)
N ≡W K

(n)
N .

I The first claim was known (B., Hölzl and Kuyper, 2017,
unpublished) and is also included in Soldà and Valenti (2022).

I The second claim seems to be new and can be proved using
the methods of Soldà and Valenti. This corrects an incorrect
statement by B., and Gherardi (2021), as KN is actually
incomplete.

Corollary

I LPO�≡W CN (Neumann and Pauly 2018)

I LLPO�≡W KN (Soldà and Valenti 2022)
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When do Weihrauch degrees correspond to axiom systems?

Thesis

A Weihrauch degree d legitimately corresponds to an axiom
system A (of reverse mathematics) if

1. d ≡W t for a sufficiently strong interpretation t of a theorem
T that is also equivalent to A over RCA0,

2. d ? d ≡W d .

I Closure of d under compositional product corresponds to the
theory of A being closed under deduction.

I A theorem T and its contrapositive form T contra are
equivalent over RCA0, but their direct translations into
Weihrauch degrees t and tcontra might satisfy t 6≡W tcontra.

I Hence we need “sufficiently strong” interpretations of the
theorem.
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