Dataset comparison using persistent homology morphisms

Álvaro Torras Casas, Cardiff University
Online Machine Learning Seminar
31st May 2023

Engineering and Physical Sciences Research Council

Outline and scope of the talk:

- Review: Vietoris-Rips filtration and Persistent Homology
- Example: Morphisms between Vietoris-Rips filtrations.
- Motivation for induced partial matchings/Block Functions.
- Review: of Bauer-Lesnick matching
- Quick introduction to the induced block function.
- Explore examples of point-clouds embedded in \mathbb{R}^{2}.

Filtered Complexes: Vietoris-Rips filtration

- Consider a point sample $\mathbb{X} \subseteq \mathbb{R}^{n}$.
- Let $r \geq 0, \mathrm{VR}_{r}(\mathbb{X})$ is the maximal simplicial complex with edges

$$
[x, y] \in \operatorname{VR}_{r}(\mathbb{X}) \Longleftrightarrow\|x-y\|_{n} \leq 2 r
$$

- Given a sequence $a_{0}<a_{1}<\cdots<a_{n}$ from \mathbb{R}, there are inclusions

$$
\operatorname{VR}_{a_{0}}(\mathbb{X}) \hookrightarrow \operatorname{VR}_{a_{1}}(\mathbb{X}) \hookrightarrow \cdots \hookrightarrow \operatorname{VR}_{a_{n}}(\mathbb{X})
$$

- Category \mathbf{R} : objects $a \in \mathbb{R}$, arrows $a \rightarrow b$ iff $a \leq b$
- Filtered Complex : VR(X) : R $\rightarrow \mathbf{S p C p x}$

Computation of Persistence Barcode

- Pick up a maximum radius $R>0$
- Given $\sigma \in \operatorname{VR}_{R}(\mathbb{X})$, $\operatorname{define} \operatorname{filt}(\sigma)=\max \left\{\|x-y\|_{n} / 2 \mid x, y \in \sigma\right\}$.
- Given $D \in \mathbb{Z}_{\geq 0}$, Consider $\operatorname{VR}_{R}^{D}(\mathbb{X})$, the D-skeleton given by simplices $\sigma \in \mathrm{VR}_{R}(\mathbb{X})$ such that $\operatorname{dim}(\sigma) \leq D$.
- Sort simplices from $\operatorname{VR}_{R}^{D}(\mathbb{X})$ by increasing filtration values and dimension, i.e. $\sigma_{1} \leq \sigma_{2} \Rightarrow \operatorname{filt}\left(\sigma_{1}\right) \leq \operatorname{filt}\left(\sigma_{2}\right)$ and $\operatorname{dim}\left(\sigma_{1}\right) \leq \operatorname{dim}\left(\sigma_{2}\right)$.
- Choose a field k; e.g. \mathbb{Z}_{11}
- Perform a Gaussian elimination on the boundary matrix of $\operatorname{VR}_{R}^{D}(\mathbb{X})$.
- We obtain the persistence barcode and representatives.

Example of Computation of Persistent Homology

Boundary Matrix:

$$
\left(\begin{array}{c|ccccccc}
& e_{0} & e_{1} & e_{2} & e_{3} & e_{4} & \sigma_{0} & \sigma_{1} \\
\hline v_{0} & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\
v_{1} & 1 & -1 & 0 & 0 & -1 & 0 & 0 \\
v_{2} & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
v_{3} & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
e_{0} & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
e_{1} & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
e_{3} & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
e_{4} & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left\{\begin{array}{c}
\text { Persistence Pairs } \\
?
\end{array}\right\}
$$

Example of Computation of Persistent Homology

Reduced Boundary Matrix: obtain persistence pairs and representatives:

$$
\left(\begin{array}{c|ccccccc}
& e_{0} & e_{1} & e_{2} & e_{3} & e_{4} & \sigma_{0} & \sigma_{1} \\
\hline v_{0} & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
v_{1} & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
v_{2} & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
v_{3} & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
e_{0} & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
e_{1} & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
e_{2} & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
e_{3} & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
e_{4} & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \rightarrow\left\{\begin{array}{c}
\text { Persistence Pairs } \\
\left(v_{1}, e_{0}\right) \\
\left(v_{2}, e_{1}\right) \\
\left(v_{3}, e_{2}\right) \\
\left(e_{4}, \sigma_{0}\right) \\
\left(e_{3}, \sigma_{1}\right) \\
\text { Convention: } \\
\text { (positive, negative) }
\end{array}\right)
$$

Example: Interval decomposition

- For each pair (τ, σ), we obtain an interval $I=[\operatorname{filt}(\tau)$, filt $(\sigma))$.
- I is nontrivial iff filt $(\tau)<\operatorname{filt}(\sigma)$
- $\operatorname{filt}(\tau)$ is the birth value and filt (σ) is the death value of I.

Example

- Homology: H_{0} "connected components", H_{1} "holes", etc.
- Persistent Homology : $\mathrm{PH}_{n}(\mathbb{X}):=\mathrm{H}_{n}(\mathrm{VR}(\mathbb{X}) ; k): \mathbf{R} \rightarrow$ Vect $_{k}$

Persistence Modules and Morphisms

- Persistence Module: a functor $V: \mathbf{R} \rightarrow$ Vect $_{k}$. Sometimes written as a pair (V, ρ) where ρ are the structure maps $\rho_{s t}: V_{s} \rightarrow V_{t}$ for all $s<t$.
- Morphism between Persistence Modules: Given persistence modules (V, ρ) and (U, τ), then $f: V \rightarrow U$ is a set of linear maps $f_{t}: V_{t} \rightarrow U_{t}$ for all $t \in \mathbf{R}$ s.t. $\tau_{s t} f_{s}=f_{t} \rho_{s t}$ for all $s<t$.
- Alternative names: "Persistence Morphism" or "Ladder Module".
- Interval Module: $k_{[a, b)}: \mathbf{R} \rightarrow$ Vect $_{k}$, with

$$
k_{[a, b)}(r)=\left\{\begin{array}{l}
k, \text { for } r \in[a, b) \\
0, \text { otherwise } .
\end{array}\right.
$$

A little more about Barcode Decompositions

- Let (V, ρ) be a persistence module.
- If V satisfies the descending chain condition for images and kernels then

$$
V \simeq \bigoplus_{I \in S_{V}}\left(\oplus_{m_{l}} k_{l}\right)
$$

as proved in 1.

- The barcode of $V, \mathbf{B}(V)$, is a multiset $\left(S_{V}, m\right)$ where S_{V} is a set of intervals and $m: S_{V} \rightarrow \mathbb{Z}_{\geq 0} \cup\{\infty\}$ is the multiplicity of bars.
- The representation of a multiset (S, m) is the set

$$
\left.\operatorname{Rep}(S, m)=\left\{(I, i) \in S \times \mathbb{N}: i \leq m_{l}\right)\right\}
$$

[^0]
Example of (Representation of) Barcodes

Example

Consider $U: \mathbf{R} \rightarrow$ Vect $_{k}$ such that

$$
U \simeq k_{[1,2]} \oplus k_{[1,2]} \oplus k_{[2,3]}
$$

Then its barcode is $\mathbf{B}(U)=\{([1,2], 2),([2,3], 1)\}$ and the representation of its barcode is $\operatorname{Rep} \mathbf{B}(U)=\left\{[1,2]_{1},[1,2]_{2},[2,3]_{1}\right\}$, which can be displayed as:

Persistence Morphisms

- Let a morphism between persistence modules $f: V \rightarrow U$.

Problem: $f: V \rightarrow U$ has indecomposables of wild type ${ }^{2}$; i.e. there is no "barcode" for f.
Idea: Use the barcode decompositions $\mathbf{B}(V)$ and $\mathbf{B}(U)$.

- A barcode basis for V is a choice $V \simeq \bigoplus_{i \in \Gamma} k_{\left[a_{i}, b_{i}\right]}$
- Given a choice of bases for V and U, we might understand f by means of an associatd matrix F.

Example

- Let \mathbb{X} and \mathbb{Y} be two finite subsets from \mathbb{R}^{n} such that $\mathbb{X} \subseteq \mathbb{Y}$.
- This induces an embedding $\operatorname{VR}(\mathbb{X}) \hookrightarrow \operatorname{VR}(\mathbb{Y})$.
- In turn, this induces a persistence morphism $f: V \rightarrow U$, where $V=\mathrm{PH}_{n}(\operatorname{VR}(\mathbb{X}))$ and $U=\mathrm{PH}_{n}(\operatorname{VR}(\mathbb{Y}))$ for some $n \in \mathbb{Z}_{\geq 0}$.

[^1]
Associated Matrix Computation (Skip?)

Example

- Consider the reduced matrices R_{V} and R_{U} that result from computing $V=\mathrm{PH}_{*}(\operatorname{VR}(\mathbb{X}))$ and $U=\mathrm{PH}_{*}(\operatorname{VR}(\mathbb{Y}))$ resp.
- Consider the cycle representatives of V, i.e. the submatrix $\widetilde{R_{V}}$ from R_{V} that results from keeping the columns labelled by negative simplices from nontrivial intervals.
- Note that the rows from $\widetilde{R_{V}}$ correspond to simplices from $\operatorname{VR}_{R}^{D}(\mathbb{X})$.
- Using $\iota: C_{*}\left(\operatorname{VR}_{R}^{D}(\mathbb{X}) ; k\right) \hookrightarrow C_{*}\left(\operatorname{VR}_{R}^{D}(\mathbb{Y}) ; k\right)$, obtain the matrix product $E_{V}=M_{\iota} R_{V}$, where M_{ι} is the matrix associated to ι.
- Consider the matrix $\left(R_{U} \mid E_{V}\right)$ and reduce it; all columns from E_{V} should vanish.
- Tracking the additions, one gets the associated matrix of $V \rightarrow U$.
- Caveat: One might need to do a little more work for "infinite bars".

Example: Subset of a bigger Point Cloud

Example: Subset of a bigger Point Cloud

$$
F=\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

$\beta_{1}=$
$\beta_{2}=\ldots$
β_{3}

0
1
2
3

Computing Images

- Let $f: V \rightarrow U$ be a persistence morphism with associated matrix F.
- Sort the intervals from $\mathbf{B}(V)$ following the standard order:

$$
[a, b) \leq[c, d) \text { iff } a<c, \text { or if } a=c \text { and } d \leq b .
$$

- Sort the intervals from $\mathbf{B}(U)$ following the endpoint order:

$$
[a, b) \leq[c, d) \text { iff } b<d \text {, or if } b=d \text { and } a \leq c .
$$

- Consider F with rows and columns reordered.
- Let R be the Gaussian column reduction of F.
- The columns from R generate $\operatorname{Im}(f) \subseteq U$
- A pivot in a column associated to $[a, b)$ and a row associated to $[c, d)$ leads to a bar $[a, d)$ for $\mathbf{B}(\operatorname{Im}(f))$.
- Similarly one can compute kernels and quotients ${ }^{3}$
${ }^{3}$ Ch. 4 Á Torras-Casas, Persistence Spectral Sequences, (2022) Cardiff University.

Images and Kernels Illustration

Downside of Images and Kernels (example)

Downside of Images and Kernels (example)

Motivation for the Induced Block Function (example)

Block Functions and Partial Matchings

- A block function between $\mathbf{B}_{1}=\left(S_{1}, m\right)$ and $\mathbf{B}_{2}=\left(S_{2}, n\right)$ is a function $\mathcal{M}: S_{1} \times S_{2} \longrightarrow \mathbb{Z}_{\geq 0} \cup\{\infty\}$ such that:

$$
\sum_{J \in S_{2}} \mathcal{M}(I, J) \leq m_{I}
$$

- Assignment: $\mathcal{M}_{f}: R_{1} \rightarrow R_{2}$ between subsets $R_{1} \subseteq \operatorname{Rep} \mathbf{B}_{1}$ and $R_{2} \subseteq \operatorname{Rep} \mathbf{B}_{2}$. For ease, we write $\mathcal{M}_{f}: \operatorname{Rep} \mathbf{B}_{1} \rightarrow \operatorname{Rep} \mathbf{B}_{2}$.
- A partial matching is a bijection $\sigma: R_{1} \rightarrow R_{2}$.
- If a block function satisfies

$$
\sum_{I \in S_{1}} \mathcal{M}(I, J) \leq n_{J},
$$

it induces a partial matching $\operatorname{Rep} \mathbf{B}_{1} \rightarrow \operatorname{Rep} \mathbf{B}_{2}$.

Example: A block function NOT inducing a partial matching

Example

$\mathbf{B}_{1}=\left(S_{1}, m\right)=\{([2,4], 1),([1,5], 2)\}$ and
$\mathbf{B}_{2}=\left(S_{2}, n\right)=\{([2,3], 1),([1,4], 2)\}$
Consider $\mathcal{M}: S_{1} \times S_{2} \longrightarrow \mathbb{Z}_{\geq 0} \cup\{\infty\}$ which is zero except for

$$
\mathcal{M}([2,4],[1,4])=1 \text { and } \mathcal{M}([1,5],[1,4])=2 .
$$

\mathcal{M} is a block function, since

$$
\mathcal{M}([2,4],[1,4])=1 \leq m_{[2,4]} \text { and } \mathcal{M}([1,5],[1,4])=2 \leq m_{[1,5]}
$$

however \mathcal{M} does not induce a partial matching since

$$
\mathcal{M}([2,4],[1,4])+\mathcal{M}([1,5],[1,4])=3 \not \leq n_{[1,4]}=2 .
$$

Example: A block function inducing a Partial Matching

Example

$\mathbf{B}_{1}=\left(S_{1}, m\right)=\{([2,4], 1),([1,5], 2)\}$ and
$\mathbf{B}_{2}=\left(S_{2}, n\right)=\{([2,3], 1),([1,4], 2)\}$
Consider $\mathcal{M}: S_{1} \times S_{2} \longrightarrow \mathbb{Z}_{\geq 0} \cup\{\infty\}$ which is zero except for

$$
\mathcal{M}([2,4],[1,4])=\mathcal{M}([1,5],[1,4])=1
$$

\mathcal{M} is a block function inducing a partial matching $\sigma_{\mathcal{M}}: \operatorname{Rep} \mathbf{B}_{1} \rightarrow \operatorname{Rep} \mathbf{B}_{2}$ given by:

$$
[2,4]_{1} \mapsto[1,4]_{1} \text { and }[1,5]_{1} \mapsto[1,4]_{2}
$$

while $[2,3]_{1} \in \operatorname{Rep} \mathbf{B}_{2}$ remains unmatched.

The Bauer-Lesnick induced partial matching

- Let $f: V \rightarrow U$ be a persistence morphism.
- In 2015 Bauer and Lesnick introduced ${ }^{4}$ an induced partial matching $\chi_{f}: \operatorname{Rep} \mathbf{B}(V) \rightarrow \operatorname{Rep} \mathbf{B}(U)$.
- χ_{f} is defined by using $\mathbf{B}(V), \mathbf{B}(U)$ and $\mathbf{B}(\operatorname{Im}(f))$:

[^2]
Downside to the Bauer-Lesnick Partial Matching

- χ_{f} might be "blind" to f.

Example

Consider the persistence morphism $f: V \rightarrow U$ given by:

$$
f=\left(k_{[2,3]} \rightarrow 0\right) \oplus\left(\mathrm{Id}: k_{[2,2]} \rightarrow k_{[1,2]}\right)
$$

i.e. $f: k_{[2,3]} \oplus k_{[2,2]} \rightarrow k_{[1,2]}$ with associated matrix:

$$
F=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

One would expect: $[2,3]_{1} \longmapsto \emptyset, \quad[2,2]_{1} \longmapsto[1,2]_{1}$.
However, $\operatorname{Im}(f) \simeq k_{[2,2]}$ and χ_{f} produces:

$$
[2,3]_{1} \stackrel{\chi_{f}}{\longmapsto}[1,2]_{1}, \quad[2,2]_{1} \stackrel{\chi_{f}}{\longmapsto} \emptyset
$$

- Additionally, when computing χ_{f} we might need to check equality between double type variables (!).

Quick Introduction to the Induced Block Function \mathcal{M}_{f}

- Let $f: V \rightarrow U$ be a persistence morphism.
- There is an induced block funct. ${ }^{5} \mathcal{M}_{f}$ from $\mathbf{B}(V)$ to $\mathbf{B}(U)$ s. t.:
- Additivity: Given a direct sum of morphisms:

$$
f^{1} \oplus f^{2}: V^{1} \oplus V^{2} \longrightarrow U^{1} \oplus U^{2}
$$

We have that, $\mathcal{M}_{f^{1} \oplus f^{2}}(I, J)=\mathcal{M}_{f^{1}}(I, J)+\mathcal{M}_{f^{2}}(I, J)$.

- Pivots: Let $f: k_{l} \rightarrow U$ with associated matrix C :

$$
C=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]
$$

then $\mathcal{M}_{f}(I, J) \neq 0$ where J the "pivot" that results from the order: $[a, b] \leq[c, d]$ iff $b<d$ or, if $b=d$ then $a \leq c$.

[^3]
Revisiting the Example and additional property of \mathcal{M}_{f}

Example

Consider the persistence morphism $f: V \rightarrow U$ given by:

$$
f=\left(k_{[2,3]} \rightarrow 0\right) \oplus\left(\operatorname{Id}: k_{[2,2]} \rightarrow k_{[1,2]}\right)
$$

then,

- by additivity $\mathcal{M}_{f}=\mathcal{M}_{g}$, where $g=\operatorname{Id}: k_{[2,2]} \rightarrow k_{[1,2]}$
- by the pivot property, $\mathcal{M}_{f}([2,2],[1,2])=1$.

Altogether \mathcal{M}_{f} is zero everywhere except $\mathcal{M}_{f}([2,2],[1,2])=1$. Thus, \mathcal{M}_{f} induces the expected matching:
$[2,3]_{1} \longmapsto \emptyset, \quad[2,2]_{1} \longmapsto[1,2]_{1}$.

- Interval Order condition: given $I=[a, b]$ and $J=[c, d]$, if $\mathcal{M}_{f}(I, J) \neq 0$, then

$$
c \leq a \leq d \leq b
$$

Matching circles in the plane

Example: Matrix computation

- Consider $V \simeq k_{[2,3]} \oplus k_{[1,4]} \oplus k_{[2,5]}$ and $U \simeq k_{[0,3]} \oplus k_{[1,4]}$.
- Order the intervals in $\mathbf{B}(V)$ and $\mathbf{B}(U)$ following the endpoint order.

- Suppose that f is associated to the following matrix:

$$
F=\left[\begin{array}{c|ccc}
& {[2,3]} & {[1,4]} & {[2,5]} \\
\hline[0,3] & 1 & 1 & 0 \\
{[1,4]} & 0 & 1 & 1
\end{array}\right]
$$

- Let $I=[a, b]$. Consider F_{l}, the reduced minor of F restricted to columns associated to $[c, d]$ with $c \leq a$ and $d \leq b$:

$$
F_{[2,3]}=\left[\begin{array}{l}
\mathbf{1} \\
0
\end{array}\right], F_{[1,4]}=\left[\begin{array}{l}
1 \\
\mathbf{1}
\end{array}\right] \text {, and } F_{[2,5]}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & \mathbf{0}
\end{array}\right]
$$

- \mathcal{M}_{f} is given by $[2,3] \mapsto[0,3]$ and $[1,4] \mapsto[1,4]$ and $[2,5] \mapsto \emptyset$.

Example: Subset of a bigger Point Cloud

$$
F=\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

$\beta_{1}=$
$\beta_{2}=\ldots$
β_{3}

0
1
2
3

Example: Subset of a bigger Point Cloud

Nested intervals and \mathcal{M}_{f}

- Nested Intervals: $[a, b]$ and $[c, d]$ are nested if $a<c<d<b$
- If for any set of intervals $S \subseteq S_{V}$ we have that

$$
\sum_{l \in S} \mathcal{M}_{f}(I, J)>n_{J},
$$

then there exists a pair of nested intervals in S.

- Corollary If there are no two nested intervals in S_{V} then \mathcal{M}_{f} induces a partial matching.

Example: Two subsets with the same intervals and image

Example: Image computation for S_{1}

- $f_{1}: S_{1} \hookrightarrow T$ with
$\mathbf{B}\left(\mathrm{PH}_{1}\left(\operatorname{VR}\left(S_{1}\right)\right)\right)=\{[0.6,1.3],[0.5,1.5],[0.6,1.5]\}$ and $\mathbf{B}\left(\mathrm{PH}_{1}(\operatorname{VR}(T))\right)=\{[0.4,1.2],[0.5,1.2]\}$.
- Order domain by standard order and codomain by endpoint order:

$$
F=\left[\begin{array}{c|ccc}
& {[0.5,1.5]} & {[0.6,1.5]} & {[0.6,1.3]} \\
\hline[0.4,1.2] & 0 & 1 & 0 \\
{[0.5,1.2]} & 1 & 0 & 1
\end{array}\right]
$$

- Obtain the reduction:

$$
R=\left[\begin{array}{c|ccc}
& {[0.5,1.5]} & {[0.6,1.5]} & {[0.6,1.3]} \\
\hline[0.4,1.2] & 0 & 1 & 0 \\
{[0.5,1.2]} & 1 & 0 & 0
\end{array}\right]
$$

- Image barcodes: $\mathbf{B}\left(\operatorname{Im}\left(f_{1}\right)\right)=\{[0.5,1.2],[0.6,1.2]\}$.

Example: Image computation for S_{2}

- $f_{2}: S_{2} \hookrightarrow T$ with
$\mathbf{B}\left(\mathrm{PH}_{1}\left(\operatorname{VR}\left(S_{2}\right)\right)\right)=\{[0.6,1.3],[0.5,1.5],[0.6,1.5]\}$ and $\mathbf{B}\left(\mathrm{PH}_{1}(\operatorname{VR}(T))\right)=\{[0.4,1.2],[0.5,1.2]\}$.
- Order domain by standard order and codomain by endpoint order:

$$
F=\left[\begin{array}{c|ccc}
& {[0.5,1.5]} & {[0.6,1.5]} & {[0.6,1.3]} \\
\hline[0.4,1.2] & 1 & 1 & 0 \\
{[0.5,1.2]} & 1 & 0 & 1
\end{array}\right]
$$

- Obtain the reduction:

$$
R=\left[\begin{array}{c|ccc}
& {[0.5,1.5]} & {[0.6,1.5]} & {[0.6,1.3]} \\
\hline[0.4,1.2] & 1 & 1 & 0 \\
{[0.5,1.2]} & 1 & 0 & 0
\end{array}\right]
$$

- Image barcodes: $\mathbf{B}\left(\operatorname{Im}\left(f_{2}\right)\right)=\{[0.5,1.2],[0.6,1.2]\}$.
- I.e. $\operatorname{Im}\left(f_{1}\right) \simeq \operatorname{Im}\left(f_{2}\right) \simeq k_{[0.5,1.2]} \oplus k_{[0.6,1.2]}$

Example: Computation of $\mathcal{M}_{f_{1}}$

- Now, sort both $\mathbf{B}\left(S_{1}\right)$ and $\mathbf{B}(T)$ by endpoint order.
- We have a matrix

$$
F=\left[\begin{array}{c|ccc}
& {[0.6,1.3]} & {[0.5,1.5]} & {[0.6,1.5]} \\
\hline[0.4,1.2] & 0 & 0 & 1 \\
{[0.5,1.2]} & 1 & 1 & 0
\end{array}\right]
$$

- Obtain the matrices:

$$
F_{[0.6,1.3]}=\left[\begin{array}{l}
0 \\
\mathbf{1}
\end{array}\right], F_{[0.5,1.5]}=\left[\begin{array}{c}
0 \\
\mathbf{1}
\end{array}\right], F_{[0.6,1.5]}=\left[\begin{array}{lll}
0 & 0 & \mathbf{1} \\
1 & 0 & 0
\end{array}\right],
$$

- Assignment: $[0.6,1.3] \mapsto[0.5,1.2],[0.5,1.5] \mapsto[0.5,1.2]$ and $[0.6,1.5] \mapsto[0.4,1.2]$.

Example: Computation of $\mathcal{M}_{f_{2}}$

- Now, sort both $\mathbf{B}\left(S_{2}\right)$ and $\mathbf{B}(T)$ by endpoint order.
- We have a matrix

$$
F=\left[\begin{array}{c|ccc}
& {[0.6,1.3]} & {[0.5,1.5]} & {[0.6,1.5]} \\
\hline[0.4,1.2] & 0 & 1 & 1 \\
{[0.5,1.2]} & 1 & 1 & 0
\end{array}\right]
$$

- Obtain the matrices:

$$
F_{[0.6,1.3]}=\left[\begin{array}{l}
0 \\
\mathbf{1}
\end{array}\right], F_{[0.5,1.5]}=\left[\begin{array}{l}
1 \\
\mathbf{1}
\end{array}\right], F_{[0.6,1.5]}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],
$$

- Assignment: $[0.6,1.3] \mapsto[0.5,1.2]$ and $[0.5,1.5] \mapsto[0.5,1.2]$.
- We might distinguish f_{1} and f_{2} based on $\mathcal{M}_{f_{1}}$ and $\mathcal{M}_{f_{2}}$

OSM Data Example: Hotels and Restaurants in Seville

- There are 67 Hotels and 499 restaurants.

Sample of 67 restaurants

Sample of 100 restaurants

Sample of 200 restaurants

Future Work and Questions

- Can we obtain an alternative definition for an induced block funciton $\widetilde{\mathcal{M}_{f}}$ which always induces a partial matching? yes, work in progress.
- Optimal implementations for computing the associated matrix.
- Work with other filtrations; e.g. Block functions between alpha complexes.
- Find stability conditions for \mathcal{M}_{f}
- Find use-cases for this block function.

Bibliography

R. González-Díaz, M. Soriano-Trigueros, Á. Torras-Casas, Partial Matchings induced by Morphisms between Persistence Morphisms, Computational Geometry, Volume 112, June 2023.
E. Escolar, Y. Hiraoka. Persistence modules on commutative ladders of finite type, Discrete and Computational Geometry, 55 (2014), pp. 100-157.
W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules, Journal of Algebra and Its Applications, 14 (5) (2015)
(U. Bauer, M. Lesnick. Induced matchings and the algebraic stability of persistence barcodes, Journal of Computational Geometry, 6 (2) (2015), pp. 162-191

图 Á Torras-Casas, Persistence Spectral Sequences, (2022) Cardiff University.

Acknowledgements

- EPSRC grants: EP/W522405/1 (current) and EP/N509449/1. Engineering and
Physical Sciences
Research Council
- Ministerio Project: PID2019-107339GB-I00

- Junta Andalucía Project: P20_01145

Δ
Junta de Andalucía

- CIMAgroup FQM-369 (Universidad de Sevilla)

Thank You!

Email: TorrasCasasA@cardiff.ac.uk

Website: https://alvaro-torras-casas.org/

Thesis: https://orca.cardiff.ac.uk/id/eprint/149745/

SDY\|

[^0]: ${ }^{1}$ W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules, Journal of Algebra and Its Applications, 14 (5) (2015)

[^1]: ${ }^{2}$ E. Escolar, Y. Hiraoka. Persistence modules on commutative ladders of finite type, Discrete and Computational Geometry, 55 (2014), pp. 100-157

[^2]: ${ }^{4}$ U. Bauer, M. Lesnick. Induced matchings and the algebraic stability of persistence barcodes, Journal of Computational Geometry, 6 (2) (2015), pp. 162-191

[^3]: ${ }^{5}$ R. González-Díaz, M. Soriano-Trigueros, Á. Torras-Casas, Partial Matchings induced by Morphisms between Persistence Morphisms, Comput. Geom., Vol. 112, 2023.

