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Motivation and Knowledge

A smooth Fano variety X admits a Kahler—Einstein metric

)

X is K-polystable.
n = dim(X)
» n=1:P!is K-polystable

» n=2: adel Pezzo surface is K-polystable if and only if it is
not a blow up of P? in one or two points

» n = 3: smooth Fano threefolds have been classified into 105
families



Calabi Problem:
Find all K-polystable smooth Fano threefolds in each family.

in The Calabi Problem for Fano Threefolds” (2021) by C. Araujo,
A.-M. Castravet, |. Cheltsov, K. Fujita, A.-S. Kaloghiros, J.
Martines-Garcia, C. Shramov, H. Suss, N. Viswanathan



d-invariant
We define

>

_ .. Ax(F)
o) = l!r/];c< Sx(F)’

Theorem
The following assertions holds:

> X is K-stable < 6(X) > 1
» X is K-semistable < 0(X) > 1.

We define
: Ax(F)
dp(X) = f
P( ) IL?X SX(F)’
PeCx(F)
Theorem

The following assertions holds:
» X is K-stable < 0p(X) > 1 for all P € X
» X is K-semistable < 0p(X) > 1 for all P € X.



Abban-Zhuang Theory via Kento Fujita formula

Let P be the point in X. We want to estimate dp(X):
1. Choose surface S C X such that P € S
2. Compute

T=1(5) :sup{u € Qo ’ — Kx —uS'is big}

3. For u e [0,7] let
» P(u) be the positive part of the Zariski decomposition of

the divisor —Kx — uS
» N(u) be the negative part of the Zariski decomposition of

the divisor —Kx — uS

4. Compute
1 T
Sx(S) = (—KX)?’/O P(u)3du



Abban-Zhuang Theory via Kento Fujita formula

Theorem
. 1 S
0p(X) = min {sx(s)"s”(s’ W"')}
where As(F)
sy . _ S\
op(S, W) = int. S(Wo.i F)’

PGCS(F)

the infimum is taken by all prime divisors F over the surface S
such that P € Cs(F) and

5(|/|/5 F) = - ;) / (P(u)z-S)-ord,:(N(u)‘ )du—i—
_|_ Kx // vol P(u —vF)dvdu



Local d-invariant for surfaces

Let S be a smooth surface, let D be a big and nef divisor on S.
For every prime divisor F over S, set

Sp(F) = % /vol(D — vF)dv.

0

Let P be point in S, and let

. As(F)
%(5:D) = Inf S Ry
PGCS(F)

where the infimum is taken by all prime divisors over S whose
center on S contains P.
If D = —Ks then dp(S,—Ks) is denoted by dp(S).



How to estimate dp(S, D) from above?

» Fix a smooth curve C C S that passes through P.
> Set

T= sup{v € Ry ‘ the divisor D — vC is pseudo—efFective}

» For v € [0,7], let P(v) and N(v) be the positive part and
negative of the Zariski decomposition of the divisor D — vC.

» Then As(C) =1 and

[e.e] T

1 1 ,
Sp(C) = Dz/VOI(D_ vC)dv = D2/P(V) dv
0 0
Thus
1
dp(S,D) <
p(S,D) 55(C)




How to estimate dp(S, D) from below?

> Set
S(Wf.; P) = D22/0rdp(N(v)\C) (P(v)- C)dv+
0
+D12/(P(v) C)Zdv = D22/0T h(v)dv,
0
where

Then it follows from Abban-Zhuang Theory that

. 1 1
p (S, D) = min {SD(C)’ SWEi P) }




How to estimate dp(S, D) from above using blowups?

> Let f: S — S be the blow up of S at the point P, and let E
be the f-exceptional curve.

> Set

T = sup{u € Ryo { the divisor f*(D) — VE is pseudo—effective}

> For v € [0,7], let P(v) and N(v) be the positive and negative
part of the Zariski decomposition of the divisor f*(D) — vE.

» Then As(E) =2 and

1 ~
Sp(E) = DZ/P(V)zdv
0
Then
5p(S,D) < —2
P\, S SD(E)




How to estimate dp(S, D) from below using blowups?
> for every point O € E, we set

T

S(WE0) = 1y [ ordo(R(v)le) (P(v)le)d+

0

T

ton [ (PO BV dv = 5 [ nvya.
0

0

(P(v)-E)®
—
Then it follows from from Abban-Zhuang Theory that that

: 2 _ 1




Example: P! x P!
Let S =P x PL. Suppose P € L; where L; is one of the rulings.
P(v) = —Ks — vL1 and N(v) =0 for v € [0, 2]

P(v)?> =4(2 — v) and P(v) - Ly = 2 for v € [0, 2]

Thus,

Ss(Ly) = ;/2 42— V)dv =1 = 5p(S) < 1
0

(P(v) - L1)?

h(v) = (P(v) - L1) x (N(v) - Li)p + 5

=2 for v €0,2]

2 [? 2 (2
S(W,L},;P):8/ h(v)dv:8/ 2dv =1
0 0

Thus, 6p(S) > min{l1,1} = 1.



Fano threefolds of Picard rank 3 and degree 20

Let S = P! x P!, let C be a smooth curve in S of degree (5,1),
and let ¢: C — P! be the morphism induced by the projection
S — P! to the first factor.

S=Plxpt_"__ _p1
C < P!

> deg(e) =5
» Assume the points ([1:0],[0:1]) and ([0: 1],[1:0]) are
among ramifications points

» So the curve C is given by

u(X5+alx4y+azx3y2+a3x2y3) =v (y5—|—b1xy4—|—b2x2y3+b3x3y2)



Fano threefolds of Picard rank 3 and degree 20

The ramification index of the point ([1: 0], [0 : 1]) can be
computed as follows:

2 if a3 #£0,
3ifaz=0and a» #0,

4 if a3 =a» =0and a; #0,
5ifaz=a=a; =0.

Likewise, we can compute the ramification index of the point
([0:1],[1:0]). We may assume that
» ([1:0],[0: 1]) has the largest ramification index among all
ramifications points of ¢
» the ramification index of the point ([0: 1],[1:0]) is
the second largest index.



Fano threefolds of Picard rank 3 and degree 20

C: u(X5+alx4y+agx3y2+a3x2y3) = v(y5+b1xy4+b2x2y3+b3x3y2)

» if both indices are 5then a1 = a» = a3 =b1 = b = b3 =0
C:ux®> = vy and Aut(S, C) = C* x Z/2Z

» otherwise Aut(S, C) < oo



Fano threefolds of Picard rank 3 and degree 20

Now, we consider embedding S < P! x P? given by

([u: v], [x: y]) — ([u: v], [X2 DXy y2]),

and identify S and C with their images in P! x P2,
Let 7: X — P! x P? be the blow up of the curve C. We denote a
strict transform of S by S.

ScXx

Clﬂ
CCS="P xPle——P! x P2
Then X is a smooth Fano threefold in the deformation family

Ne 3.5 in the Mori—-Mukai list and every smooth member of this
family can be obtained in this way.



Known results (Book)

C: u(X5+alx4y+azx3y2+a3x2y3) = v(y5+blxy4+b2x2y3+b3x3y2)

> X is K-stable if a;, ap, as, b1, by, bs are general enough,

> X is K-polystable if a1 = ap = a3 = by = bp = b3 =0,

» X is not K-polystable if (a1, az, as) = (0,0,0) # (b1, bz, b3),
» Aut(X) is finite < (a1, a, a3, b1, ba, b3) # (0,0,0,0,0,0),
» in this case X is K-polystable & X is K-stable.



Let pry : Pt x P? — P! be the projection to the first factor and
¢1 = pryom. Then ¢; is a fibration into del Pezzo surfaces of
degree four.

X

) lﬂ\
pT

CcS=PlxpPlc_splxpz——1 =Pl



Conjecture

Conjecture (Book)
The Fano threefold X is K-stable < (a1, az, a3) # (0,0, 0).
Geometrically, this conjecture says that the following two
conditions are equivalent:

1. the threefold X is K-stable,

2. the morphism e: C — P! does not have ramification points of

ramification index five.

So it can be restated as follows:
Conjecture

The Fano threefold X is K-stable if and only if every singular fiber
of ¢1 has only singular points of type A, Ay or As.



Goal

The goal is to prove the following (slightly weaker) result:

Theorem
If all ramification points of € have ramification index two, then X is
K-stable.

which can be restated as follows:

Theorem

If every singular fiber of ¢1 has only singular points of type Aq,
then X is K-stable.



Proof

Recall that X is K-stable < Jo(X) > 1 for all O € X where

} Ax(F)
X) = f
%(X) F/x Sx(F)’
OeCx(F)

for every prime divisor F over X such that O € Cx(F). Let's prove
that if each singular fiber of the fibration ¢; has one or two
singular points of type A; then dp(X) > 1 for all O € X!

e Fix a point O € X



Reminder: Abban-Zhuang Theory via Kento Fujita formula

Theorem

Let X be a smooth Fano threefold, let Y be an irreducible normal
surface in X. Suppose P(u) and N(u) are the positive part and
negative parts of ZD of —Kx — uY. Then

. 1
0p(X) = min {SX(Y)#;P(& Wo’,/o)}

where

: Ay (F)
(Y. Wee) = b ey Ey
PeCs(F) oo

the infimum is taken by all prime divisors F/Y, P € Cs(F) and

S(WJei F) = (—K3x)3 /OT (P(u)*-Y)- ordF(/\/(u)\y> du+

3 T o0
T



Proof: O € S

SX(g) = ﬁ Jo vol(—Kx — uS)du = A<l
Recall that S = P! x P! with rulings ¢1 and />

Slg=—t— o, Kxlg =1 + £

Let O € ¥»

Set Y =S, compute 7, P(u), N(u), estimate 6o(S, P(u)|z),
and get 0p(X) > 1.

vVvYyvyw



Proof: O ¢ S

» Let T be the fiber of ¢; such that 0 € T

» T is a del Pezzo surface with at most Du Val singularities
> Set 7 =sup{u € Ruo| — Kx — uT is pseudo-effective }
» For u e [0,7]:

> P(u) be the positive part of the ZD of the divisor —Kx — uT
» N(u) be its negative part of the ZD of the divisor —Kx — uT

— Kx —uT, ueo,1], 0,uelo1],
P(u) = _ ~ N(u) = ~
{—KX—uT—(u—l)S,u6[1,2] {(u—l)S,u€[1,2],

2
— 1
0



Proof: O ¢ S

Since O ¢ S then for any divisor F over T we get

S(W.T,.; F) = ﬁ (/OT (p(u)z -T) .ordO(N(u)‘?>du+

T oo 3 T oo
1(P(u)|= — vF)dvdu | = — 1(P(u)|= — vF)dvdu =
+/0 /0 vol ( (”)|T vF) dv u) 20/0 /0 vol ( (u)|T vF)dvdu
3 1 oo 2 oo _
= — // VOl(*K?va)dlelﬁ*// vol( — K& — (u—1)Ca — vF)dvdu | =
20 o Jo 1 Jo
/ vol(—K?—vF)dv—&-/ vol(—K-,——(u—l)Cg—VF)dV) <
0 0

(
(

_;)(/Ooovol(—KT_VF)dv+/0°Ovol(_KT_VF)dV> _
(/Ooovol(—KT— vF)dv) = 2(}1 /Ow vol( — Ky — VF)dV> _

Slw

So if 50(7) > 6/5, then dp(X) > 1.



Smooth dP,

2 if P € one (—1)-curve,

3
29

% if P € two (—1)-curves,
op(T) =
otherwise.




Dual Graph

Lss
=E UEUE3U Lys,
:= {(—1)-curves}\E then

if P € Lios,

E,

if Pe E\L123, Lis

op(T) = if P € two curves in F,

if P € one curve in F,

H=wlsoio H

M\ww‘m

, otherwise




A+ A (1)

Suppose

E:=E;ULj3ULjgU Lsag,
F .= (L23 N E2) U (L24 N E4),
G:=Lx3UEULyUE

5p(T) =

1if P€ E5 U Ly U Es,

—wlhoo
19

1
3
2

if P € E\(E1U Lps),
if PEF,

18 if pc G\(EUF),

, otherwise

Dual Graph

E,

E,

Las Lo

E;

Ly E,

E;s



A+ A (2)

Suppose E:= E; UE, U E3 U Es U L1a U Lpg U L3q U L,

1if P € E4U Lios,
if P € E\(EaU L123),
, otherwise

sp(T) =4 8
3
2

Ei, o L4

Dual Graph




Ay

Suppose E:= Lips UE3, F:= By UE; UEs U L3g, G := (E4 U L5) n (L14 U L24),
H:=EsULis ULy UlLs

SifPeE,
8if P F\E,

5p(T)=4 3ifPEG,
8 if P € H\G,
%, otherwise

E; Ly E, L3y
Dual Graph
L3 P

E, Ly Ls Es



Az (1)

Suppose E:= EUE), F:=EsULjp, G:= E;UQ

op(T) =

3if P e B,

24
29
12

11

if P € E\E3,
if P € F\E,

1ifP€L3\E3,
$ifP=EnNQ,

18

3
3
27

if Pe G\(FU(E1NQ)),
otherwise

B, Es Ey

Dual Graph

Lo L3 Es

E1 Q



Az (2)

Suppose E:= Lips UE3UE;, F:= EfUE,UEs U Ly

3ifPeE,
6p(T) =< 3 if P € F\E,
%, otherwise
E2 Dual Graph
L193 E
d
Es



5p(T) =

e =

N,

29

if Pe B,
if P € B\E2, E E, Es E, E;

0(0

if P€ E4\E3, @ @ @

if P e L2\E2,

if P € E1\Ey, Dual Graph
if P € E5\Eq, L,

if P € Q\Es,

otherwise



Proof

We see that if T is smooth then 6o(T) > 2 so 6o(X) > 1.

So we may assume that O € S and T is singular.
Recall that

AP 1
5o(T,D) = f T h %F:/lD—Fd
o ) ;?T S5(F) where Sp(F) ? vol(D — vF)dv
OeC+(F) 0

where 7 is the pseudo-effective threshold of F with respect to D.



Proof: §o(T) <6/5

We will prove that §o(T, D) > f(u) for every u € [1,2]:

15 — 3u?
16 + 3u — 9u? + 213
15 — 3u
11 —

f(u) =
for u € [a,2]

T

><X w
-

w
me—
o\ﬂ

1
3
vol (P(u)|+ — vF)dvdu + (_KX)3O/

T 20 6o(T)

(S;UZ) ) ) + 3 4A7(F) _

99

du> HF)+ SAR(F) < L Ax(F)

Thus T(F)

and X is K stable

for u € [1,4a]

/Tvol(P(u)
0

( ) > 100 for V prime F over T , O € C+(F) so that §o(T, D) > 100

|+ — vF)dvdu <

99



Proof that do(T, D) > f(u)?

» T is a Du Val del Pezzo surface

» blow up 7 induces a birational morphism v : T — P? which is
weighted blow up:

» Suppose u € [1,2]:
» D= —Ks—(1—u)Ca where C, := S|
» C, is contained in the smooth locus of the surface T
» (G, is the strict transform of the curve C, on the surface T
» D=—Kr—(1-u)C =0c*(D) so D is big and nef and
D? =5 — u? for u € [1,2]



Reminder: d-invariant
Recall that A—(F
5o(T.D) = inf ATlF)

F/T  So(F)
0€C(F)

where the infimum is run over all prime divisor F over T such that
O € G#(F). For every point P € T, we also define

5p(T,D) = inf Ar(E)
E/T Sp(E)
PECT(E)

where the infimum is run over all prime divisor E over T such that

P € Cr(E). Since D = ¢*(D) and K7 = 0*(K+), we have

6O(T7 5) = P'OiEE(P) 5P(T7 D)

So, to estimate do(T, D) it is enough to estimate §p(T, D) for P
all points P such that o(P) = O.



Reminder: how to estimate dp(S, D)?
» Fix a smooth curve C C T that passes through P.
> 7= sup{v € R>o ‘ the divisor D — vC is pseudo—effective}
» For v € [0,7], let P(v) and N(v) be the positive part and
negative of the Zariski decomposition of the divisor D — vC.
» Then As(C) =1 and Sp(C) = D2 fvol( —vC)dv

Thus

> Set S(WE,;P) = 2 [o h(v)dv where
2
olv) = (P(v)-€) x (N(v) €+ LD EL

Then it follows from Abban-Zhuang Theory that

p(T,D) > m'"{le(C) s(W.l.yP)}




One singular point of type A4

>
>

>

T has one singular point of type A;

blow up of P2 at points Py, P>, P3 and P4 in general position
and a point Ps in the exceptional divisor corresponding to Py
(5P(T)§%<:>P€ EsU L4 U Log U Loy U Es

45

Dual Graph

L, v Es L2




One singular point of type A4

Suppose P € Ey:

—Kr —(u—1)G — vEy for v € [0,2 — u]
P(v) =9 —Kyr —(u—1)C —vEy — (u+v —2)Es forv € [2 — u, 1]
—Kr —(u—1)C — vEy — (u+ v — 2)E5 — (v — 1)(L14 + Lpg + L3g) for v € [1,3 — u]

0forv e (0,2 —u
N(v) = ¢ (u+v —2)Es for v € [2 — u, 1]
(u+v —2)Es + (v — 1)(L1a + Lpg + Lza) for v € [1,3 — 4]

5—u? —2v% forv e (0,2 — 4] 2v for v € [0,2 — u]
P(v)2: O+ 2uv —4u—4v —v2forve 2—u,1] andP(v) - Eg={2—u-+vforve[2—ul
22 —-v)3—u—v)forve[l,3—u] 5—u—2vforve[l,3—u]
Thus,
1 2—u > 2 1 5
SD(E4):7(/ 5—u" —2v dv+/ 9+ 2uv — 4u — 4v — vidv+
5—u2\Jo 2—u

3—u 16 + 3u — 9u? + 2u°
n 22— V)B —u—v)dv) = — 78 TR
\/1 ( 2l " V) V) 15 — 3u2

2
15—3u

< — 2720

and 6p(T, D) < (o 7503



One singular point of type A4

> if Pe E4\(E5 U Lig ULy U L34)

2v2 for v € [0,2 — u]
2
hp(v) = w for v e [2—u,1]
2
w for v € [1,3 — u]

» if P=E;NEs

2v2 for v € [0,2 — u]
hp(v) = (27u+v)gu+3vf2) for v € [2 —u, 1]
(u+1)(527—u—2v) for v € [1,3 — u]

> ifPc E4ﬂ(L14UL24UL34)

2v2 for v € [0,2 — u]
hp(v) = 7(2_11;‘/)2 for v e [2—u,1]
W for v e [l1,3—u]



One singular point of type A4

So we have
> if P € Ej\(Es U L1g U Lpg U L34) then

£ 2 2—u_, 1 (2-u+v)? 3—u (5 — u — 2v)?
Sp(Wete: P) = —— / 2vdv+/ 7dv+/ — " dv
D( ..o ) 5—u2( o P 2 1 2 )
79+6u—9u2+2u3<16+3u—9u2+2u3
B 15 — 3u2 = 15 — 3u2
> if P = E4 N Es then
2 2—u 1 2—u+v)(u+3v—2
Sp(We's:i P) = 7(/ 2v2dv+/ $dw—
’ 5—u2\Jo 2—u 2
3—u (u41)(5 —u—2v 11— o3
+/ ( ) )dv):
1 2 15 — 3u2
> if P € Eg N (Lig U Lyg U L3g) then
E, 2 2—u ., 1 2—-u+4v)?
Sp(Woly: = / 2v dv+/ ——dv+
D( L) ) 5—u2( o o 2
3—u 3 —u)(5—u—2
+/ B—u)(E—u V)dv):
1 2

13430 —120® + 6u _ 16 + 3u — 9u® + 2u°
15 — 3u? - 15 — 3u?




One singular point of type A4

We obtain that

15 — 3u?
op(T,D) = for P € E4\Es d 1.2
p(T.D) 16+3u— 9 +203 ' © 4\Es and v € [1,2]
and
16 — 3u% for P=E;NEs and u € [1,4]
16 + 3u — 9u? + 213 R ’
5P(T7D)Z 2
15 — 3u

ﬁforP:E4ﬂE5 and Ue[a,2]
—u

where a is a root of 3u3 — 9u? +3u + 5 on [1,2]. Note that
a € [1.355, 1.356].



