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Newton–Okounkov bodies

Toric degenerations

Z : an irreducible normal projective variety over C (m := dimC(Z)),
L : an ample line bundle on Z.

Definition

A toric degeneration of (Z,L) is a flat morphism π : X = Proj(R)→ C
such that (π−1(t),OX(1)|π−1(t)) ' (Z,L) for all t ∈ C×, and
Z0 := π−1(0) is an irreducible normal projective toric variety.

Theorem (Harada–Kaveh 2015)

If Z is smooth, L is very ample, and there exists a toric degeneration of
(Z,L) satisfying some “good conditions”, then

there exists a surjective continuous map Z ↠ Z0 which induces a
symplectomorphism from an open dense subset U ⊆ Z;

there exists a completely integrable system on Z whose image
coincides with a moment polytope of Z0.
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Newton–Okounkov bodies

Toric degenerations

There exists a systematic way to construct toric degenerations of (Z,L),
called a Rees-type construction, which is roughly as follows:

construct a “good” Z× Zm-filtration on the section ring

R :=
⊕

k∈Z≥0

H0(Z,L⊗k),

where the first Z-filtration is given by the natural Z≥0-grading on R;

there exists a linear projection Z× Zm → Z which induces a
Z≥0-filtration R≤k ⊆ R whose associated graded is gr(R);

the Rees algebra R :=
⊕

k∈Z≥0
R≤ktk gives a toric degeneration

X := Proj(R)→ C.
There exist several ways to construct such Z× Zm-filtration, including

representation theory (Caldero 2002, Alexeev–Brion 2004),

Newton–Okounkov bodies (Anderson 2013),

cluster algebras (Gross–Hacking–Keel–Kontsevich 2018).
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Newton–Okounkov bodies

Newton–Okounkov bodies

Assume that Z is rational, and fix an identification

C(Z) " C(t1, . . . , tm).

Let

≤ : a total order on Zm, respecting the addition,

τ ∈ H0(Z,L) : a nonzero section.

The lowest term valuation vlow≤ : C(Z) \ {0}→ Zm is defined as follows:

vlow≤ (f/g) := vlow≤ (f)− vlow≤ (g), and

vlow≤ (f) := (a1, . . . , am)⇔ f = cta11 · · · tamm + (higher terms w.r.t. ≤)

for f, g ∈ C[t1, . . . , tm] \ {0}, where c ∈ C×.
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Newton–Okounkov bodies

Newton–Okounkov bodies

Define a semigroup S(Z,L, vlow≤ , τ) ⊆ Z>0×Zm, a real closed convex cone

C(Z,L, vlow≤ , τ) ⊆ R≥0 × Rm, and a convex set ∆(Z,L, vlow≤ , τ) ⊆ Rm by

S(Z,L, vlow≤ , τ) := {(k, vlow≤ (σ/τk)) | k ∈ Z>0, σ ∈ H0(Z,L⊗k) \ {0}},
C(Z,L, vlow≤ , τ) : the smallest real closed cone containing S(Z,L, vlow≤ , τ),

∆(Z,L, vlow≤ , τ) := {a ∈ Rm | (1,a) ∈ C(Z,L, vlow≤ , τ)}.

Definition (Lazarsfeld–Mustata 2009, Kaveh–Khovanskii 2012)

The convex set ∆(Z,L, vlow≤ , τ) is called a Newton–Okounkov body.

Theorem (Anderson 2013)

If the semigroup S(Z,L, vlow≤ , τ) is finitely generated and saturated, then
there exists a toric degeneration of (Z,L) to the normal projective toric
variety corresponding to ∆(Z,L, vlow≤ , τ).
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Newton–Okounkov bodies

Newton–Okounkov bodies

Example (Toric variety case)

If Z is toric with the open dense torus (C×)m = Spec(C[t±1
1 , . . . , t±1

m ])
and ≤ is the lexicographic order on Zm, then the Newton–Okounkov body
∆(Z,L, vlow≤ , τ) coincides with the moment polytope of (Z,L).

Example (Flag variety case)

If Z is a flag variety, then the Newton–Okounkov bodies ∆(Z,L, vlow≤ , τ)
realize the following representation-theoretic polytopes:

string polytopes (Kaveh 2015, F.–Oya 2017),

Nakashima–Zelevinsky polytopes (F.–Naito 2017, F.–Oya 2017),

Feigin–Fourier–Littelmann–Vinberg polytopes
(Feigin–Fourier–Littelmann 2017, Kiritchenko 2017).
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Newton–Okounkov bodies arising from cluster structures

Cluster varieties

Following Fock–Goncharov (2009), let us consider an A-cluster variety

A =
⋃

s

As =
⋃

s

Spec(C[A±1
j;s | j ∈ {1, . . . ,m} = Juf ) Jfr]),

where s runs over the set of seeds which are mutually mutation equivalent,
and the tori are glued via the following birational cluster mutations:

µ∗
k(Ai;s′) =






Ai;s (i *= k),

A−1
k;s(

∏
εk,j>0

A
εk,j
j;s +

∏
εk,j<0

A
−εk,j
j;s ) (i = k)

if s′ = µk(s), where ε = (εi,j)i,j is the exchange matrix of s.

Definition (Berenstein–Fomin–Zelevinsky 2005)

The ring C[A] of regular functions is called an upper cluster algebra.

Assumption

The exchange matrix ε is of full rank for all seeds s.
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Newton–Okounkov bodies arising from cluster structures

Cluster varieties

Example
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Newton–Okounkov bodies arising from cluster structures

Tropicalized cluster mutations

Denoting the dual torus of As by A∨
s , we have

A =
⋃

s

As
“mirror”←−−−−−−−→ A∨ =

⋃

s

A∨
s .

The space A∨ is called the Fock–Goncharov dual, and defined to be the
Langlands dual of the X -cluster variety. Since the gluing maps of A∨ are
given by subtraction-free rational functions, we obtain the set A∨(RT ) of
RT -valued points, where RT is a semifield (R,max,+). More precisely,
A∨(RT ) is defined by gluing A∨

s (RT ) = Rm via the following tropicalized
cluster mutations:

µT
k : A∨

s (RT )→ A∨
s′(RT ), (g1, . . . , gm) ,→ (g′1, . . . , g

′
m),

where

g′i =

{
gi +max{εk,i, 0}gk − εk,imin{gk, 0} (i *= k),

−gk (i = k).
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Newton–Okounkov bodies arising from cluster structures

Extended g-vectors

Theorem (Fomin–Zelevinsky 2007, Derksen–Weyman–Zelevinsky
2010, Gross–Hacking–Keel–Kontsevich 2018)

For all s, s′ and 1 ≤ i ≤ m, the variable Ai;s′ is pointed for s, that is,

Ai;s′ ∈ Ag1
1;s · · ·A

gm
m;s



1 +
∑

0 *=(aj)j∈Juf
∈ZJuf

≥0

Z
∏

j∈Juf

(A
εj,1
1;s · · ·Aεj,m

m;s )
aj





for some gs(Ai;s′) = (g1, . . . , gm) ∈ Zm (the extended g-vector of Ai;s′).

Definition (Qin 2017)

For each seed s = ((Aj;s)j , ε), define a partial order -s on Zm by

g′ -s g ⇔ g′ − g ∈
∑

j∈Juf

Z≥0(εj,1, . . . , εj,m).

This -s is called the dominance order associated with s.
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Newton–Okounkov bodies arising from cluster structures

Extended g-vectors as higher rank valuations

Fix a total order ≤s on Zm refining the opposite dominance order -op
s .

Definition (F.–Oya)

For each seed s, define a valuation vs on C(A) = C(A1;s, . . . , Am;s) to be
the lowest term valuation vlow≤s

.

Proposition

For all s, s′ and 1 ≤ i ≤ m, the equality vs(Ai;s′) = gs(Ai;s′) holds.

Let Z be a compactification of A. Then ∆(Z,L, vs, τ) does not depend
on the choice of a refinement ≤s of -op

s if for each k ∈ Z>0,

{σ/τk | σ ∈ H0(Z,L⊗k)} ⊆ C(Z) " C(A)

is compatible with a specific cluster-theoretic C-basis such as
a theta function basis (Gross–Hacking–Keel–Kontsevich 2018),
a common triangular basis (Qin 2017).
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Newton–Okounkov bodies arising from cluster structures

Toric degenerations arising from cluster structures

Let
Aprin =

⋃

s

Aprin,s

be the A-cluster variety with principal coefficients.

There naturally exists a morphism

π : Aprin → TM = Spec(C[N ]) = (C×)m

such that π−1(e) " A.

The morphism π induces a C[N ]-algebra structure on C[Aprin].

There exists a canonical surjective map

ρT : A∨
prin(RT )→ A∨(RT ).

A∨(RT ) " A∨
s (RT ) = Rm for each seed s.

For q ∈ A∨(RT ) and Ξ ⊆ A∨(RT ), let qs and Ξs denote their images in
A∨

s (RT ) = Rm, respectively.
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Newton–Okounkov bodies arising from cluster structures

Toric degenerations arising from cluster structures

Assume that A satisfies some “good conditions”. For instance, we assume
that

C[Aprin] =
∑

q∈A∨
prin(ZT )

Cϑq and C[A] =
∑

q∈A∨(ZT )

Cϑq,

where {ϑq | q ∈ A∨
prin(ZT )} and {ϑq | q ∈ A∨(ZT )} are the theta function

bases. Then we have

C[A] = C[Aprin]⊗C[N ] C and ϑρT (q) = ϑq ⊗ 1

for q ∈ A∨
prin(ZT ), where C[N ]→ C is given by e ∈ TM .

Proposition

For all seeds s and q ∈ A∨(ZT ), the equality vs(ϑq) = qs holds.
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Newton–Okounkov bodies arising from cluster structures

Toric degenerations arising from cluster structures

Let Ξ ⊆ A∨
prin(RT ) be a full-dimensional bounded rationally-defined

positive convex polytope. We set Ξ̃ := Ξ+ (N ⊗Z R), and define
S̃Ξ̃ ⊆ C[Aprin][x] by

S̃Ξ̃
:=

⊕

d∈Z≥0

⊕

q∈dΞ̃(Z)

Cϑqx
d,

where x is an indeterminate and dΞ̃(Z) is the set of q ∈ A∨
prin(ZT ) such

that
(d, q) ∈ {(r, p) | r ∈ R≥0, p ∈ rΞ̃}.

The inclusion of C[N ] = C[N ]ϑ0 in the degree 0 part of S̃Ξ̃ induces a flat
morphism

X′ := Proj(S̃Ξ̃)→ Spec(C[N ]) = TM .
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Newton–Okounkov bodies arising from cluster structures

Toric degenerations arising from cluster structures

Theorem (Gross–Hacking–Keel–Kontsevich 2018)

Under some “good conditions” on A, the following hold.

(1) For z ∈ TM , the fiber Xz of the family X′ → TM is a normal
projective variety containing A as an open subscheme.

(2) For each seed s, the flat family X′ → TM = (C×)m extends to a flat
family

X = Proj(S̃Ξ+)→ Cm

such that the central fiber X0 is the normal projective toric variety
corresponding to the rational convex polytope ρT (Ξ)s.

Theorem (F.–Oya)

For each seed s, the Newton–Okounkov body ∆(Xe,L, vs, x) coincides
with the rational convex polytope ρT (Ξ)s, where L is the restriction of
OX(1).
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Case of flag varieties

Flag varieties

G : a connected, simply-connected semisimple algebraic group over C,
B ⊆ G : a Borel subgroup,

P+ : the set of dominant integral weights.

Definition

The quotient variety G/B is called the full flag variety.

Example

If G = SLn(C), then we can take B to be the subgroup of upper
triangular matrices. In this case, we have

G/B
∼−→ {({0} ! V1 ! · · · ! Vn = Cn) | dimC(Vi) = i, 1 ≤ i ≤ n},

gB ,→ ({0} ! 〈ge1〉C ! · · · ! 〈ge1, . . . , gen〉C = Cn),

where {e1, . . . , en} denotes the standard basis of Cn.
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Case of flag varieties

Flag varieties

Theorem (Borel–Weil theory)

There exists a natural bijective map

P+
∼−→ {globally generated line bundles on G/B}, λ ,→ Lλ,

such that H0(G/B,Lλ)∗ is the irreducible highest weight G-module with
highest weight λ.

The anti-canonical bundle of G/B is isomorphic to L2ρ, where ρ ∈ P+ is
the half sum of positive roots.
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Case of flag varieties

Cluster structures on unipotent cells

Let U− be the unipotent radical of the opposite Borel subgroup B−, and

G/B =
⊔

w∈W
BwB/B

the Bruhat decomposition of G/B, where W is the Weyl group.

Definition

For w ∈W , the unipotent cell U−
w is defined by

U−
w := BwB ∩ U− ⊆ G.

Theorem (Berenstein–Fomin–Zelevinsky 2005)

The coordinate ring C[U−
w ] admits an upper cluster algebra structure.

There exists w0 ∈W , called the longest element, such that the natural
projection G ! G/B induces an open embedding U−

w0
↪→ G/B.
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Case of flag varieties

Cluster structures on unipotent cells
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Case of flag varieties

Cluster structures on unipotent cells

Let R(w) denote the set of reduced words for w ∈W . For each reduced
word i = (i1, . . . , im) ∈ R(w), we obtain a seed si = ((Aj;si)j , ε

i) for U−
w

given by
Aj;si ∈ C[U−

w ] is the restriction of the generalized minor
∆si1 ···sij%ij ,%ij

∈ C[G] for 1 ≤ j ≤ m;

if we write εi = (εs,t)s,t, then

εs,t =






1 if s+ = t,

−1 if s = t+,

〈αis , hit〉 if s < t < s+ < t+,

−〈αis , hit〉 if t < s < t+ < s+,

0 otherwise,

where

k+ := min({k + 1 ≤ j ≤ m | ij = ik} ∪ {m+ 1}).
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Case of flag varieties

Cluster structures on unipotent cells

Example

Let G = SL4(C), and i = (1, 2, 1, 3, 2, 1) ∈ R(w0). Then the seed
si = ((Aj;si)j , ε

i) for U−
w0

is given as follows (there exists s→ t if and
only if εt,s = 1 or εs,t = −1):

∆234,123

∆23,12 ∆34,12

∆2,1 ∆3,1 ∆4,1

!!

!!

""

!!
##

## ##
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Case of flag varieties

Cluster structures on unipotent cells

Theorem (Kashiwara–Kim 2019, Qin preprint 2020)

For w ∈W , the upper global basis Bup
w ⊆ C[U−

w ] is (the specialization at
q = 1 of) a common triangular basis. In particular, the following hold.

(1) Each element b ∈ Bup
w is pointed for all s, that is,

b ∈ Ag1
1;s · · ·A

gm
m;s



1 +
∑

0 *=(aj)j∈Juf
∈ZJuf

≥0

Z
∏

j∈Juf

(A
εj,1
1;s · · ·Aεj,m

m;s )
aj





for some gs(b) = (g1, . . . , gm) ∈ Zm (the extended g-vector of b).

(2) If s′ = µk(s), then gs′(b) = µT
k (gs(b)) for all b ∈ Bup

w .

Corollary

For all b ∈ Bup
w and s, the equality vs(b) = gs(b) holds.
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Case of flag varieties

Associated Newton–Okounkov bodies

Let τλ ∈ H0(G/B,Lλ) be a lowest weight vector.

Theorem (F.–Oya)

Let s be a seed for U−
w0
, λ ∈ P+, and i ∈ R(w0).

(1) ∆(G/B,Lλ, vs, τλ) does not depend on the choice of a refinement ≤s

of the opposite dominance order -op
s .

(2) ∆(G/B,Lλ, vs, τλ) is a rational convex polytope.

(3) S(G/B,Lλ, vs, τλ) is finitely generated and saturated.

(4) If s′ = µk(s), then ∆(G/B,Lλ, vs′ , τλ) = µT
k (∆(G/B,Lλ, vs, τλ)).

(5) ∆(G/B,Lλ, vsi , τλ) is unimodularly equivalent to the string polytope
∆i(λ) by an explicit unimodular transformation.

(6) There is a seed smut
i such that ∆(G/B,Lλ, vsmut

i
, τλ) is unimodularly

equivalent to the Nakashima–Zelevinsky polytope ∆̃i(λ).

Naoki Fujita (The University of Tokyo) NO bodies arising from cluster structures Nov. 19, 2020 26 / 35



Relation with combinatorial mutations

1 Newton–Okounkov bodies

2 Newton–Okounkov bodies arising from cluster structures

3 Case of flag varieties

4 Relation with combinatorial mutations

Naoki Fujita (The University of Tokyo) NO bodies arising from cluster structures Nov. 19, 2020 27 / 35



Relation with combinatorial mutations

Combinatorial mutations

N " Zm : a Z-lattice of rank m,
M := HomZ(N,Z),
NR := N ⊗Z R and MR := M ⊗Z R,
Hw,h := {v ∈ NR | 〈w, v〉 = h} for w ∈M and h ∈ Z,
P ⊆ NR : an integral convex polytope with the vertex set V (P ) ⊆ N ,
w ∈M : a primitive vector,
F ⊆ Hw,0 : an integral convex polytope.

Assumption

For every h ∈ Z≤−1, there exists a possibly-empty integral convex
polytope Gh ⊆ NR such that

V (P ) ∩Hw,h ⊆ Gh + |h|F ⊆ P ∩Hw,h.

If this assumption holds, then we say that the combinatorial mutation
mutw(P, F ) of P is well-defined.
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Relation with combinatorial mutations

Combinatorial mutations

Definition (Akhtar–Coates–Galkin–Kasprzyk 2012)

The combinatorial mutation mutw(P, F ) of P is defined as follows:

mutw(P, F ) := conv




⋃

h≤−1

Gh ∪
⋃

h≥0

((P ∩Hw,h) + hF )



 ⊆ NR.

Properties

mutw(P, F ) is an integral convex polytope.

mutw(P, F ) is independent of the choice of {Gh}h≤−1.

If Q = mutw(P, F ), then we have P = mut−w(Q,F ).
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Relation with combinatorial mutations

Example

For w = (−1,−1) ∈M and F = conv{(0, 0), (1,−1)}, we have

x

y

! mutw(−,F )
$$

x

y
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Relation with combinatorial mutations

Dual operations

P ⊆ NR : an integral convex polytope containing the origin in its
interior,
w ∈M : a primitive vector,
F ⊆ Hw,0 : an integral convex polytope.

The polar dual P ∗ of P is a rational convex polytope defined by

P ∗ := {u ∈MR | 〈u,u′〉 ≥ −1 for all u′ ∈ P}.

Define a map ϕw,F : MR →MR by

ϕw,F (u) := u− uminw

for u ∈MR, where umin := min{〈u, v〉 | v ∈ F}.

Proposition (Akhtar–Coates–Galkin–Kasprzyk 2012)

If mutw(P, F ) is well-defined, then it holds that

ϕw,F (P
∗) = mutw(P, F )∗.
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Relation with combinatorial mutations

Interior lattice points

Theorem (Steinert preprint 2019)

If the semigroup S(G/B,L2ρ, vlow≤ , τ2ρ) is finitely generated and saturated,

then ∆ := ∆(G/B,L2ρ, vlow≤ , τ2ρ) contains exactly one lattice point a in
its interior, and the dual polytope

∆∨ := (∆− a)∗

is an integral convex polytope.

Corollary (F.–Higashitani)

The unique interior lattice point as = (aj)1≤j≤m of ∆(G/B,L2ρ, vs, τ2ρ)
is given by

aj =

{
0 (if j ∈ Juf),

1 (if j ∈ Jfr).
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Relation with combinatorial mutations

Relation with combinatorial mutations

It has been known that the tropicalized cluster mutation µT
k can be

realized as ϕw,F for some w and F . Using the computation of as, we
obtain the following as the polar dual of this fact.

Theorem (F.–Higashitani)

(1) The dual polytopes ∆(G/B,L2ρ, vs, τ2ρ)∨ for seeds s are all related
by sequences of combinatorial mutations up to unimodular
equivalence.

(2) In particular, the dual polytopes ∆i(2ρ)∨ and ∆̃i(2ρ)∨ of string
polytopes and Nakashima–Zelevinsky polytopes for reduced words i
are all related by sequences of combinatorial mutations up to
unimodular equivalence.
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Future directions

Describe ∆(G/B,Lλ, vs, τλ) for various seeds s explicitly.

For various cluster varieties A, compute Newton–Okounkov bodies
∆(A,L, vs, τ) of their compactifications A.

Relate mirror-symmetric properties of the dual polytopes
∆(G/B,L2ρ, vs, τ2ρ)∨.
For G = SLn+1(C), Rusinko (2008) proved that certain mirror
families Fi, i ∈ R(w0), which are subfamilies of |O∆i(2ρ)∨(1)|, are
birational.

Classify integral convex polytopes which are related with
∆(G/B,L2ρ, vs, τ2ρ)∨ by a sequence of combinatorial mutations.
For G = SLn+1(C) or G = Sp2n(C), the dual polytope FFLV (2ρ)∨

of the Feigin–Fourier–Littelmann–Vinberg polytope FFLV (2ρ) is
contained in this class (F.–Higashitani).
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Thank you for your attention!
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