## Kanev and Todorov type surfaces in toric 3-folds

Julius Giesler, University of Tübingen

Nottingham Seminar, September 30, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



First combinatorial constructions

Applications to the minimal model program

Outlooks

References

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Given a finite subset  $A \subset \mathbb{Z}^n$  and a Laurent polynomial

$$f = \sum_{m \in A} a_m x^m, \quad a_m \in \mathbb{C}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

the convex hull  $\Delta$  of A is called the Newton polytope of f.

Given a finite subset  $A \subset \mathbb{Z}^n$  and a Laurent polynomial

$$f = \sum_{m \in A} a_m x^m, \quad a_m \in \mathbb{C}$$

the convex hull  $\Delta$  of A is called the Newton polytope of f.

**Example:** Let  $f(x_1, x_2) := a_1 + a_2 x_1^3 + a_3 x_2^3 + a_4 x_1 x_2$ . Then  $\Delta = \langle (0,0), (3,0), (0,3) \rangle.$ 



Figure: The Newton polytope  $\Delta$  of a plane cubic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Notation (1)

*M*: *n*-dimensional lattice (usually 3-dim.) with dual lattice *N*.  $\Delta$  will always assumed to be a lattice polytope in  $M_{\mathbb{R}} := M \otimes \mathbb{R}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

# Notation (1)

*M*: *n*-dimensional lattice (usually 3-dim.) with dual lattice *N*.  $\Delta$  will always assumed to be a lattice polytope in  $M_{\mathbb{R}} := M \otimes \mathbb{R}$ .

 $\Sigma_{\Delta}$ : The normal fan of  $\Delta$  with rays or ray generators  $\Sigma_{\Delta}[1]$ .

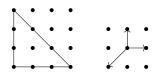


Figure: The Newton polytope and the rays of its normal fan

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Notation (1)

*M*: *n*-dimensional lattice (usually 3-dim.) with dual lattice *N*.  $\Delta$  will always assumed to be a lattice polytope in  $M_{\mathbb{R}} := M \otimes \mathbb{R}$ .

 $\Sigma_{\Delta}$ : The normal fan of  $\Delta$  with rays or ray generators  $\Sigma_{\Delta}[1]$ .

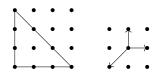


Figure: The Newton polytope and the rays of its normal fan

We denote by  $\mathbb{P}_{\Delta}$  the *n*-dim. (projective) toric variety to the normal fan of  $\Delta$  and for a fan  $\Sigma$  by  $\mathbb{P}_{\Sigma}$  the toric variety to the fan  $\Sigma$ .

# Notation (2)

For an Laurent polynomial f with Newton polytope  $\Delta$  let  $Z_f := \{f = 0\} \subset (\mathbb{C}^*)^n$  be the zero set in the torus.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

# Notation (2)

For an Laurent polynomial f with Newton polytope  $\Delta$  let  $Z_f := \{f = 0\} \subset (\mathbb{C}^*)^n$  be the zero set in the torus.

 $Z_{\Delta}$ : The closure of  $Z_f$  in  $\mathbb{P}_{\Delta}$ . If we want to stress the dependence of f we also write  $Z_{\Delta,f}$  for this closure.

More generally for an *n*-dimensional fan  $\Sigma$  we write  $Z_{\Sigma}$  or  $Z_{\Sigma,f}$  for the closure of  $Z_f$  in  $\mathbb{P}_{\Sigma}$  (this notation will become obvious).

# Notation (2)

For an Laurent polynomial f with Newton polytope  $\Delta$  let  $Z_f := \{f = 0\} \subset (\mathbb{C}^*)^n$  be the zero set in the torus.

 $Z_{\Delta}$ : The closure of  $Z_f$  in  $\mathbb{P}_{\Delta}$ . If we want to stress the dependence of f we also write  $Z_{\Delta,f}$  for this closure.

More generally for an *n*-dimensional fan  $\Sigma$  we write  $Z_{\Sigma}$  or  $Z_{\Sigma,f}$  for the closure of  $Z_f$  in  $\mathbb{P}_{\Sigma}$  (this notation will become obvious).

We call (and always assume) f nondegenerate with respect to  $\Delta$ , if  $Z_f$  is smooth and  $Z_{\Delta}$  intersect the toric strata of  $\mathbb{P}_{\Delta}$  transversally.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given a Newton polytope  $\Delta \subset M_{\mathbb{R}}$ , if we just take the closure  $Z_{\Delta} \subset \mathbb{P}_{\Delta}$ , this closure might have bad singularities.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Given a Newton polytope  $\Delta \subset M_{\mathbb{R}}$ , if we just take the closure  $Z_{\Delta} \subset \mathbb{P}_{\Delta}$ , this closure might have bad singularities.

We want to find a toric variety  $\mathbb{P}_{\Sigma}$  such that  $\mathbb{P}_{\Sigma}$  and with it the closure  $Z_{\Sigma}$  in  $\mathbb{P}_{\Sigma}$  have at most terminal singularities.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given a Newton polytope  $\Delta \subset M_{\mathbb{R}}$ , if we just take the closure  $Z_{\Delta} \subset \mathbb{P}_{\Delta}$ , this closure might have bad singularities.

We want to find a toric variety  $\mathbb{P}_{\Sigma}$  such that  $\mathbb{P}_{\Sigma}$  and with it the closure  $Z_{\Sigma}$  in  $\mathbb{P}_{\Sigma}$  have at most terminal singularities.

Further it would be desirable that  $K_{\mathbb{P}_{\Sigma}} + Z_{\Sigma}$  is nef, as then by the adjunction formula  $K_{Z_{\Sigma}}$  is nef as well, and  $Z_{\Sigma}$  would be a minimal model.

Given a Newton polytope  $\Delta \subset M_{\mathbb{R}}$ , if we just take the closure  $Z_{\Delta} \subset \mathbb{P}_{\Delta}$ , this closure might have bad singularities.

We want to find a toric variety  $\mathbb{P}_{\Sigma}$  such that  $\mathbb{P}_{\Sigma}$  and with it the closure  $Z_{\Sigma}$  in  $\mathbb{P}_{\Sigma}$  have at most terminal singularities.

Further it would be desirable that  $K_{\mathbb{P}_{\Sigma}} + Z_{\Sigma}$  is nef, as then by the adjunction formula  $K_{Z_{\Sigma}}$  is nef as well, and  $Z_{\Sigma}$  would be a minimal model.

To realize just the first point would be easy, since we could choose a toric resolution of singularities of  $\mathbb{P}_{\Delta}$ . But in fact there is a more intrinsic method to realize both points at the same time.

We start with a lattice polytope

$$\Delta = \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle \ge r_i \}, \quad \nu_i \in N, \ r_i \in \mathbb{Z}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Let

We start with a lattice polytope

$$\Delta = \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle \ge r_i \}, \quad \nu_i \in \mathbb{N}, \ r_i \in \mathbb{Z}.$$

$$\operatorname{ord}_{\Delta}(\nu) := \min_{m \in \Delta \cap M} \langle m, \nu \rangle.$$

(ロ)、(型)、(E)、(E)、 E) の(()

We start with a lattice polytope

$$\Delta = \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle \ge r_i \}, \quad \nu_i \in N, \ r_i \in \mathbb{Z}.$$

Let

$$\operatorname{ord}_{\Delta}(\nu) := \min_{m \in \Delta \cap M} \langle m, \nu \rangle.$$

Define the Fine interior

$$F(\Delta) := \{x \in M_{\mathbb{R}} | \langle x, \nu \rangle \geq \mathsf{ord}_{\Delta}(\nu) + 1, \ \nu \in \mathsf{N} \setminus \{\mathbf{0}\}\}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Concretely: Take any hyperplane touching  $\Delta$  and move it one step into the interior of  $\Delta$ . Then they cut out the Fine interior.

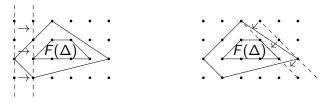


Figure: Illustration of the construction of the Fine interior  $F(\Delta)$  from  $\Delta$ .

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Concretely: Take any hyperplane touching  $\Delta$  and move it one step into the interior of  $\Delta$ . Then they cut out the Fine interior.

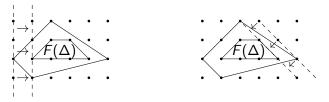


Figure: Illustration of the construction of the Fine interior  $F(\Delta)$  from  $\Delta$ .

 $F(\Delta)$  always contains the convex span of the interior lattice points of  $\Delta$  with equality in dimension 2. In dimension at least three  $F(\Delta)$  is in general just a rational polytope.

## Examples

For  $\Delta$  reflexive, i.e.

$$\Delta = \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle \ge -1 \}, \quad \nu_i \in N$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

we have  $F(\Delta) = \{0\}$ .

### **Examples**

For  $\Delta$  reflexive, i.e.

$$\Delta = \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle \ge -1 \}, \quad \nu_i \in N$$

we have  $F(\Delta) = \{0\}$ .

A lattice polytope (containing 0) is called

canonical, if it contains just 0 as an interior lattice point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fano, if the vertices are primitive lattice vectors

#### **Examples**

For  $\Delta$  reflexive, i.e.

$$\Delta = \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle \ge -1 \}, \quad \nu_i \in N$$

we have  $F(\Delta) = \{0\}$ .

A lattice polytope (containing 0) is called

- canonical, if it contains just 0 as an interior lattice point.
- Fano, if the vertices are primitive lattice vectors

There are 674 688 three-dim. canonical Fano polytopes, and dim  $F(\Delta)$  happens to be 0, 1 or 3 for them. There are just 49 such polytopes with dim  $F(\Delta) = 3$ .

**Known result:** ([Sch18]): All facets of  $\Delta$  have distance 1 to 0 except from one facet  $\Delta_{can}$ , which has distance 2. (For  $H := \{x \in M_{\mathbb{R}} | \langle x, \nu \rangle = r\}$ , the integer |r| is called the lattice distance of H to 0).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Known result:** ([Sch18]): All facets of  $\Delta$  have distance 1 to 0 except from one facet  $\Delta_{can}$ , which has distance 2. (For  $H := \{x \in M_{\mathbb{R}} | \langle x, \nu \rangle = r\}$ , the integer |r| is called the lattice distance of H to 0).

**Observation:** There are 5 different types for the facet  $\Delta_{can}$  which correspond to 5 different types of  $F(\Delta)$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Known result:** ([Sch18]): All facets of  $\Delta$  have distance 1 to 0 except from one facet  $\Delta_{can}$ , which has distance 2. (For  $H := \{x \in M_{\mathbb{R}} | \langle x, \nu \rangle = r\}$ , the integer |r| is called the lattice distance of H to 0).

**Observation:** There are 5 different types for the facet  $\Delta_{can}$  which correspond to 5 different types of  $F(\Delta)$ .

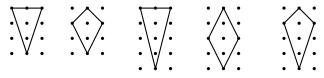


Figure: The 5 different types for  $\Delta_{can}$ 

**Known result:** ([Sch18]): All facets of  $\Delta$  have distance 1 to 0 except from one facet  $\Delta_{can}$ , which has distance 2. (For  $H := \{x \in M_{\mathbb{R}} | \langle x, \nu \rangle = r\}$ , the integer |r| is called the lattice distance of H to 0).

**Observation:** There are 5 different types for the facet  $\Delta_{can}$  which correspond to 5 different types of  $F(\Delta)$ .

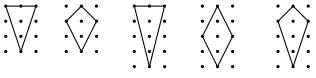


Figure: The 5 different types for  $\Delta_{can}$ 

**Observation:** In every of the 5 classes there is a unique maximal polytope among the 49 polytopes, with respect to inclusion of sets.

# The support $S_F(\Delta)$

Let  $\Delta$  be a lattice polytope. We define the support  $S_F(\Delta)$  of the Fine interior:

$$S_F(\Delta) := \{ \nu \in \mathsf{N} \setminus \{0\} | \operatorname{ord}_{F(\Delta)}(\nu) = \operatorname{ord}_{\Delta}(\nu) + 1 \}$$

that is  $S_F(\Delta)$  consists of the normal vectors  $\nu \in N$  to those hyperplanes  $H_{\nu}$  such that  $H_{\nu}$  touches  $\Delta$  and  $H_{\nu}$  touches  $F(\Delta)$ after replacing it by one step into the interior direction.

## The support $S_F(\Delta)$

Let  $\Delta$  be a lattice polytope. We define the support  $S_F(\Delta)$  of the Fine interior:

$$S_F(\Delta) := \{ \nu \in N \setminus \{0\} | \operatorname{ord}_{F(\Delta)}(\nu) = \operatorname{ord}_{\Delta}(\nu) + 1 \}$$

that is  $S_F(\Delta)$  consists of the normal vectors  $\nu \in N$  to those hyperplanes  $H_{\nu}$  such that  $H_{\nu}$  touches  $\Delta$  and  $H_{\nu}$  touches  $F(\Delta)$ after replacing it by one step into the interior direction. **Theorem ([Bat20]):** Let  $\Sigma_{\Delta}[1] = \{\nu_1, ..., \nu_k\}$ , then

$$S_F(\Delta) \subset \langle \nu_1, ..., \nu_k \rangle.$$

(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

In particular we get for the cardinality  $|S_F(\Delta)| < \infty$ .

There is the following criterion due to M. Reid : The toric variety  $\mathbb{P}_{\Sigma}$  to a complete simplicial fan  $\Sigma$  has at most terminal singularities iff for every maximal-dim. cone  $\sigma \in \Sigma$  with say  $\sigma[1] = \{\nu_1, ..., \nu_n\}$  we have

$$\langle 0,\nu_1,...,\nu_n\rangle \cap \mathbf{N} = \{0,\nu_1,...,\nu_n\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

There is the following criterion due to M. Reid : The toric variety  $\mathbb{P}_{\Sigma}$  to a complete simplicial fan  $\Sigma$  has at most terminal singularities iff for every maximal-dim. cone  $\sigma \in \Sigma$  with say  $\sigma[1] = \{\nu_1, ..., \nu_n\}$  we have

$$\langle \mathbf{0}, \nu_1, ..., \nu_n \rangle \cap \mathbf{N} = \{\mathbf{0}, \nu_1, ..., \nu_n\}$$

We show for n = 3 that if  $F(\Delta) \neq \emptyset$  and  $\Sigma$  is simplicial with  $\Sigma[1] = S_F(\Delta)$ , then

 $\triangleright$   $\mathbb{P}_{\Sigma}$  has terminal sing.

•  $K_{\mathbb{P}_{\Sigma}} + Z_{\Sigma}$  is nef.

The hypersurface  $Z_{\Sigma}$  then will also have at most terminal singularities and  $K_{Z_{\Sigma}}$  nef.

**The first point** could be seen combinatorially: Given  $\nu_1, \nu_2, \nu_3 \in S_F(\Delta)$  spanning a cone of  $\Sigma$ . Assume

$$H_{\nu_i,b_i} := \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle = b_i \}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

touches  $\Delta$  and thus  $H_{\nu_i,b_i+1}$  touches  $F(\Delta)$ .

**The first point** could be seen combinatorially: Given  $\nu_1, \nu_2, \nu_3 \in S_F(\Delta)$  spanning a cone of  $\Sigma$ . Assume

$$H_{\nu_i,b_i} := \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle = b_i \}$$

touches  $\Delta$  and thus  $H_{\nu_i,b_i+1}$  touches  $F(\Delta)$ . Then since  $\nu_1, \nu_2, \nu_3$  span a cone of  $\Sigma$ , we get

$$H_{\nu_1,b_1}\cap H_{\nu_2,b_2}\cap H_{\nu_3,b_3}\cap \Delta=\{pt\}\neq \emptyset.$$

Further (since  $F(\Delta) \neq \emptyset$ ) we claim that

$$H_{\nu_1,b_1+1} \cap H_{\nu_2,b_2+1} \cap H_{\nu_3,b_3+1} =: q \in F(\Delta).$$

**The first point** could be seen combinatorially: Given  $\nu_1, \nu_2, \nu_3 \in S_F(\Delta)$  spanning a cone of  $\Sigma$ . Assume

$$H_{\nu_i,b_i} := \{ x \in M_{\mathbb{R}} | \langle x, \nu_i \rangle = b_i \}$$

touches  $\Delta$  and thus  $H_{\nu_i,b_i+1}$  touches  $F(\Delta)$ . Then since  $\nu_1, \nu_2, \nu_3$  span a cone of  $\Sigma$ , we get

$$H_{\nu_1,b_1}\cap H_{\nu_2,b_2}\cap H_{\nu_3,b_3}\cap \Delta=\{pt\}\neq \emptyset.$$

Further (since  $F(\Delta) \neq \emptyset$ ) we claim that

$$H_{\nu_1,b_1+1} \cap H_{\nu_2,b_2+1} \cap H_{\nu_3,b_3+1} =: q \in F(\Delta).$$

For else there would be another hyperplane  $H_{\mu,a}$  touching  $\Delta$ , such that  $H_{\mu,a+1}$  touches  $F(\Delta)$  and  $H_{\mu,a+1}$  prevents q to lie in  $F(\Delta)$ . But then clearly  $\mu \in S_F(\Delta)$  and due to convexity of  $F(\Delta)$ 

$$\mu \in \operatorname{Cone}(\nu_1, \nu_2, \nu_3) \cap S_F(\Delta) = \{\nu_1, \nu_2, \nu_3\}.$$

Let now

$$N \ni \nu := \sum_{i=1}^{3} a_i \nu_i \in \langle 0, \nu_1, \nu_2, \nu_3 \rangle.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

This could be easily restricted to  $\nu \in \langle \nu_1, \nu_2, \nu_3 \rangle$ . We show  $\nu \in S_F(\Delta)$ : Choose

Let now

$$N \ni \nu := \sum_{i=1}^{3} a_i \nu_i \in \langle 0, \nu_1, \nu_2, \nu_3 \rangle.$$

This could be easily restricted to  $\nu \in \langle \nu_1, \nu_2, \nu_3 \rangle$ . We show  $\nu \in S_F(\Delta)$ : Choose

$$H_{\nu,\sum a_ib_i} := \{x \in \Delta | \langle x, \nu \rangle = a_1 \langle x, \nu_1 \rangle + a_2 \langle x, \nu_2 \rangle + a_3 \langle x, \nu_3 \rangle = \sum_{i=1}^3 a_i b_i \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then  $H_{\nu,\sum a_ib_i}$  touches  $\Delta$  and  $H_{\nu,\sum a_ib_i+1}$  touches  $F(\Delta)$ : It obviously contains  $F(\Delta)$  and  $q \in H_{\nu,\sum a_ib_i+1} \cap F(\Delta)$ .

The divisor  $Z_{\Sigma} + K_{\mathbb{P}_{\Sigma}}$  is nef

**The second point:** With  $D_i$  the toric divisor to the ray  $\nu_i$  we have

$$Z_{\Sigma} \sim_{\mathit{lin}} - \sum_{
u_i \in \Sigma[1]} \mathrm{ord}_{\Delta}(
u_i) D_i, \quad \mathcal{K}_{\mathbb{P}_{\Sigma}} = - \sum_{
u_i \in \Sigma[1]} D_i$$

The divisor  $Z_{\Sigma} + K_{\mathbb{P}_{\Sigma}}$  is nef

**The second point:** With  $D_i$  the toric divisor to the ray  $\nu_i$  we have

$$Z_{\Sigma} \sim_{lin} - \sum_{\nu_i \in \Sigma[1]} \operatorname{ord}_{\Delta}(\nu_i) D_i, \quad K_{\mathbb{P}_{\Sigma}} = - \sum_{\nu_i \in \Sigma[1]} D_i$$

But since  $\Sigma[1] = S_F(\Delta)$  we get

$$Z_{\Sigma} + \mathcal{K}_{\mathbb{P}_{\Sigma}} \sim_{lin} - \sum_{\nu_i \in S_F(\Delta)} (\operatorname{ord}_{\Delta}(\nu_i) + 1) D_i = -\sum_{\nu_i \in S_F(\Delta)} \operatorname{ord}_{F(\Delta)}(\nu_i) D_i$$

In other words to the divisor  $Z_{\Sigma} + K_{\mathbb{P}_{\Sigma}}$  is associated the polytope  $F(\Delta)$ . By this it follows easily that  $Z_{\Sigma} + K_{\mathbb{P}_{\Sigma}}$  is a (Q-Cartier) nef divisor.

Motivation canonical closure

**Problem:**  $\Sigma$  need not be a refinement of  $\Sigma_{\Delta}$ .

**Problem:**  $\Sigma$  need not be a refinement of  $\Sigma_{\Delta}$ .

Since refinements of fans induces birational toric morphisms such a property would be desirable. For this we have to introduce the canonical closure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### The canonical closure

The canonical closure  $C(\Delta)$  is defined by

$$\mathcal{C}(\Delta) := \{ x \in M_{\mathbb{R}} | \langle x, \nu \rangle \geq \mathsf{ord}_{\Delta}(\nu) \quad \forall \nu \in S_{\mathcal{F}}(\Delta) \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We call  $\Delta$  canonically closed if  $C(\Delta) = \Delta$ .

### The canonical closure

The canonical closure  $C(\Delta)$  is defined by

$$C(\Delta) := \{ x \in M_{\mathbb{R}} | \langle x, \nu \rangle \ge \operatorname{ord}_{\Delta}(\nu) \quad \forall \nu \in S_{F}(\Delta) \}$$

We call  $\Delta$  canonically closed if  $C(\Delta) = \Delta$ .

**Remark:** We have  $F(\Delta) \subset \Delta \subset C(\Delta)$ ,  $F(C(\Delta)) = F(\Delta)$  and  $\Sigma_{C(\Delta)}[1] \subset S_F(\Delta)$ 

This last property is essentially the reason why we introduce the canonical closure.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### The canonical closure

The canonical closure  $C(\Delta)$  is defined by

$$\mathcal{C}(\Delta) := \{ x \in M_{\mathbb{R}} | \langle x, \nu \rangle \geq \operatorname{ord}_{\Delta}(\nu) \quad \forall \nu \in S_{\mathcal{F}}(\Delta) \}$$

We call  $\Delta$  canonically closed if  $C(\Delta) = \Delta$ .

**Remark:** We have  $F(\Delta) \subset \Delta \subset C(\Delta)$ ,  $F(C(\Delta)) = F(\Delta)$  and  $\Sigma_{C(\Delta)}[1] \subset S_F(\Delta)$ 

This last property is essentially the reason why we introduce the canonical closure.

Under the 49 polytopes there are 29 canonically closed polytopes. In particular the maximal polytopes among these polytopes are canonically closed.

#### Examples: First class

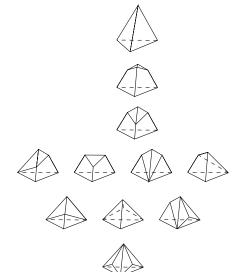


Figure: The 11 canonically closed polytopes out of 20 polytopes in the first class.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## The Minkowski sum

Consider also the Minkowski sum

$$\tilde{\Delta} := F(\Delta) + C(\Delta).$$

Then the normal fan  $\Sigma_{\tilde{\Delta}}$  is the coarsest refinement of the normal fan of  $F(\Delta)$  and the normal fan of  $C(\Delta)$ .

## The Minkowski sum

Consider also the Minkowski sum

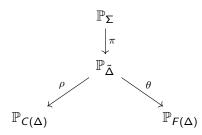
$$\tilde{\Delta} := F(\Delta) + C(\Delta).$$

Then the normal fan  $\Sigma_{\tilde{\Delta}}$  is the coarsest refinement of the normal fan of  $F(\Delta)$  and the normal fan of  $C(\Delta)$ .

**Result ([Bat20, Thm.4.3]):** We still have  $\Sigma_{\tilde{\Delta}}[1] \subset S_F(\Delta)$ . In our cases, where  $F(\Delta)$  is full-dimensional, this is elementary, since then obviously  $\Sigma_{F(\Delta)}[1] \subset S_F(\Delta)$ . The fan  $\Sigma_{\tilde{\Delta}}$  will already be good enough such that  $\mathbb{P}_{\tilde{\Delta}}$  and with it  $Z_{\tilde{\Delta}}$  have canonical singularities.

#### Applications to toric varieties

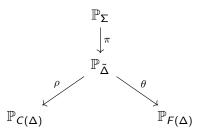
We get birational toric morphisms (we always assume  $F(\Delta) \neq \emptyset$ )



イロト 不得 トイヨト イヨト

#### Applications to toric varieties

We get birational toric morphisms (we always assume  $F(\Delta) \neq \emptyset$ )



Observation for our examples: For our polytopes we have

$$\Sigma_{\tilde{\Delta}}[1] = \Sigma_{C(\Delta)}[1]$$

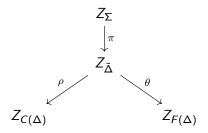
This means that  $\rho$  is an isomorphism in codimension one. For  $\Delta$  maximal we additionally have

$$\Sigma_{\tilde{\Delta}} = \Sigma_{F(\Delta)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Construction of minimal/canonical models

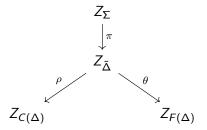
We take the closures  $Z_{\Sigma}$ ,  $Z_{\tilde{\Delta}}$ ,  $Z_{C(\Delta)}$  and  $Z_{F(\Delta)}$  of  $Z_f$  and get a diagram of induced birational morphisms



イロト イロト イヨト イヨト 三日

## Construction of minimal/canonical models

We take the closures  $Z_{\Sigma}$ ,  $Z_{\tilde{\Delta}}$ ,  $Z_{C(\Delta)}$  and  $Z_{F(\Delta)}$  of  $Z_f$  and get a diagram of induced birational morphisms

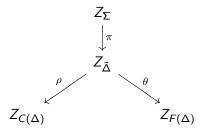


For our polytopes  $\rho: Z_{\tilde{\Delta}} \to Z_{C(\Delta)}$  is an isomorphism and  $Z_{F(\Delta)}$  gets a canonical model of a surface of general type ([Gie21]).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Construction of minimal/canonical models

We take the closures  $Z_{\Sigma}$ ,  $Z_{\tilde{\Delta}}$ ,  $Z_{C(\Delta)}$  and  $Z_{F(\Delta)}$  of  $Z_f$  and get a diagram of induced birational morphisms



For our polytopes  $\rho: Z_{\tilde{\Delta}} \to Z_{C(\Delta)}$  is an isomorphism and  $Z_{F(\Delta)}$  gets a canonical model of a surface of general type ([Gie21]). **Result ([Bat20]):** In arbitrary dimensions  $Z_{\Sigma}$  has at most terminal sing. with  $K_{Z_{\Sigma}}$  nef, i.e.  $Z_{\Sigma}$  gets a minimal model, and  $Z_{\tilde{\Delta}}$  has at most canonical sing,  $\pi: Z_{\Sigma} \to Z_{\tilde{\Lambda}}$  is crepant.

## The Kodaira dimension

**Result ([Bat20]):** For the Kodaira-dimension  $\kappa(Z_{\tilde{\Delta}})$  of  $Z_{\tilde{\Delta}}$  we have:

$$\kappa(Z_{\tilde{\Delta}}) = \min(\dim F(\Delta), n-1).$$

Thus for n = 3

$$\kappa(Z_{\tilde{\Delta}}) = \min(\dim F(\Delta), 2),$$

and our examples of surfaces are of maximal Kodaira dimension 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Adjunction

**Result ([Bat20]):** Quite generally in dimension *n*,  $\theta \circ \pi : Z_{\Sigma} \to Z_{F(\Delta)}$  is given by  $|m(K_{Z_{\Sigma}} + Z_{\Sigma})|$  for  $m \gg 0$  and thus by the adjunction formula

$$(Z_{\Sigma} + K_{\mathbb{P}_{\Sigma}})_{|Z_{\Sigma}} = K_{Z_{\Sigma}}$$

induces the litaka fibration for toric hypersurfaces. In fact m could be chosen as

 $m := \text{ind } F(\Delta) := \min\{n \in \mathbb{N}_{\geq 1} | n \cdot F(\Delta) \text{ is a lattice polytope}\}.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The refinements  $\Sigma$  of  $\Sigma_{\tilde{\Delta}}$  and  $\Sigma_{\tilde{\Delta}}$  of  $\Sigma_{F(\Delta)}$ 

<u>Observation</u>: In all examples the refinements between  $\Sigma_{F(\Delta)}$  and  $\Sigma$  happen on only one 3-dimensional cone  $\sigma$  of  $\Sigma_{F(\Delta)}$ .

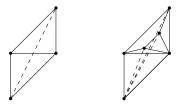


Figure: On the left is pictured  $\sigma$  in the first class and on the right the refinement of  $\sigma$  in  $\Sigma_{\tilde{\Delta}}$ .

This allows us to draw pictures of a cross section of this cone.

The refinements  $\Sigma$  of  $\Sigma_{\tilde{\Delta}}$  and  $\Sigma_{\tilde{\Delta}}$  of  $\Sigma_{F(\Delta)}$ 



Figure: Cross section of  $\sigma$  for the above cone  $\sigma$ 

The subdivision of the cross section of  $\sigma$  shows the fan  $\Sigma_{\tilde{\Delta}}$ . The additional points represent some additional rays from  $S_F(\Delta)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The refinements  $\Sigma$  of  $\Sigma_{\tilde{\Delta}}$  and  $\Sigma_{\tilde{\Delta}}$  of  $\Sigma_{F(\Delta)}$ 



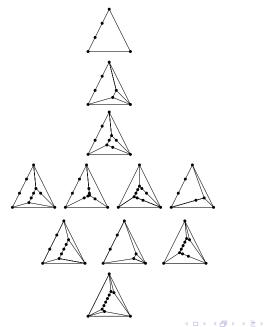
Figure: Cross section of  $\sigma$  for the above cone  $\sigma$ 

The subdivision of the cross section of  $\sigma$  shows the fan  $\Sigma_{\tilde{\Delta}}$ . The additional points represent some additional rays from  $S_F(\Delta)$ .

There might be more rays in  $S_F(\Delta)$  but they lie within a 3-dimensional cone of  $\Sigma_{\tilde{\Delta}}$  and are irrelevant for the minimal model  $Z_{\Sigma}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

# Pictures of a cross section of $\sigma$



うくで

프 > 프

## Interpreation of the pictures (2)

**Theorem:** The closure  $Z_{\tilde{\Delta}}$  in  $\mathbb{P}_{\tilde{\Delta}}$  has at most  $A_k$  singularities. We can read off the number of these singularities from the polytopes. The type k could be read off from the cross sections of  $\sigma$ .

# Interpreation of the pictures (2)

**Theorem:** The closure  $Z_{\tilde{\Delta}}$  in  $\mathbb{P}_{\tilde{\Delta}}$  has at most  $A_k$  singularities. We can read off the number of these singularities from the polytopes. The type k could be read off from the cross sections of  $\sigma$ .

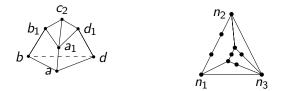


Figure: One polytope on the left and the cross section of  $\sigma$  on the right.

(日) (四) (日) (日) (日)

## Interpreation of the pictures (2)

**Theorem:** The closure  $Z_{\tilde{\Delta}}$  in  $\mathbb{P}_{\tilde{\Delta}}$  has at most  $A_k$  singularities. We can read off the number of these singularities from the polytopes. The type k could be read off from the cross sections of  $\sigma$ .

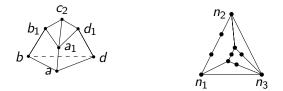


Figure: One polytope on the left and the cross section of  $\sigma$  on the right.

The cone spanned by  $n_1$  and  $n_2$  corresponds to the edge  $\langle a, a_1 \rangle$ .  $a - a_1 = (2, 1, -1)$  is primitive  $\Rightarrow Z_{\tilde{\Delta}}$  intersects the toric stratum in one point.

 $n_1 - n_2 = 3 \cdot (\text{prim. lattice vector}) \Rightarrow \text{we get one singularity of type } A_2 \text{ on } Z_{\tilde{\Delta}} \text{ from the edge } \langle a, a_1 \rangle.$ 

## Interpretation of the pictures (3)

**Theorem:** The closure of  $Z_f$  in  $\mathbb{P}_{F(\Delta)}$  has an ADE-singularity at the torus fixed point to  $\sigma$ . The points in the interior of  $\sigma$  build the vertices of the Dynkin diagram to this singularity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Interpretation of the pictures (3)

**Theorem:** The closure of  $Z_f$  in  $\mathbb{P}_{F(\Delta)}$  has an ADE-singularity at the torus fixed point to  $\sigma$ . The points in the interior of  $\sigma$  build the vertices of the Dynkin diagram to this singularity.

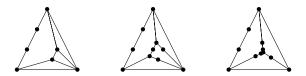


Figure: In the left picture we get an  $A_2$  singularity at the torus fixed point to  $\sigma$ , in the middle picture an  $A_5$  singularity and in the right an  $E_6$  singularity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## The plurigenera

**Result (Giesler, unpublished):** Let  $\Delta \subset M_{\mathbb{R}}$  be an *n*-dim. lattice polytope with dim  $F(\Delta) = k \ge 0$ . Then for  $X := Z_{\Sigma}$  or  $X := Z_{\tilde{\Delta}}$  the plurigenera  $P_m(X) := h^0(X, mK_X)$  of X are given by  $(m \ge 2)$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

## The plurigenera

**Result (Giesler, unpublished):** Let  $\Delta \subset M_{\mathbb{R}}$  be an *n*-dim. lattice polytope with dim  $F(\Delta) = k \ge 0$ . Then for  $X := Z_{\Sigma}$  or  $X := Z_{\tilde{\Delta}}$  the plurigenera  $P_m(X) := h^0(X, mK_X)$  of X are given by  $(m \ge 2)$ 

$$P_m(X) = \begin{cases} l(m \cdot F(\Delta)) - l^*((m-1) \cdot F(\Delta)), & k = n \\ l(m \cdot F(\Delta)) + l^*((m-1) \cdot F(\Delta)), & k = n-1 \\ l(m \cdot F(\Delta)) & k < n-1, \end{cases}$$

where for a polytope  $P \subset M_{\mathbb{R}}$ :  $I(P) := |P \cap M|$  and  $I^*(P)$  denotes the number of interior lattice points of P.

**Proof:** Without restriction let  $X := Z_{\Sigma}$ . Since

$$H^1(\mathbb{P}_{\Sigma}, m(K_{\mathbb{P}_{\Sigma}} + X)) = 0$$

for the nef divisor  $m(K_{\mathbb{P}_{\Sigma}} + X)$  we get an ideal sheaf sequence

$$egin{aligned} 0 &
ightarrow H^0(\mathbb{P}_{\Sigma},(m-1)(\mathcal{K}_{\mathbb{P}_{\Sigma}}+X)+\mathcal{K}_{\mathbb{P}_{\Sigma}}) 
ightarrow H^0(\mathbb{P}_{\Sigma},m(\mathcal{K}_{\mathbb{P}_{\Sigma}}+X)) \ &
ightarrow H^0(X,m\mathcal{K}_X) 
ightarrow H^1(\mathbb{P}_{\Sigma},(m-1)(\mathcal{K}_{\mathbb{P}_{\Sigma}}+X)+\mathcal{K}_{\mathbb{P}_{\Sigma}}) 
ightarrow 0 \end{aligned}$$

**Proof:** Without restriction let  $X := Z_{\Sigma}$ . Since

$$H^1(\mathbb{P}_{\Sigma}, m(K_{\mathbb{P}_{\Sigma}} + X)) = 0$$

for the nef divisor  $m(K_{\mathbb{P}_{\Sigma}} + X)$  we get an ideal sheaf sequence

$$\begin{split} 0 &\to H^0(\mathbb{P}_{\Sigma}, (m-1)(K_{\mathbb{P}_{\Sigma}}+X)+K_{\mathbb{P}_{\Sigma}}) \to H^0(\mathbb{P}_{\Sigma}, m(K_{\mathbb{P}_{\Sigma}}+X)) \\ &\to H^0(X, mK_X) \to H^1(\mathbb{P}_{\Sigma}, (m-1)(K_{\mathbb{P}_{\Sigma}}+X)+K_{\mathbb{P}_{\Sigma}}) \to 0 \end{split}$$

To  $m(K_{\mathbb{P}_{\Sigma}} + X)$  is associated the polytope  $mF(\Delta)$ , which counts the global sections, i.e.

$$h^0(\mathbb{P}_{\Sigma}, m(K_{\mathbb{P}_{\Sigma}} + X)) = |m \cdot F(\Delta) \cap M|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

**Continue the proof:** By Serre duality for the Q-Cartier divisor  $(m-1)(K_{\mathbb{P}_{\Sigma}} + X) + K_{\mathbb{P}_{\Sigma}}$  and a vanishing result ([CLS11, Thm.9.2.7]) we get

$$\begin{split} & H^0(\mathbb{P}_{\Sigma},(m-1)(K_{\mathbb{P}_{\Sigma}}+X)+K_{\mathbb{P}_{\Sigma}})\cong H^n(\mathbb{P}_{\Sigma},(1-m)(K_{\mathbb{P}_{\Sigma}}+X))^* \\ &= \left\{ \begin{array}{cc} 0, & \dim F(\Delta) \leq n-1 \\ l^*((m-1)F(\Delta)), & \dim F(\Delta)=n \end{array} \right. \end{split}$$

**Continue the proof:** By Serre duality for the Q-Cartier divisor  $(m-1)(K_{\mathbb{P}_{\Sigma}} + X) + K_{\mathbb{P}_{\Sigma}}$  and a vanishing result ([CLS11, Thm.9.2.7]) we get

$$egin{aligned} &\mathcal{H}^0(\mathbb{P}_{\Sigma},(m-1)(\mathcal{K}_{\mathbb{P}_{\Sigma}}+X)+\mathcal{K}_{\mathbb{P}_{\Sigma}})\cong\mathcal{H}^n(\mathbb{P}_{\Sigma},(1-m)(\mathcal{K}_{\mathbb{P}_{\Sigma}}+X))^*\ &= \left\{egin{aligned} &0, & \dim F(\Delta)\leq n-1\ &I^*((m-1)F(\Delta)), &\dim F(\Delta)=n \end{aligned}
ight. \end{aligned}$$

and

$$\begin{aligned} &H^1(\mathbb{P}_{\Sigma}, (m-1)(K_{\mathbb{P}_{\Sigma}}+X)+K_{\mathbb{P}_{\Sigma}})\cong H^{n-1}(\mathbb{P}_{\Sigma}, (1-m)(K_{\mathbb{P}_{\Sigma}}+X))^* \\ &= \begin{cases} l^*((m-1)F(\Delta)), & \dim F(\Delta)=n-1\\ 0, & \dim F(\Delta)\neq n-1 \end{cases} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The result follows.

The geometric genus and the irregularity

The geometric genus of  $Z_{\Sigma}$  is given by

$$p_g(Z_{\Sigma}) := h^0(Z_{\Sigma}, K_{Z_{\Sigma}}) = l^*(\Delta)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where  $l^*(\Delta)$  denotes the number of interior lattice points of  $\Delta$ .

The geometric genus and the irregularity

The geometric genus of  $Z_{\Sigma}$  is given by

$$p_g(Z_{\Sigma}) := h^0(Z_{\Sigma}, K_{Z_{\Sigma}}) = l^*(\Delta)$$

where  $I^*(\Delta)$  denotes the number of interior lattice points of  $\Delta$ . For the irregularity we have

$$q(Z_{\Sigma}) := h^0(Z_{\Sigma}, \Omega^1_{Z_{\Sigma}}) = 0.$$

The geometric genus and the irregularity

The geometric genus of  $Z_{\Sigma}$  is given by

$$p_g(Z_{\Sigma}) := h^0(Z_{\Sigma}, K_{Z_{\Sigma}}) = l^*(\Delta)$$

where  $I^*(\Delta)$  denotes the number of interior lattice points of  $\Delta$ . For the irregularity we have

$$q(Z_{\Sigma}) := h^0(Z_{\Sigma}, \Omega^1_{Z_{\Sigma}}) = 0.$$

Example: In our examples we get

$$p_g(Z_{\Sigma}) = 1, \quad q(Z_{\Sigma}) = 0$$

since  $\Delta$  is 3-dimensional and canonical  $(I^*(\Delta) = 1)$ .

### The canonical divisor

The geometric genus  $p_g(K_{Z_{\Sigma}})$  could be read off from the facet  $\Delta_{can}$  of  $\Delta$  with distance 2 to the origin as  $p_g(K_{Z_{\Sigma}}) = l^*(\Delta_{can})$ .

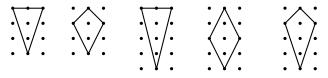


Figure: The 5 different types for  $\Delta_{can}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### The canonical divisor

The geometric genus  $p_g(K_{Z_{\Sigma}})$  could be read off from the facet  $\Delta_{can}$  of  $\Delta$  with distance 2 to the origin as  $p_g(K_{Z_{\Sigma}}) = l^*(\Delta_{can})$ .

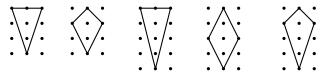


Figure: The 5 different types for  $\Delta_{can}$ 

We get minimal surfaces  $Z_{\Sigma}$  with

$$p_g(Z_{\Sigma}) = 1, \quad q(Z_{\Sigma}) = 0, \quad p_g(K_{Z_{\Sigma}}) \in \{2,3\}$$

The condition  $p_g(K_{Z_{\Sigma}}) \in \{2,3\}$  is equivalent to  $K_{Z_{\Sigma}}^2 \in \{1,2\}$  by the adjunction formula.

# Kanev and Todorov type surfaces

Surfaces with

$$p_g(Z_{\Sigma}) = 1, \quad K^2_{Z_{\Sigma}} = 1$$

are called Kanev surfaces and surfaces with

$$p_g(Z_{\Sigma}) = 1, \quad q(Z_{\Sigma}) = 0, \quad K^2_{Z_{\Sigma}} = 2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

are called surfaces of Todorov type.

Thus we get examples of both such types of surfaces in toric 3-folds.

## Kanev and Todorov type surfaces

Surfaces with

$$p_g(Z_{\Sigma}) = 1, \quad K_{Z_{\Sigma}}^2 = 1$$

are called Kanev surfaces and surfaces with

$$p_g(Z_{\Sigma}) = 1, \quad q(Z_{\Sigma}) = 0, \quad K^2_{Z_{\Sigma}} = 2$$

are called surfaces of Todorov type.

Thus we get examples of both such types of surfaces in toric 3-folds.

Known result: The plurigenera are given by

$$P_m(Z_{\Sigma})=2+\frac{m(m-1)}{2}K_{Z_{\Sigma}}^2.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Kanev and Todorov type surfaces

Surfaces with

$$p_g(Z_{\Sigma}) = 1, \quad K^2_{Z_{\Sigma}} = 1$$

are called Kanev surfaces and surfaces with

$$p_g(Z_{\Sigma}) = 1, \quad q(Z_{\Sigma}) = 0, \quad K^2_{Z_{\Sigma}} = 2$$

are called surfaces of Todorov type.

Thus we get examples of both such types of surfaces in toric 3-folds.

Known result: The plurigenera are given by

$$P_m(Z_{\Sigma})=2+\frac{m(m-1)}{2}K_{Z_{\Sigma}}^2.$$

Thus we obtain e.g. for Kanev surfaces  $(K_{Z_{\Sigma}}^2 = 1)$  the identity  $(m \ge 2)$ :

$$l(m \cdot F(\Delta)) - l^*((m-1)F(\Delta)) = 2 + rac{m(m-1)}{2}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From a Newton polytope  $\Delta$  we derive a family of hypersurfaces by varying the coefficients  $(a_m)_{m \in M \cap \Delta}$  such that

$$f = \sum_{m \in \Delta \cap M} a_m x^m$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

is nondegenerate w.r.t.  $\Delta$ .

From a Newton polytope  $\Delta$  we derive a family of hypersurfaces by varying the coefficients  $(a_m)_{m \in M \cap \Delta}$  such that

$$f = \sum_{m \in \Delta \cap M} a_m x^m$$

is nondegenerate w.r.t.  $\Delta$ .

We are asking for the number of moduli of such a family. Let us make this precise

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let  $L(\Delta)$  be the convex span of the lattice points  $M \cap \Delta$  and  $U_{reg}(\Delta) \subset L(\Delta)$  be the set of nondegenerate Laurent polynomials (with Newton polytope  $\Delta$ ). We obtain a family of minimal models

$$\mathcal{X}_{\Sigma} := \{(y, f) \in \mathbb{P}_{\Sigma} \times \mathbb{P}U_{reg}(\Delta) | y \in Z_{\Sigma, f}\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with natural projection  $pr_2 : \mathcal{X}_{\Sigma} \to \mathbb{P}U_{reg}(\Delta)$ .

If  $H^0(Z_{\Sigma}, T_{Z_{\Sigma}}) = H^2(Z_{\Sigma}, T_{Z_{\Sigma}}) = 0$ , then by deformation theory there exists a universal deformation  $\mathcal{X} \to S$  with S smooth and with  $(X_f := Z_{\Sigma,f}$  the fibre over f)

 $T_{\mathcal{S},f}\cong H^1(X_f,T_{X_f})$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

If  $H^0(Z_{\Sigma}, T_{Z_{\Sigma}}) = H^2(Z_{\Sigma}, T_{Z_{\Sigma}}) = 0$ , then by deformation theory there exists a universal deformation  $\mathcal{X} \to S$  with S smooth and with  $(X_f := Z_{\Sigma,f}$  the fibre over f)

$$T_{S,f}\cong H^1(X_f,T_{X_f})$$

There is a suitable homomorphism  $\kappa : T_{U_{reg}(\Delta), f} \to H^1(X_f, T_{X_f})$ , the so called Kodaira-Spencer map , which connects these two families and we define:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Number of moduli = dim  $Im(\kappa)$ .

**Result (Giesler to appear):** For our examples of hypersurfaces in toric 3-folds we have

$$\mathsf{dim} \, \mathsf{ker}(\kappa) = \mathsf{dim} \, \mathsf{Aut}(\mathbb{P}_{\Sigma}) = \mathsf{dim} \, \mathsf{Aut}(\mathbb{P}_{ ilde{\Delta}})$$

(only the automorphisms of the toric variety reduce the number of moduli).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

**Result (Giesler to appear):** For our examples of hypersurfaces in toric 3-folds we have

$$\mathsf{dim} \, \mathsf{ker}(\kappa) = \mathsf{dim} \, \mathsf{Aut}(\mathbb{P}_{\Sigma}) = \mathsf{dim} \, \mathsf{Aut}(\mathbb{P}_{ ilde{\Delta}})$$

(only the automorphisms of the toric variety reduce the number of moduli).

Thus

dim 
$$Im(\kappa) = |M \cap \Delta| - 1 - \dim \operatorname{Aut}(\mathbb{P}_{\tilde{\Delta}}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The number dim Aut( $\mathbb{P}_{\tilde{\Delta}}$ ) could be determined from the rays of the normal fan of  $\tilde{\Delta}$ .

Kanev and Todorov type surfaces were first constructed as counterexamples to Torelli type theorems. We sketch here the most simple case: The infinitesimal Torelli theorem:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kanev and Todorov type surfaces were first constructed as counterexamples to Torelli type theorems. We sketch here the most simple case: The infinitesimal Torelli theorem:

We may define a period map for our families:

$$\mathcal{P}: U_{reg} \to \text{ Period domain}$$
  
 $f \mapsto H^{2,0}(Z_{\Sigma,f})$ 

We will not specify the period domain in more detail here.

Consider the derivative  $d\mathcal{P}$  of  $\mathcal{P}$ : By results of Griffiths this derivative factors as follows  $(X_f := Z_{\Sigma,f})$ 

$$T_f U_{reg}(\Delta) \stackrel{\kappa}{
ightarrow} H^1(X_f, T_{X_f}) \stackrel{\Phi}{
ightarrow} \mathsf{Hom}(H^0(X_f, \Omega^2_{X_f}), H^1(X_f, \Omega^1_{X_f}))$$

with  $\kappa$  the Kodaira-Spencer map and  $\Phi$  the homomorphism induced by contraction and cup-product.

Consider the derivative  $d\mathcal{P}$  of  $\mathcal{P}$ : By results of Griffiths this derivative factors as follows  $(X_f := Z_{\Sigma,f})$ 

$$T_f U_{reg}(\Delta) \stackrel{\kappa}{\to} H^1(X_f, T_{X_f}) \stackrel{\Phi}{\to} \operatorname{Hom}(H^0(X_f, \Omega^2_{X_f}), H^1(X_f, \Omega^1_{X_f}))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

with  $\kappa$  the Kodaira-Spencer map and  $\Phi$  the homomorphism induced by contraction and cup-product.

The infinitesimal Torelli theorem asks if  $\Phi_{|Im\kappa}$  is injective.

**Result:** For our examples of Kanev surfaces dim ker( $\Phi$ ) = 2 and for Todorov type surfaces dim ker( $\Phi$ ) = 3. In particular these surfaces fail the infinitesimal Torelli theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

**Result:** For our examples of Kanev surfaces dim ker( $\Phi$ ) = 2 and for Todorov type surfaces dim ker( $\Phi$ ) = 3. In particular these surfaces fail the infinitesimal Torelli theorem.

Idea of the proof: The map  $d\mathcal{P}$  could be identified with the multiplication in a jacobian ring (of Griffiths for projective hypersurfaces and of Batyrev for toric hypersurfaces). A basis of the jacobian ring of Batyrev could be determined from the combinatorics of the polytope  $\Delta$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Result:** For our examples of Kanev surfaces dim ker( $\Phi$ ) = 2 and for Todorov type surfaces dim ker( $\Phi$ ) = 3. In particular these surfaces fail the infinitesimal Torelli theorem.

Idea of the proof: The map  $d\mathcal{P}$  could be identified with the multiplication in a jacobian ring (of Griffiths for projective hypersurfaces and of Batyrev for toric hypersurfaces). A basis of the jacobian ring of Batyrev could be determined from the combinatorics of the polytope  $\Delta$ .

We already saw that the dimension dim  $ker(\kappa)$  could be determined from the normal fan of  $\tilde{\Delta}$ .

The we use the formula

$$\dim \ker(d\mathcal{P}) = \dim \ker(\kappa) + \dim \ker(\Phi_{|Im\kappa})$$

to determine dim ker $(\Phi_{|Im\kappa})$ .

#### References

- V. V. Batyrev, *Canonical models of toric hypersurfaces*, (2020), arXiv:2008.05814v1 [mathAG]
- D. A. Cox, J. B. Little and H. K. Schenck, *Toric varieties*, Graduate Studies in Mathematics, 124, Amer. Math. Soc., Providence, RI, (2011).
- J. Giesler, Kanev and Todorov type surfaces in toric 3-folds, (2021).
- R. J. Koelman, The number of moduli of families of curves on toric surfaces, PhD Thesis, University of Nijmegen, (1991).
- K. Schaller, Stringy Invariants of Algebraic Varieties and Lattice Polytopes, Ph.D. thesis, Eberhart-Karls-Universität Tübingen, (2018).