Universes as Big Data,

or, Machine-Learning Mathematical Structures

YANG-HUI HE

London Institute of Mathematical Sciences, Royal Institution
Merton College, University of Oxford
Dept of Mathematics, City, University of London
School of Physics, NanKai University

Online Machine Learning Seminar: Kaspryzyk-De Biase, Apr, 2023

Enriching the Maths/Physics Dialogue

- Alg./diff. Geometry/topology Rep. Theo: the right language for physics
 - ▶ Gravity ~ Ricci 2-form of Tangent bundles;
 - ▶ Elementary Particles \sim irred reps of the Lorentz group and sections of bundles with Lie structure group; Interactions \sim Tensor products of sections . . .
 - String theory: brain-child of gauge-gravity geometrization tradition
- A new exciting era for synergy with (pure & computational) geometry, group theory, combinatorics, number theory: Sage, M2, GAP, LMFDB, GrDB are becoming indispensible tools for physicists
- Interdisciplinary enterprise: cross-fertilisation of particle/string theory, phenomenology, pure mathematics, computer algorithms, data-bases, . . .

MI Mathematical Structures

$10 = 4 + 3 \times 2$ The Geometric Origin of our Universe

- Each geometry X gives a 4-D universe
 - The geometry of X determines the physics of the 4-D world
 - particles and interactions \sim cohomology theory; masses \sim metric; Yukawa \sim Triple intersections/integral of forms over X

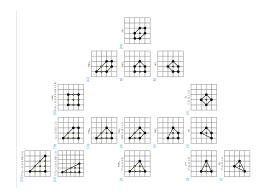
Ubi materia, ibi geometria

- Johannes Kepler (1571-1630)
- Our Universe:

 (1) probabilistic/anthropic?
 (2) Sui generis/selection rule?
 (3) one of multi-verse?

 - cf. Exo-planet/Habitable Zone search

Vacuum Degeneracy


Perhaps the biggest theoretical challenge to string theory:

selection criterion??? metric on the landscape???

- Douglas (2003): Statistics of String vacua
- Kachru-Kallosh-Linde-Trivedi (2003): type II/CY estimates of 10^{500}
- \bullet Taylor-YN Wang (2015-7): F-theory estimates 10^{3000} to 10^{10^5}
- Basic Reason:

Algebraic Geometry → Combinatorial Geometry → Exponential Growth in dim

e.g., Borisov-Batyrev & Kreuzer-Skarke

- Reflexive Polyhedra → CY: anticanonical hypersurface in toric variety from ∆
- lacksquare Dim 2: 16 up to $SL(2;\mathbb{Z})$ (Italian School 1890s)
- Dim 3: 4139 up to $SL(3; \mathbb{Z})$ (KS, 1999)
- Dim 4: 473800776 up to $SL(4; \mathbb{Z})$ (KS, 2000)
- Dim > 4: Open ??

GrDB: Brown, Kaspryzyk, Nil, Kahle, ...http://www.grdb.co.uk/

Altman-Gray-YHH-Jejjala-Nelson (2014): brute-force: $\sim 10^6$ up to $h^{1,1}=6$

Altman-Carifio-Halverson-Nelson (2018): estimated 10^{10^4} triangulations

Demirtas-Long-McAllister-Stillman (2019): all triang $240 \le h^{1,1} \le 491$

2017: String Theory enters the Machine-Learning Era

YHH (1706.02714); Krefl-Seong (1706.03346); Ruehle (1706.07024); Carifio-Halverson-Krioukov-Nelson (1707.00655)

Sophia: Hanson Robotics, HongKong

- Beginning of String_Data Annual conference series
- How can ML and modern data-science help with the vacuum degeneracy problem??

2017: String Theory enters the Machine-Learning Era

YHH (1706.02714); Krefl-Seong (1706.03346); Ruehle (1706.07024); Carifio-Halverson-Krioukov-Nelson (1707.00655)

Sophia: Hanson Robotics, HongKong

- Beginning of String_Data Annual conference series
- How can ML and modern data-science help with the vacuum degeneracy problem??
- Meanwhile . . . Sophia becomes a "human" citizen (in Saudi Arabia)

Algebraic Geometry as Image Processing

A typical calculation:

- Key to computational Algebraic Geometry: Gröbner basis, double-exponential complexity (unlike Gaussian elimination which is generalizes)
- [YHH 1706.02714] Deep-Learning the Landscape, PLB 774, 2017;
 (cf. Feature in Science, Aug, vol 365 issue 6452, 2019): think of it as an image processing problem

from String Landscape to the Mathematical Landscape

Machine Learning Mathematical Structures

Why stop at string/geometry?

q.v. Review Paper: YHH 2101.06317

 $\bullet \ [0,0,1,0,0,1,0,0,1,0,0,1,\ldots]$

- [0,0,1,0,0,1,0,0,1,0,0,1,...] multiple of 3 or not.

- [0,0,1,0,0,1,0,0,1,0,0,1,...] multiple of 3 or not.
- [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, . . .]

 Prime or Not for odd integers.

- [0,0,1,0,0,1,0,0,1,0,0,1,...] multiple of 3 or not.
- [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, . . .]

 Prime or Not for odd integers.

Pattern Recognition: Machine-Learning

Binary Classification of a Binary Vector (sliding window of, say, length 100);
 supervised learning: predict next one, e.g., Prime/Not becomes:

Pattern Recognition: Machine-Learning

Binary Classification of a Binary Vector (sliding window of, say, length 100);
 supervised learning: predict next one, e.g., Prime/Not becomes:

- pass to standard classifiers: SVW, Bayes, Nearest Neighbour; NN of the form $\mathbb{R}^{100} \stackrel{\text{linear}}{\longrightarrow} \mathbb{R}^{20} \stackrel{\text{tanh}}{\longrightarrow} \mathbb{R}^{20} \stackrel{\text{Round}}{\longrightarrow} \mathbb{Z}$, your kitchen sink, . . .
- take 50,000 samples, 20-80 cross-validation, record (precision, MCC)
- similar performance for most: Mod3: (1.0, 1.0); PrimeQ, after balancing: (0.8, 0.6); Liouville Λ : (0.5, 0.001)

Thank you! Since 2017-

my fantastic students

Jiakang Bao, Elli Heyes, Ed Hirst

Tejas Acharya, Daatta Aggrawal, Malik Amir, Kieran Bull, Lucille Calmon, Siqi Chen, Suvajit

Majumder, Maks Manko, Toby Peterken, Juan Pérez-Ipiña, Max Sharnoff, Yan Xiao my wonderful collaborators

Physics: Guillermo Arias-Tamargo, David Berman, Heng-Yu Chen, Andrei Constantin, Sebastián Franco, Vishnu Jejjala,

Seung-Joo Lee, Andre Lukas, Shailesh Lal, Brent Nelson, Diego Rodriguez-Gomez, Zaid Zaz

Algebraic Geometry: Anthony Ashmore, Challenger Mishra, Rehan Deen, Burt Ovrut

Number Theory: Laura Alessandretti, Andrea Baronchelli, Kyu-Hwan Lee, Tom Oliver, Alexey Pozdnyakov, Drew

Sutherland, Eldar Sultanow

Representation Theory: Mandy Cheung, Pierre Dechant, Minhyong Kim, Jianrong Li, Gregg Musiker

Combinatorics: Johannes Hofscheier, Alexander Kasprzyk, Shiing-Tung Yau

How does one *DO* mathematics, I?

```
Russell-Whitehead Principia Mathematica [1910s] (Leibniz, Frege, ...) axiomatize maths, but ... Gödel [1931] Incompleteness; Church-Turing [1930s] Undecidability

Automated Theorem Proving (ATP) "The practicing mathematician hardly ever worries about Gödel"
```

- Newell-Simon-Shaw [1956] Logical Theory Machine: subset of *Principia*
- Type Theory [1970s] Martin-Löf, Coquand, ... Coq: 4-color (2005);
 Feit-Thompson Thm (2012); Lean (2013); Univalent Foundation /
 Homotopy Type Theory [2006-] Voevodsky

Buzzard: "Future of Maths" 2019, ICM 2022 Davenport: ICM 2018
"Computer Assisted Proofs" Szegedy: more extreme view, computers >
humans @ chess (1990s); @ Go (2018); @ Proving theorems (2030)

How does one *DO* mathematics, I?

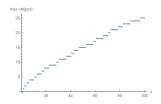
```
Russell-Whitehead Principia Mathematica [1910s] (Leibniz, Frege, ...) axiomatize maths, but ... Gödel [1931] Incompleteness; Church-Turing [1930s] Undecidability
```

Automated Theorem Proving (ATP) "The practicing mathematician hardly ever worries about Gödel"

- Newell-Simon-Shaw [1956] Logical Theory Machine: subset of Principia
- Type Theory [1970s] Martin-Löf, Coquand, ... Coq: 4-color (2005);
 Feit-Thompson Thm (2012); Lean (2013); Univalent Foundation /
 Homotopy Type Theory [2006-] Voevodsky

```
Buzzard: "Future of Maths" 2019, ICM 2022 Davenport: ICM 2018
"Computer Assisted Proofs" Szegedy: more extreme view, computers >
humans @ chess (1990s); @ Go (2018); @ Proving theorems (2030)
```

How does one *DO* mathematics, II?


Historically,

How does one *DO* mathematics, II?

- Historically, Maths perhaps more Top-Down: practice before foundation
 - Countless examples: calculus before analysis; algebraic geometry before
 Bourbaki, permutation groups / Galois theory before abstract algebra ...
 - ▶ A lot of mathematics starts with intuition, experience, and experimentation
- The best neural network of C18-19th?

How does one *DO* mathematics, II?

- Historically, Maths perhaps more Top-Down: practice before foundation
 - Countless examples: calculus before analysis; algebraic geometry before
 Bourbaki, permutation groups / Galois theory before abstract algebra . . .
 - ▶ A lot of mathematics starts with intuition, experience, and experimentation
- The best neural network of C18-19th? brain of Gauß ; e.g., age 16

(w/o computer and before complex analysis [50 years before Hadamard-de la Vallée-Poussin's proof]): PNT $\pi(x) \sim x/\log(x)$

• BSD computer experiment of Birch & Swinnerton-Dyer [1960's] on plots of rank r & N_n on elliptic curves

Example I: Representation/Group Theory

ML Algebraic Structures (GAP DB) [YHH-MH. Kim 1905.02263,]

- When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite group? Bypass quadrangle thm (0.95, 0.9)
- Can one look at the Cayley table and recognize a finite simple group?
 - bypass Sylow and Noether Thm; (0.97, 0.95) rmk: can do it via character-table T, but getting T not trivial
 - ► SVM: space of finite-groups (point-cloud of Cayley tables) seems to exist a hypersurface separating simple/non-simple

Example II: Combinatorics

[YHH-ST. Yau 2006.16619] Wolfram Finite simple graphs DB

• ML standard graph properties:

```
?acyclic (0.95, 0.96); ?planar (0.8, 0.6); ?genus >, =, < 0 (0.8, 0.7); ?\exists Hamilton cycles (0.8, 0.6); ?\exists Euler cycles (0.8, 0.6) (Rmk: NB. Only "solving" the likes of traveling salesman stochastically)
```

- spectral bounds $(R^2 \sim 0.9) \dots$
- Recognition of Ricci-Flatness (0.9, 0.9) (todo: find new Ricci-flat graphs);

Example III: Quivers, Clusters, Brane setups, . . .

- [Bao-Franco-Hirst-Musiker, 2006.10783, Dechant-YHH-Heyes-Hirst 2203.13847] Recognition of mutation types (> 0.9)
- [Hirst-YHH-Peterken 2004.05218]: adjacency+permutation triple of dessin d'enfants; predicting transcendental degree > 0.9
- [Arias-Tamargo, YHH, Heyes, Hirst, Rodriguez-Gomez 2202.05845] Recognition of equivalence ($SL(2;\mathbb{Z})$, Seiberg, Hanany-Witten) of brane-webs
- [Cheung-Dechant-YHH-Heyes-Hirst-Li 2212.09771] learning Young tableaux representation of variables in Grassmannian cluster algebras (> 0.99)

Example IV: Number Theory

Arithmetic, A Classical Reprobate?

- [YHH 1706.02714, 1812.02893:]
 - ▶ Predicting primes $2 \rightarrow 3$, $2, 3 \rightarrow 5$, $2, 3, 5 \rightarrow 7$; no way
 - ► PrimeQ: (0.7, 0.8); Sarnak's Challenger of Liouville Lambda (0.5, 0.001)
- [Alessandretti-Baronchelli-YHH 1911.02008]

ML/TDA@Birch-Swinnerton-Dyer III and Ω ok with regression & decision

- trees: RMS < 0.1; Weierstrass \rightarrow rank: random
- Arithmetic Geometry: A Modern Hope? YHH-KH Lee-Oliver
 - ▶ 2010.01213: Complex Multiplication, Sato-Tate $(0.99 \sim 1.0, 0.99 \sim 1.0)$
 - ▶ 2011.08958: Number Fields: rank and Galois group (0.97, 0.9)
 - ➤ 2012.04084: BSD from Euler coeffs, integer points, torsion (0.99, 0.9); Tate-Shafarevich III (0.6, 0.8) [Hardest quantity of BSD]

Clearly useful for maths and physics

looking for new conjectures e.g.,

- '19 YHH-Kim: separating hyperplane simple/non-simple groups; open
- '19 Brodie-Constantin-Lukas: exact formulae for cohomo surf.; proved.
- '20 YHH-Lee-Oliver: L-coefs and integer pt./torsion on ell; Known.
- '20 Craven-Jejjala-Par: Jones poly best-fit function; open
- '22 DeepMind-Oxford-Sydney, Nature: Volume bounds for knots; proved

speed up computations and accuracies e.g.,

- computing/estimating (top.inv., charges, etc) MUCH FASTER
- '19 Ashmore-YHH-Ovrut: speed up Donaldson alg@CY metric 10-100
- '20 Douglas et al., Anderson et al. improves Donaldson 10-100 times

An Inherent Hierarchy?

• In decreasing precision/increasing difficulty:

```
numerical string theory 	o algebraic geometry over \mathbb{C}\sim arithmetic geometry algebra string theory 	o combinatorics analytic number theory
```

Please submit

Launching in 2023

IJDSMS

Calling for Papers

Editor-in-Chief Yang-Hui He London Institute for Mathematical Sciences & Merton College, University of Oxford email: hev@maths.ox.ac.uk

More Information:

https://www.worldscientific.com/worldscinet/ijdsms

INTERNATIONAL JOURNAL OF DATA SCIENCE IN THE MATHEMATICAL SCIENCES

Prof. Yang-Hui He
LIMS. Royal Institution & Menton College, Oxford

World Scientific

Meta-mathematics/physics?

[YHH-Jejjala-Nelson] "hep-th" 1807.00735

• Word2Vec: [Mikolov et al., '13] NN which maps words in sentences to a vector space by context (much better than word-frequency, quickly adopted by Google); maximize (partition function) over all words with sliding window $(W_{1,2} \text{ weights of 2 layers, } C_{\alpha} \text{ window size, } D \# \text{ windows })$

$$Z(W_1, W_2) := \frac{1}{|D|} \sum_{\alpha=1}^{|D|} \log \prod_{c=1}^{C_{\alpha}} \frac{\exp([\vec{x}_c]^T \cdot W_1 \cdot W_2)}{\sum\limits_{j=1}^{V} \exp([\vec{x}_c]^T \cdot W_1 \cdot W_2)}$$

• We downloaded all $\sim 10^6$ titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat from ArXiv since the beginning (1989) till end of 2017 Word Cloud (rmk: Ginzparg has been doing a version of linguistic ML on ArXiv)

21 / 30

Subfields on ArXiv has own linguistic particulars

Linear Syntactical Identities

```
bosonic + string-theory = open-string

holography + quantum + string + ads = extremal-black-hole

string-theory + calabi-yau = m-theory + g2

space + black-hole = geometry + gravity ...
```

- binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc)
 vs phenomenological (hep-ph, hep-lat): 87.1% accuracy (5-fold classification
 65.1% accuracy). ArXiv classifications
- Cf. Tshitoyan et al., "Unsupervised word embeddings capture latent knowledge from materials science literature", Nature July, 2019: 3.3. million materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new thermoelectric materials years in advance, and suggests as-yet unknown materials

Please buy

The London Institute for Mathematical Sciences

- UK's only independent research institute for maths; modelled after IAS, Princeton
- Founded in 2011 by Dr. Thomas Fink
- Housed in the Faraday Suites of the Royal Institution of Great Britain
- 1 of 23 themes: Al for Maths Discovery https://lims.ac.uk/event/ai-assisted-maths-discovery/
- Just established:

Arnold Felowships Landau Fellowships

THANK YOU!

The Proper Way $\mathcal{O}(e^{e^d})$

• Recall Hodge decomposition $H^{p,q}(X) \simeq H^q(X, \wedge^p T^*X) \leadsto$

$$H^{1,1}(X) = H^1(X, T_X^*), \qquad H^{2,1}(X) \simeq H^{1,2} = H^2(X, T_X^*) \simeq H^1(X, T_X)$$

• Euler Sequence for subvariety $X \subset A$ is short exact:

$$0 \to T_X \to T_M|_X \to N_X \to 0$$

Induces long exact sequence in cohomology:

$$0 \rightarrow H^{0}(X,T_{X}) \xrightarrow{0} H^{0}(X,T_{A}|_{X}) \rightarrow H^{0}(X,N_{X}) \rightarrow$$

$$\rightarrow H^{1}(X,T_{X}) \xrightarrow{d} H^{1}(X,T_{A}|_{X}) \rightarrow H^{1}(X,N_{X}) \rightarrow$$

$$\rightarrow H^{2}(X,T_{X}) \rightarrow \dots$$

ullet Need to compute $\mathsf{Rk}(d)$, cohomology and $H^i(X,T_A|_X)$ (Cf. Hübsch)

4 □ → 4 個 → 4 분 → 4 분 → 9 Q Q

The Neural Network Approach

- Bijection from 1234567890 to $\{1,2,...,9,0\}$?
- Take large sample, take a few hundred thousand (e.g. NIST database)

hidden layers
output layer

Universal Approximation Theorems

- Large Depth Thm: (Cybenko-Hornik) For every continuous function $f:\mathbb{R}^d\to\mathbb{R}^D$, every compact subset $K\subset\mathbb{R}^d$, and every $\epsilon>0$, there exists a continuous function $f_\epsilon:\mathbb{R}^d\to\mathbb{R}^D$ such that $f_\epsilon=W_2(\sigma(W_1))$, where σ is a fixed continuous function, $W_{1,2}$ affine transformations and composition appropriately defined, so that $\sup_{x\in K}|f(x)-f_\epsilon(x)|<\epsilon$.
- Large Width Thm: (Kidger-Lyons) Consider a feed-forward NN with n input neurons, m output neuron and an arbitrary number of hidden layers each with n+m+2 neurons, such that every hidden neuron has activation function φ and every output neuron has activation function the identity. Then, given any vector-valued function f from a compact subset $K \subset \mathbb{R}^m$, and any $\epsilon > 0$, one can find an F, a NN of the above type, so that $|F(x) f(x)| < \epsilon$ for all $x \in K$.
- ReLU Thm: (Hanin) For any Lebesgue-integral function $f:\mathbb{R}^n\to\mathbb{R}$ and any $\epsilon>0$, there exists a fully connected ReLU NN F with width of all layers less than n+4 such that $\int_{\mathbb{R}^n}|f(x)-F(x)|dx<\epsilon.$

Back to NN@Alg Geo

ArXiv Word-Clouds

The state of the s

hep-th

The state of the s

gr-qc

Rock Invariant Control Control

hep-ph

management of the color and proposed management

distribution of the control of the c

math-ph

Back to Word2Vec

hep-lat

Classifying Titles

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

Word2Vec + SVM Actual	1	2	3	4	5		(1	:	he
1	40.2	6.5	8.7	24.0	20.6		2	:	he
2	7.8	65.8	12.9	9.1	4.4	<	3	:	he
3	7.5	11.3	72.4	1.5	7.4		4	:	gr
4	12.4	4.4	1.0	72.1	10.2		5	:	m
5	10.9	2.2	4.0	7.8	75.1				

NN Actual	1	2	3	4	5	6	7	8	9	10
viXra-hep	11.5	47.4	6.8	13.	11.	4.5	0.2	0.3	2.2	3.1
viXra-qgst	13.3	14.5	1.5	54.	8.4	1.8	0.1	1.1	2.8	3.

6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India Back to Main