Generating Calabi-Yau Manifolds with Machine Learning

Elli Heyes City, University of London

Collaborators:

Per Berglund, Giorgi Butbaia, Yang-Hui He, Edward Hirst Vishnu Jejjala, Andre Lukas

Outline

1 Motivation introduction to string theory Calabi-Yau manifolds in string theory

2) Background toric construction of a Calabi-Yau manifold 3) Generating polytopes genetic algorithms regults (4) Generating triangulations reinforcement learning results (5) Future Directions

Standard Model

General Relativity

(1) Motivation String Theory

In string theory O-dimensional particles are replaced by a 1-dimensional string

Different vibrational modes of the string give us different particles in the standard model

1 Motivation String Theory

Problem: String theory only works in 10-dimensions of spacetime, but we experience only 4. Solution: Hide the extra dimensions where nobody can see them.

$$M_{10} = \mathbb{R}^{1,3} \times M_6 \leftarrow \text{small & compact}$$

Mo must be a Calabi-Yau manifold

A Ricci-flat Kähler manifold with holonomy group 5U(3) is <u>called a Calabi-Yau manifold</u>.

1 Motivation String Theory

Problem: The landscape is too big Solution: Use machine learning to identify "good" regions of the landscape

Problem: No analytical Ricci-flat metric Solution: Use machine-learning to engineer aproximations

2 Background Calabi-Yau Manifolds

Toric varieties X_A can be built from polytopes A

Δ= { Σ c, v ∈ M R | c, e R, Z c = 1, c, ≥ 0 } vertex
Vi ∈ M R
= { m ∈ M R | < u, m > +a, ≥ 0, ∀ } hyperplane
Uj ∈ N R aj ∈ R

$$\sum_{\Delta} = \{\sigma_j\}$$

$$\sigma_j = Cone(u_j)$$

$$X_j = Specm(\mathbb{C}[\sigma_j^v \cap M])$$

2 Background

Calabi-Yau Manifolds

I f Δ is replexive then:
 i) X_{z_a} is a Fano variety with canonical singularities
 ii) any generic anticanonical hypersurface in X_{z_a} is a Calabi-Yau variety

Desingularisations of X_{Δ} are defined by Fine Regular Star Triangulations (FRSTs) of Δ

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

2 Background FRSTs

Every point is included	Can be obtained by assigning a height to every point, raising the polytope up and projecting down the faces	The origin is a vertex of every simplex
Ensures all singularities	Ensures toric variety	Ensures we can produce
are resolved	is Kähler	a fan

2 Background

Replexive Polytopes

$$\Delta = \{ \sum_{i} v_i \in M_{\mathbb{R}} | c_i \in \mathbb{R}, \sum_{i=1}^{i}, c_i \ge 0 \} \text{ vertex} \\ \forall i \in M_{\mathbb{R}} \\ = \{ m \in M_{\mathbb{R}} | \langle u_j, m \rangle + a_j \ge 0, \forall j \} \text{ hyperplane} \\ u_j \in N_{\mathbb{R}} \quad a_j \in \mathbb{R} \\ \Delta^* = \{ n \in N_{\mathbb{R}} | \langle n, m \rangle \gg -1, \forall m \in \Delta \} \text{ dual} \\ \text{Lattice: } v_i \in M \forall i \end{cases}$$

ΤΡ: L*(Δ)= {0}

Definition: Δ is called replexive if i) Δ 8 Δ * are lattice i) Δ satisfies IP ii) Δ 8 Δ * satisfy IP ii) α_i =1 $\forall i$

Replexive Polytopes

Classification

dimension	# reflexive	Calabi - Yau	
2	١6	elliptic curves	
3	4319	K3	(Kreuzer & Skarke)
4	473,800,776	CY 3-folds	(Kreuzer & Skarke)
5	>185,269,499,015	CY 4-polds	(Skarke & Schöller)

Fitness Function

 $\Delta = \{ me M_{IR} | \langle u_j, m \rangle + a_j \rangle 0, \forall j \} \quad Uj \in N_{IR} \; a_j \in \mathbb{R} \}$

$$\mathcal{F}(\Delta) = \omega_1(\mathrm{IP}(\Delta) - 1) - \frac{\omega_2}{R} \sum_{i=1}^{R} |a_i(\Delta) - 1| - \omega_3 |N_p(\Delta) - N_{p,0}|$$

- $IP(A) = \begin{cases} 1 & \text{if } \Delta \text{ satisfies } IP \\ 0 & \text{otherwise} \end{cases}$ - $N_{p}(\Delta) = \# \text{ points of } \Delta \text{ and } N_{p,0} = \text{desired } \# \text{ points}$ - $\omega_{1}, \omega_{2}, \omega_{3} \in \mathbb{R}^{\geq 0}$ are weights

3) Polytopes Method 1) Generate a random population Po of size N 1 GA run'' 2 Evolve P. over M generations $P_0 \rightarrow P_1 \rightarrow ... \rightarrow P_{M-1} \rightarrow P_M$ (3) Extract any replexive polytopes from {P.,..., P.J (4) Repeat steps 1-3 untill all replexive polytopes are found

Mutation rate: 0.5% # generations: M=500 Population size: N=200 Max # vertices : 6 Vertex coordinate range: [1,1]

- # unique reflexive polytopes: 16 - Size of environment: ~ 10¹¹

- GA pound all unique replexive polytopes in 1 run!

Results

Mutation rate: 0.5% # generations: M=500 Population size: N=450 Max # vertices: [4 Vertex coordinate range: [-8,8]

- # unique reflexive polytopes:4319 - Size of environment: ~ 10⁵

- GA pound all unique replexive polytopes in 117251 runs!

mutation rate: 0.5% Vertex coordinate range: [4,4] # generations: M=500 max # vertices = # points - 1

# points	# states	pop. size	⊭ refl. poly.	# GA runs
6	$\sim 10^{19}$	400	3	5
7	$\sim 10^{22}$	300	25	30
8	$\sim 10^{26}$	400	168	60
9	~ 1029	300	892	9378
10	\sim (O ₃₃	350	3838	9593.

3 Polytopes Results 5D

mutation rate: 0.5% Vertex coordinate range: [4,4] # generations: M=500 max # vertices = # points - 1

# points	# states	pop. size	# refl. poly.	# GA runs
7	$\sim 10^{28}$	350	9	36
8	$\sim 10^{32}$	350	115	12.78
9	$\sim 10^{37}$	450	1385	7520
10	$\sim 10^{41}$	750	12661	31857
11	\sim 10 ⁴⁶	650	94556	376757

Results

Replexive polytopes give rise to families of Cys

$$h^{1,1} = l(\Delta^{*}) - 6 + \sum_{\text{codim}\,\Theta^{*}=1} l^{*}(\Theta^{*}) - \sum_{\text{codim}\,\Theta^{}=1} l^{*}(\Theta^{*}) \cdot l^{*}(\Theta)$$
$$h^{1,2} = \dots, h^{1,3} = \dots, h^{2,2} = \dots$$

We found new CY 4-folds with new hij

Unbroken N=1 SUSY for 11d SUGRA on CY 4-pold requires \times %24 = \times %224 = \times %504 = O

3 Polytopes

Fitness Function $f(\Delta) = \omega_1(\operatorname{IP}(\Delta) - 1) - \frac{\omega_2}{k} \sum_{i=1}^{k} |a_i(\Delta) - 1| - \omega_3 \sum_{\delta \in \{24, 224, 504\}} \mathcal{X}(\Delta) \mod \delta$

GA finds examples after just a rew runs

Generative machine learning methods can generate Calabi-Yau manifolds of a certain type In reinforcement learning an ogent interacts with its environment in time steps t.

Reinforcement

- At each t the agent receives the current state St and reward Rt
- It chooses an action At which is then sent to the environment

Triangulations

(5)

- The environment moves to a new state St+1 = At(St)
 - The goal of the agent is to learn a policy $\pi: S \times A \rightarrow [0, 1], \pi(s, a) = \Pr(A_{t=a} \mid S_{t=s})$ that maximises the expected cumulative reward.

Learning

5 Triangulations State Space

Any 2 FRSTs T_1, T_2 of a polytope Δ with the same 2-face restriction are topologically equivalent

3. A triangulation state of Δ is given by picking a T_i for each f. e.g. $T = \{\{1, 0, .., 0\}, \{0, ..., 0\}, \dots, \{0, 1\}\}$

5 Triangulations Action Space

The actions consist of swaping T_j^i for T_k^i for all i, j, ke.g. $\{\{1,0,..,0\}, \{0,..,1,..,0\}, ..., \{0,1\}\} \rightarrow \{\{1,0,..,0\}, \{0,..,0,1\}, ..., \{0,1\}\}$

Note: Actions don't always correspond to bistellar flips

 $R(S,A) = F(S_{t+1}) - F(S_t)$

where $F: S \longrightarrow [0,1]$ is a fitness function

All T' are fine so combined triangulation is always fine We can always make a triangulation stor

All that remains is to check regularity of combined triangulation

If $h=(h_{1,...},h_{n})$ generates a triangulation T, then ch for any CEIR, c>O also generates T

Secondary Cone

The collection of all heights h that define T form the interior of a cone called the secondary cone C.

5) Triangulations

5 Triangulations Fitness

To check regularity of combined triangulation: 1. Compute the secondary cone for each 2-face triangulation C_{i} i=1,...,N2. Compute the intersection cone $C = C_1 \cap \dots \cap C_N$ 3. If C is full dimensional then the combined triangulation of S is a regular triangulation

$$F(S) = \begin{cases} 1 & \text{if } C \text{ is full-dimensional} \\ O & \text{otherwise} \end{cases}$$

5 Triangulations

- Results (so-far)
- Generated triangulations for 4d reflexive polytopes with low hu

Next Steps

- Generate triangulations for h'"=491 case
- Add CY constraints into fitness
- Combine with polytope generation algorithm

5 Future Directions

Thank You

