Generating Calabi-Yau Manifolds with Machine Learning

Ali Reyes City. University of London
Collaborators:
Per Berglund, Giorgi Butbaia , Yang thai He, Edward Hist Vishnu Jejiala, Andre Leukas

Outline
(1) Motivation introduction to string theory Calabi-Yau manifolds in string theory
(2) Background boric construction of a Colabi-Yau manifold
(3) Generating polytopes genetic algorithms results
(4) Generating triangulations reinforcement learning results
(5) Future Directions

(1) Motivation

Standard Model

General Relativity

(1) Motivation String Theory

In string theory 0 -dimensional particles are replaced by a 1-dimensional string
Different vibrational modes of the string give us different particles in the standard model

(1) Motivation String Theory

Problem: String theory only works in 10-dimensions of spacetime, but we experience only 4
Solution: Hide the extra dimensions where nobody can see them.

$$
M_{10}=\mathbb{R}^{1,3} \times M_{6} \leftarrow \text { small \& compact }
$$

M6 must be a Calabi-Yau manifold

A Rioci-flat Kähler manifold with holonomy group su(3) is called a Calabi-Yau manifold.
(1) Motivation String Theory

Problem: The landscape is too big
Solution: Use machine learning to identify "good" regions of the landscape

Problem: No analytical Ricci - flat metric
Solution: Use machine-leaming to engineer aproximations
(2) Background Calabi-Yau Manifolds

Toric varieties X_{Δ} can be built from polytopes \triangle M

$$
\begin{aligned}
\Delta & =\left\{\sum c \vee \in M_{\mathbb{R}} \mid c \in \mathbb{R}, \Sigma_{c=1}, c \geqslant 0\right\} \text { vertex } & & \Sigma_{\Delta}=\{\sigma\} \\
& =\left\{m \in M_{\mathbb{R}}\langle u, m\rangle+a \geqslant 0, \forall\right\} \text { hyperplane } & & \sigma=C o n e(u)
\end{aligned}
$$ $u_{j} \in \mathbb{N}_{\mathbb{R}} a_{j} \in \mathbb{R}$

$$
\begin{aligned}
& \left.X=\operatorname{specm}\left(\mathbb{C}\left[\sigma^{v} \cap M\right]\right)\right) \\
& X_{\Delta}
\end{aligned}
$$

(2) Background Calabi-Yau Manifolds

If Δ is reflexive then:
i) $X_{\Sigma_{A}}$ is a Fino variety with canonical singularities
ii) any generic anticanonical hypersurface in $X_{\Sigma_{\Delta}}$ is a Calabi-Yau variety

Desingularisations of X_{Δ} are defined by Fine Regular Star Triangulations (FRETs) of Δ

(2) Background

FASTs
$F \mid N \in$

REGULAR
STAR

Every point is included	Can be obtained by assigning a height to every point, raising the polytope up and projecting down the faces	The origin is a vertex of every simplex
Ensures all singularities are resolved	Ensures boric variety is Kähler	Ensures we can produce a fan

(2) Background Reflexive Polytopes

$\Delta=\left\{\Sigma c_{i} v_{i} \in M_{\mathbb{R}} \mid c_{i} \in \mathbb{R}, \Sigma c_{i}=1, c_{i} \geqslant 0\right\}$ vertex $v_{i} \in M_{\mathbb{R}}$
$=\left\{m \in M_{\mathbb{R}} \mid\left\langle u_{j}, m\right\rangle+a_{j} \geqslant 0, \forall_{j}\right\}$ hyperplane $u_{j} \in N_{\mathbb{R}} a_{j} \in \mathbb{R}$
$\Delta^{*}=\left\{n \in N_{\mathbb{R}} \mid\langle n, m\rangle \geqslant-1, \forall m \in \Delta\right\}$ dual
Lattice: $v_{i} \in M \quad \forall i$
$I P: \ell^{*}(\Delta)=\{0\}$

Defintion: Δ is called reflexive if
i) $\Delta 8 \Delta^{*}$ are lattice
i) Δ satisfies IP
ii) $\Delta \& \Delta^{*}$ satisfy IP
ii) $a_{i}=1 \quad \forall i$
(2) Background Reflexive Polytopes

Classification

dimension	\# reflexive	Calabi- Yau
2	16	elliptic arves
3	4319	K3
4	$473,800,776$	CY 3 --polds
(Kreuzer \& Skarke)		
5	$>85,269,499,015$	CY 4 -polds

(3) Polytopes Genetic Algorithms

Mutoation $\int \frac{$| Population |
| :---: |
| \vdots |
| \vdots |
| \square |}{\square}

Selection \& Crossover

Ranking

(3) Polytopes Fitness Function

$$
\Delta=\left\{m \in M_{\mathbb{R}} \mid\left\langle u_{j}, m\right\rangle+a_{j} \geqslant 0, \forall_{j}\right\} \quad u_{j} \in N_{\mathbb{R}} a_{j} \in \mathbb{R}
$$

$$
f(\Delta)=\omega_{1}(I P(\Delta)-1)-\frac{\omega_{2}}{R} \sum_{i=1}^{R}\left|a_{i}(\Delta)-1\right|-\omega_{3}\left|N_{p}(\Delta)-N_{p, 0}\right|
$$

- IP (A) $= \begin{cases}1, & \text { if } \Delta \text { satisfies } I P \\ 0, & \text { otherwise }\end{cases}$
$-N_{p}(\Delta)=\#$ points of Δ and $N_{p, 0}=$ desired $\#$ points
$-\omega_{1}, \omega_{2}, \omega_{3} \in \mathbb{R}^{\geqslant 0}$ are weights
(3) Polytopes

Method
(1) Generate a random population P_{\circ} of size

1 GA 2 Evolve P_{0} over M generations

$$
P_{0} \rightarrow P_{1} \rightarrow \ldots \rightarrow P_{M-1} \rightarrow P_{M}
$$

(3) Extract any reflexive polytopes from $\left\{p_{0}, \ldots, p_{m}\right\}$
(4) Repeat steps 1-3 untill all reflexive polytopes are found
(3) Polytopes $2 D$

Mutation rate:
\# generations: $M=500$
Population size : $N=200$
Max \# vertices : 6
Vertex coordinate range :

- \# unique reflexive polytopes: 16
- Size of environment: ~ 10^{11}
- GA found all unique reflexive polytopes in 1 run!

Results
\qquad
Mutation rate:
\# generations: $M=500$
Population size : $N=450$
Max \# vertices: 14
Vertex coordinate range:

- \#unique reflexive polytopes:4319
- Size of environment: ~ $10^{\text {bl }}$
- GA found all unique reflexive polytopes in 117251 runs!
(3) Polytopes

Results
$4 D$
mutation rate: 0.5% vertex coordinate range:
\# generations: $M=500$ max \# vertices $=$ \# points -1

$\#$ points	\# states	pop. size	\# refl. poly. \# GA runs	
6	$\sim 10^{19}$	400	3	5
7	$\sim 10^{22}$	300	25	30
8	$\sim 10^{26}$	400	168	60
9	$\sim 10^{29}$	300	892	9378
10	$\sim 10^{33}$	350	3838	9593

(3) Polytopes

Results
$5 D$
mutation rate: 0.5% vertex coordinate range:
\# generations: $M=500$ max \# vertices $=$ \# points -1

\# points	\# states	pop. size	\# refl. poly.	\# GA runs
7	$\sim 10^{28}$	350	9	36
8	$\sim 10^{32}$	350	115	1278
9	$\sim 10^{37}$	450	1385	7520
10	$\sim 10^{41}$	750	12661	31857
11	$\sim 10^{46}$	650	94556	376757

(3) Polytopes

Results

Reflexive polytopes give rise to families of Cy
Dy 4 -folds with different Hodge numbers $h^{\prime \prime}, h^{1 / 2} h^{\prime, 3}, h^{22}$ are inequivalent

$$
\begin{aligned}
& h^{1,1}=l\left(\Delta^{*}\right)-6+\sum_{c o t m} l^{*}\left(\theta^{*}\right)-\sum_{\cos m} l^{*}\left(\theta^{*}\right) \cdot l^{*}(\theta) \\
& h^{1,2}=\ldots, h^{1,3}=\ldots, h^{2,2}=\ldots
\end{aligned}
$$

We found new CV 4-folds with new $h^{i j}$
(3) Polytopes Targeted Search

Unbroken $N=1$ susy for 11d SUGRA on Cy 4 -fold requires

$$
x \% 24=x \% 224=x \% 504=0
$$

Fitness Function

$$
f(\Delta)=\omega_{1}(\operatorname{IP}(\Delta)-1)-\frac{\omega_{2}}{R} \sum_{i=1}^{R}\left|a_{i}(\Delta)-1\right|-\omega_{3} \sum_{\delta \in\{24,224,504\}} X(\Delta) \bmod \delta
$$

GA finds examples after just a few runs
Generative machine learning methods can generate Calabi-Yau manifolds of a certain type
(5) Triangulations

Reinforcement Learning
In reinforcement learning an agent interacts with its steps t.

- At each t the agent receives the current state S_{t} and reward R_{t}
- It chooses an action At which is then sent to the
- The environment moves to a new state

$$
S_{t+1}=A_{t}\left(S_{t}\right)
$$

- The goal of the agent is to learn a policy $\pi: S \times A \rightarrow[0,1] . \pi(s, a)=\operatorname{Pr}\left(A_{t}=a \mid S_{t}=s\right)$ that maximises the expected cumulative reward

(5) Triangulations Deep Q-Learning

Q-learning is based on a value matrix Q that assigns quality of a given action At when the environment is in a given state St In deep Q-learning a neural network is used to represent Q.

Training:

1. Randomly generate state So
2. Either i) randomly pick an action A_{t} or
ii) pick action A_{t} with largest Q value from NN output
3. Get new state S_{t+1}
4. Compute Q-value $Q\left(s_{t}, A_{t}\right)=R\left(s_{t+1}\right)-R\left(S_{t}\right)$
5. Repeat 2-4 until terminated
6. Train on $\left\{\left(S_{0}, Q\left(S_{0}, A_{0}\right)\right), \ldots,\left(S_{N}, Q\left(S_{N}, A_{N}\right)\right)\right\}$
7. Repeat 1-6 X times
(5) Triangulations State Space

Any 2 FRSTs T_{1}, T_{2} of a polytope \triangle with the same 2 -face restriction are topologically equivalent

1. Compute all 2-paces $F_{2}(\Delta)=\left\{\left\{, \ldots,\left\{_{n}\right\}\right.\right.$

2. For each f_{i} compute all fine triangulations

$$
\left\{T_{1}^{i}, \ldots, T_{M_{i}}^{i}\right\}
$$

3. A triangulation state of Δ is given by picking a T_{j}^{c} for each f_{c}

$$
\text { e.g. } T=\{\{1,0, \ldots, 0\},\{0, \ldots, \ldots, \ldots\}, \ldots,\{0,1\}\}
$$

(5) Triangulations Action Space

The actions consist of swaying T_{j}^{i} for T_{k}^{i} for all i, j, k e.g. $\{\{1,0, \ldots, 0\},\{0, \ldots, \ldots, 0\}, \ldots,\{0\},\} \longrightarrow\{\{1,0, \ldots, 0\},\{0, \ldots 0\},, \ldots,\{0,1\}\}$

Note: Actions don't always correspond to bistellar flips

(5) Triangulations Reward

$$
R(S, A)=F\left(S_{t+1}\right)-F\left(S_{t}\right)
$$

where $F: S \longrightarrow[0,1]$ is a fitness function
\square All T_{j}^{i} are fine so combined triangulation is always
\square We can always make a triangulationAll that remains is to check regularity of combined triangulation
(5) Triangulations Secondary Cone

If $h=\left(h_{1}, \ldots, h_{n}\right)$ generates a triangulation T, then $c h$ for any $c \in \mathbb{R}, c>0$ also generates T

The collection of all heights h that define T form the interior of a cone called the secondary cone C.
T is regular if and only if C is full dimensional.
(5) Triangulations Fitness

To check regularity of combined triangulation:

1. Compute the secondary cone for each 2-face triangulation

$$
C_{i}, \quad i=1, \ldots, N
$$

2. Compute the intersection cone

$$
C=C_{1} \cap \ldots \cap C_{N}
$$

3. If C is full dimensional then the combined triangulation of S is a regular triangulation

$$
F(s)= \begin{cases}1 & \text { if } C \text { is full-dimensional } \\ 0 & \text { otherwise }\end{cases}
$$

(5) Triangulations

Results (so-far)

- Generated triangulations for td reflexive polytopes with low

Next Steps

- Generate triangulations for $h^{\prime \prime 1}=491$ case
- Add CY constraints into fitness
- Combine with polytope generation algorithm
(5) Future Directions

Thank You

arXiv

O GitHub

