QUANTUM COHOMOLOGY OF BLOWUPS: A CONJECTURE

HIROSHI IRITANI

ABSTRACT. In this talk, I discuss a conjecture that a semiorthogonal decomposition of topological K-groups (or derived categories) due to Orlov should induce a relationship between quantum cohomology under blowups. The relationship between quantum cohomology can be described in terms of solutions to a Riemann-Hilbert problem.

References: 1906.00801 (particularly the last section 8), discussion with Sergey Galkin

1. INTRODUCTION

Let X be a smooth projective variety and let $QH(X) = (H^*(X), \star_{\tau})_{\tau \in H^*(X)}$ be the quantum cohomology. It is a family of (super)commutative product structures parametrized by $\tau \in H^*(X)$. It is defined in terms of genus-zero Gromov-Witten invariants.

$$(\alpha \star_{\tau} \beta, \gamma) = \sum_{n \ge 0, d \in H_2(X, \mathbb{Z})} \langle \alpha, \beta, \gamma, \overline{\tau, \dots, \tau} \rangle_{0, n+3, d} \frac{1}{n!}$$

where (\cdot, \cdot) is the Poincaré pairing. We don't know the convergence in general, but we will assume it.

Rem: We have

$$\star_{\tau} \rightarrow \cup$$

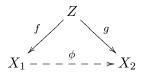
in the following large radius limit

$$\tau \in H^2(X), \quad \Re\left(\int_d \tau\right) \to -\infty \quad \text{for all effective curve classes } d \in H_2(X, \mathbb{Z}) \setminus \{0\}$$

e.g. $\tau = -r\omega$ with ω ample and $r \to \infty$.

Crepant transformation conjecture (Y. Ruan)

A birational map $\phi: X_1 \dashrightarrow X_2$ is *crepant* (or *K*-equivalent) if there exist a smooth projective variety Z and a commutative diagram



with f, g birational morphisms, such that $f^*K_{X_1} = g^*K_{X_2}$.

Conjecture: Then, $QH(X_1) \cong QH(X_2)$ after analytic continuation in τ .

Rem: The isomorphism would depend on the choice of a path connecting the large radius limit points.

Rem: \exists an isomorphism as graded vector spaces: $H^*(X_1) \cong H^*(X_2)$. (Kontsevich, Batyrev, Yasuda, ...)

Talk at Online Algebraic Geometry Seminar at Nottingham (7 October 2020).

HIROSHI IRITANI

Discrepant transformation conjecture (?) Suppose that $f^*K_{X_1} \leq g^*K_{X_2}$, i.e. $g^*K_{X_2}$ $f^*K_{X_1}$ is an effective divisor.

 $\implies QH(X_1)$ would be a *direct summand* of $QH(X_2)$ (after analytic continuation).

Goal: We want to understand a precise relationship in terms of quantum differential equations and certain Betti data (coming from the topological K-group).

2. Structure of quantum connection

Fix $\tau \in H = H^*(X)$. Consider the meromorphic flat connection $\nabla^{(\tau)}$ on the trivial bundle $H \times \mathbb{C}_z \to \mathbb{C}_z$:

$$\nabla^{(\tau)}_{\partial_z} = \frac{\partial}{\partial z} - \frac{1}{z^2} E \star_\tau + \frac{1}{z} \mu$$

where

$$E = c_1(X) + \sum_i (1 - \frac{1}{2} \deg \phi_i) \tau^i \phi_i$$

is the Euler vector field and

$$\mu \in \operatorname{End}(H), \qquad \mu(\phi_i) = \frac{1}{2} (\deg \phi_i - \dim_{\mathbb{C}} X) \phi_i$$

is the grading operator. Here $\{\phi_i\}$ is a homogeneous basis of $H = H^*(X)$ and $\tau = \sum_i \tau^i \phi_i$. It is called *quantum connection* or *Dubrovin connection*.

<u>Fact</u> (Dubrovin): the family of flat connections $\{\nabla_{\partial_z}^{(\tau)}\}_{\tau \in H}$ is *isomonodromic*, i.e. can be extended to a flat connection on the bundle $H \times (H \times \mathbb{C}) \to H \times \mathbb{C} \ni (\tau, z)$.

A formula for the extended connection:

$$\nabla_{\frac{\partial}{\partial \tau^i}} = \frac{\partial}{\partial \tau^i} + \frac{1}{z} \phi_i \star_\tau.$$

Rem: $\nabla_{\partial_z}^{(\tau)}$ has regular singularity (or better, logarithmic singularity) at $z = \infty$; but has *irregular singularities* at z = 0 (in general) since it has order two poles at z = 0.

Rem: the quantum connection is self-dual with respect to the Poincaré pairing between the fibers at z and -z.

Conjecture/Expectation: Write $QC(X)_{\tau} := (H \times \mathbb{C}_z \to \mathbb{C}_z, \nabla_{\partial_z}^{(\tau)}).$

(1) (formal decomposition); this is expected from mirror symmetry and was introduced by Hertling-Sevenheck under the name require no ramifications; Katzarkov-Kontsevich-Pantev called it *of exponential type*.

Consider the restriction of $QC(X)_{\tau}$ to the formal neighbourhood of z = 0

$$\overline{\mathrm{QC}}(X)_{\tau} := \mathrm{QC}(X) \otimes_{\mathbb{C}[z]} \mathbb{C}[\![z]\!]$$

Then it should admit the following orthogonal decomposition:

$$\overline{\mathrm{QC}}(X)_{\tau} \cong \bigoplus_{u \in \mathrm{Spec}(E\star_{\tau})} (e^{u/z} \otimes \mathcal{F}_u) \otimes_{\mathbb{C}\{z\}} \mathbb{C}[\![z]\!]$$

where $\operatorname{Spec}(E\star_{\tau})$ is the set of eigenvalues of $E\star_{\tau}$ and

 $-e^{u/z}$ denotes the rank one connection ($\mathbb{C}\{z\}, d+d(u/z)$);

 $-\mathcal{F}_u$ is a free $\mathbb{C}\{z\}$ -module with regular singular connection (and a pairing)

<u>Rem</u>: In general, the Hukuhara-Turrittin theorem says that we have a formal decomposition after pulling back by a ramified covering $w \mapsto z = w^r, r \in \mathbb{Z}_{>0}$. But here we do 'not require ramifications'.

(2) (analytic lift): this is a fact (the Hukuhara-Turrittin theorem) when (1) holds. The above formal decomposition lifts uniquely to an analytic decomposition over a sector $S = S_{\phi}$ centered at the angle ϕ and of angle $> \pi$

$$\operatorname{QC}(X)_{\tau}\Big|_{S} \cong \bigoplus_{u \in \operatorname{Spec}(E\star_{\tau})} e^{u/z} \otimes \mathcal{F}_{u}\Big|_{S}$$

Here

$$S = S_{\phi} = \{ z \in \mathbb{C}^{\times} : |\arg z - \phi| < \frac{\pi}{2} + \epsilon \}$$

and we assume that the direction $e^{i\phi}$ is admissible (in the sense that $u_1 - u_2 \notin \mathbb{R}_{>0}e^{i\phi}$ for all $u_1, u_2 \in \text{Spec}(E\star_{\tau})$).

(3) (SOD and Stokes data): this is also a general fact provided (1) holds. The above analytic decomposition induces a *semiorthogonal decomposition*¹ (SOD) of the space V_S of flat sections of the quantum connection over S:

$$V_S = \bigoplus_{u \in \operatorname{Spec}(E\star_\tau)} V_u$$

If we equip V_S with the pairing

$$s_1, s_2) = \left(s_1(e^{-\pi i}z), s_2(z)\right)_{\text{Poincaré}}$$

the decomposition is semiorthogonal in the sense that

$$[V_{u_1}, V_{u_2}) = 0$$
 if $\Im(u_1/e^{i\phi}) < \Im(u_2/e^{i\phi}).$

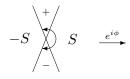
The analytic decomposition associated with the opposite sector -S is *dual* to the above decomposition

$$V_{-S} = \bigoplus_{u \in \operatorname{Spec}(E\star_{\tau})} V'_u$$

with respect to the natural pairing $V_{-S} \times V_S \to \mathbb{C}$. Since the sectors S and -S overlap in two connected components (see the figure below), we have two analytic continuation maps t_{\pm} :

$$V_{-S} \underbrace{\underbrace{\overset{t_+}{\overbrace{t_-}}}_{t_-} V_S$$

These maps satisfy $\langle t_{-}(\alpha), \beta \rangle = [\alpha, \beta)$ and $\langle t_{+}(\alpha), \beta \rangle = [\beta, \alpha)$. The maps t_{\pm} constitute the Stokes data: the formal decomposition together with the Stokes data reconstructs the analytic germ of $QC(X)_{\tau}$ at z = 0.



(4) (Dubrovin/Gamma conjecture): See Galkin-Golyshev-Iritani (in the semisimple case) and Sanda-Shamoto (in general case). Under analytic continuation from z = 0 to z = ∞, the above SOD of the space of flat sections induces an SOD of the topological K-group (or derived category) via the Γ̂-integral structure. Roughly speaking, a flat section near z = ∞ corresponds one-to-one with a cohomology class in H

 $H \to \{ \text{flat sections near } z = \infty \}, \quad \alpha \mapsto s_{\alpha}(z) = (1 + O(1/z)) z^{-\mu} z^{c_1(X)} \alpha$

¹This is called *mutation system* by Sanda-Shamoto.

which is then related to a K-class by the map

$$K_{\text{top}}(X) \to H, \quad \mathcal{E} \mapsto \frac{1}{(2\pi)^{\dim X/2}} \widehat{\Gamma}_X \cup (2\pi i)^{\deg/2} \operatorname{ch}(\mathcal{E})$$

This map intertwines the Euler pairing on the K-group with the above pairing $[\cdot, \cdot)$ on the space of flat sections.

<u>Conclusion</u>: if we know the formal decomposition of $\overline{QC}(X)_{\tau}$ and the corresponding SOD of the K-group, we can recover the quantum connections (by gluing the flat connections over S, -S and around $z = \infty$). This amounts to solving a *Riemann-Hilbert problem* (recall the work of Dubrovin in the semisimple case).

Example (Sanda-Shamoto): Let $X \subset \mathbb{P}^n$ be a degree k < n Fano hypersurface. The eigenvalues of the small quantum multiplication $E \star_{\tau} = c_1(X) \star_{\tau}$ at $\tau = 0$ are

$$\{0\} \cup \{T\zeta : \zeta^{n+1-k} = 1\}$$

with $T = (n+1-k)k^{\frac{k}{n+1-k}}$. After certain mutation, the corresponding SOD of the derived category is given by

$$D^{b}(X) = \langle \mathcal{A}, \mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(n-k) \rangle.$$

where $\mathcal{O}, \ldots, \mathcal{O}(n-k)$ is an exceptional collection and \mathcal{A} is the right orthogonal of $\langle \mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n-k) \rangle$ (Kuznetsov). The category \mathcal{A} corresponds to the eigenvalue 0.

3. Discrepant transformation/Blowups

Conjecture: Suppose that we have a birational map $\phi: X_1 \dashrightarrow X_2$ such that $K_{X_1} \ge K_{X_2}$. Then we have

- (1) an orthogonal decomposition $\overline{\mathrm{QC}}(X_1)_{\tau} = \overline{L} \oplus \overline{\mathrm{QC}}(X_2)_{f(\tau)} \oplus \overline{R}$ for some connections $\overline{L}, \overline{R}$.
- (2) the analytic lift

$$\operatorname{QC}(X_1)_{\tau}|_S \cong (L \oplus \operatorname{QC}(X_2)_{f(\tau)} \oplus R)|_S$$

over a sector S corresponds to an SOD

$$K(X_1) \cong K_L \oplus K(X_2) \oplus K_R$$

The case of blowups: Let \widetilde{X} be the blowup of X along a smooth subvariety $Z \subset X$ of codimension c. We have Orlov's SOD:

$$D^{b}(\widetilde{X}) = \left\langle D^{b}(Z)_{-(c-1)}, \dots, D^{b}(Z)_{-1}, D^{b}(X) \right\rangle$$

where $D^b(Z)_k$ is the image of the fully faithful functor $D^b(Z) \to D^b(\widetilde{X})$ given by $\alpha \mapsto j_*(\mathcal{O}(k) \otimes \pi^*(\alpha))$:

where E is the exceptional divisor. The quantum connection $QC(\tilde{X})$ should be recovered from those for Z and X as follows: (1) Put $\overline{\mathrm{QC}}(\widetilde{X}) := \overline{\mathrm{QC}}(Z)_{\tau_1} \oplus \cdots \oplus \overline{\mathrm{QC}}(Z)_{\tau_{c-1}} \oplus \overline{\mathrm{QC}}(X)_{\sigma}$. Here we assume that $\tau_i \in H^*(Z)$ and $\sigma \in H^*(X)$ are chosen so that the eigenvalues of the Euler vector fields align as in the following picture:

$$\underbrace{\begin{array}{c} \left(\operatorname{Spec}(E^{Z} \star_{\tau_{1}}) \right) \\ \vdots \\ \left(\operatorname{Spec}(E^{Z} \star_{\tau_{c-1}}) \right) \\ \left(\operatorname{Spec}(E^{X} \star_{\sigma}) \right) \end{array}}_{\left(\operatorname{Spec}(E^{X} \star_{\sigma}) \right)}$$

i.e. the collections $\operatorname{Spec}(E^Z \star_{\tau_1}), \ldots, \operatorname{Spec}(E^Z \star_{\tau_{c-1}}), \operatorname{Spec}(E^X \star_{\sigma})$ of eigenvalues are separated by lines parallel to an admissible $e^{i\phi}$ and line up in this order.

(2) Using Orlov's SOD, we reconstruct the Stokes data of $QC(\tilde{X})$ from those of $QC(Z)_{\tau_i}$ and $QC(X)_{\sigma}$. Namely, the Stokes data for $QC(Z)_{\tau_i}$ and $QC(X)_{\sigma}$ determine SODs of $K_{top}(Z)$ and $K_{top}(X)$ (for a given phase $e^{i\phi}$); they are glued together to give an SOD of $K_{top}(\tilde{X})$ via the Orlov decomposition

$$K_{\text{top}}(X) \cong K_{\text{top}}(Z)_{-(c-1)} \oplus \dots \oplus K_{\text{top}}(Z)_{-1} \oplus K_{\text{top}}(X)$$

and give rise to the Stokes data for $QC(\tilde{X})$. This recovers the analytic germ of $QC(\tilde{X})$ at z = 0.

(3) we can glue it (via the $\widehat{\Gamma}$ -integral structure) with the germ $\nabla_{\partial_z}^{(\tau,z=\infty)}$ of the flat connection near $z = \infty$ given by

$$\nabla_{\partial_z}^{(\tau)} \underset{\substack{\text{gauge}\\\text{equivalent}}}{\sim} \nabla_{\partial_z}^{(\tau,z=\infty)} := \frac{\partial}{\partial z} - \frac{c_1(X)}{z^2} + \frac{\tilde{\mu}}{z}.$$

Then we obtain a global vector bundle over \mathbb{P}^1_z which should be trivial. The gauge transformation between $\nabla^{(\tau)}$ and $\nabla^{(\tau,z=\infty)}$ gives a fundamental solution (the so-called *calibration*). The parameter $\tau = f(\tau_1, \ldots, \tau_{c-1}, \sigma)$ for $\mathrm{QC}(\widetilde{X})$ can also be determined. (Locally the parameter space should be isomorphic to the product of (c-1) copies of $H^*(Z)$ and $H^*(X)$ as an *F*-manifold.)

Rem: This picture has been partially verified in 1906.00801 when X is a weak Fano toric orbifold, Z is a toric suborbifold, and \tilde{X} is a weighted blowup of X along Z (we assume that \tilde{X} is also weak Fano).

Example (Example 7.34 in 1906.00801) Let $X = \mathbb{P}^4$ and let $\varphi \colon \widetilde{X} \to X$ be the blowup along a line \mathbb{P}^1 . We have a projection $\pi \colon \widetilde{X} \to \mathbb{P}^2$ and \widetilde{X} is a \mathbb{P}^2 -bundle over \mathbb{P}^2 . Set $p_1 = \pi^* H$ and $p_2 = \varphi^* H$ and consider the parameter

$$\tau = p_1 \log q_1 + p_2 \log q_2$$

There are two limiting pictures:

fibration picture: $|q_1| \ll |q_2|, -\tau$ approaches the ample class on \mathbb{P}^2

blow-down picture: $|q_2| \ll |q_1|, -\tau$ approaches the ample class on $X = \mathbb{P}^4$

In these limits, the quantum cohomology decomposes differently (see the figure in Example 7.34).

$$QH^*(\widetilde{X})_{\tau} \cong QH(\text{base } \mathbb{P}^2)_{t_1} \oplus QH(\text{base } \mathbb{P}^2)_{t_2} \oplus QH(\text{base } \mathbb{P}^2)_{t_3}$$
$$QH^*(\widetilde{X})_{\tau} \cong QH(\mathbb{P}^1)_{\tau_1} \oplus QH(\mathbb{P}^4)_{\sigma} \oplus QH(\mathbb{P}^1)_{\tau_2}$$