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We only consider projective varieties defined over the field C of complex
numbers.
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Motivation: algebraic Montgomery-Yang problem

Conjecture (Algebraic Montgomery-Yang problem, Kollár 2008)
Let S be a normal projective surface with at worst quotient singularities such
that b2(S) = 1. If the smooth locus of S is simply-connected, then S has at
most 3 singular points.

DongSeon Hwang (Ajou U) Cascades 26 August 2021 4 / 28



Q-homology P2

Definition
A normal projective surface S with quotient singularities is called a
Q-homology projective plane (Q-homology P2) if b2(S) = 1.

It realizes the minimal possible Hodge diamond since pg = q = 0.
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0 0

1

Theorem (Prasad-Yeung(2007), Cartwright-Steger(2010))
Besides P2, there are exactly 100 smooth Q-homology projective planes (fake
projective planes) up to isomorphisms.
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Trichotomy of KS

Definition
Let S be a Q-homology P2.

1 S is said to be of Fano type if −KS is ample.
2 S is said to be of Calabi-Yau type if KS is numerically trivial.
3 S is said to be of general type if KS is ample.

Let S be a Q-homology P2 and S′ be its minimal resolution.
If S is of Fano type, then κ(S′) = −∞.
If S is of Calabi-Yau type, then κ(S′) = −∞, 0.
If S is of general type, then κ(S′) = −∞, 0, 1, 2.

Each case of κ(S′) can be realizable.
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Known results

Conjecture (Algebraic Montgomery-Yang problem, Kollár 2008)
Let S be a Q-homology P2. If the smooth locus of S is simply-connected, then
S has at most 3 singular points.

Theorem (H & Keum 2011)
Let S be a Q-homology P2. Then S has at most 5 singular points and S has
exactly 5 singular points iff S is an Enriques surface with singularities of type
3A1 + 2A3.

Theorem (H & Keum 2011, 2013, 2014)
AMY holds true if either S has a non-cyclic singular points, S is non-rational or
−KS is nef.
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Remaining cases

AMY is open only for rational surfaces of Picard number one with cyclic
singularities such that KS is ample.

There exist infinite families of such surfaces with |Sing(S)| ≤ 3.
[Keel-McKernan(1999), Kollár(2008), H.-Keum(2012), Alexeev-Liu(2019)]
No such surface with 4 singular points is known, even without the
simply-connectedness assumption on the smooth locus.
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Definition

Definition (Cascades, general version)
Let S be a rational Q-homology P2. We say S admits a cascade if there exists
a diagram as follows:

S′ = S′t
φt−−−−→ S′t−1

φt−1−−−−→ . . .
φ1−−−−→ S′0

πt

y πt−1

y π0

y
S := St St−1 . . . S0

where for each k,
1 φk is a blowdown,
2 πk is the contraction of all (−n)-curves with (−n) ≤ −2,
3 Sk is a Q-homology P2,
4 S0 is a Q-homology P2 of Fano type.
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Cascade conjecture and AMY problem

Conjecture (Cascade conjecture)
Every rational Q-homology P2 of general type admits a cascade.

Theorem (H)
Cascade conjecture implies the algebraic Montgomery-Yang problem.

Detailed information obtained in the previous work
+ detailed analysis of P1-fibration.
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Main question

Question
Does every rational Q-homology P2 admit a cascade?

Unfortunately, I found an example of a rational Q-homology P2 of Calabi-Yau
type that does not admit a cascade.

Still, the existence is verified in the following cases:
toric case
Fano type (in preparation)
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Toric case

Definition
Let S be a toric log del Pezzo surface of Picard number one. We say that S
admits a cascade if there exists a diagram as follows:

S′ = S′t
φt−−−−→ S′t−1

φt−1−−−−→ . . .
φ1−−−−→ S′0

πt

y πt−1

y π0

y
St := S St−1 . . . S0

where for each k
1 φk is a toric blow-down,
2 πk is the minimal resolution,
3 Sk is a toric log del Pezzo surface of Picard number one, and
4 S0 is basic.

DongSeon Hwang (Ajou U) Cascades 26 August 2021 13 / 28



minimal surfaces and basic toric surfaces

G(P2)
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Results

Theorem (H.)
Let S be a toric Q-homology P2. Then, S admits a cascade unless
S ∼= P(1, 1, n) where each morphism in the cascade diagram is toric and there
are 3 basic surfaces.

Corollary (H.)
Let S be a toric Q-homology P2 of Fano type. Then, |Sing(S)| ≤ 3 and

1 If |Sing(S)| = 0, then S ∼= P2.
2 If |Sing(S)| = 1, then S ∼= P(1, 1, n) where n ≥ 2.
3 If |Sing(S)| = 2, then S ∼= P(1, p, q) and it admits a cascade to Sn(0, 2).
4 If |Sing(S)| = 3, then S admits a cascade to either Sn(2, 2) or S2(2, 4).
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Characterization for K-stability

Theorem (H., preprint)
Let S be a Kähler-Einstein toric log del Pezzo surface of Picard number one.
Then

1 K2
S = 3eorb.

2 S is either isomorphic to P2 or S has exactly 3 singular points.
3 If S is not isomorphic to P2, it admits a cascade to S2(2, 4), not to Sn(2, 2).

In general, the Bogomolov–Miyaoka–Yau inequality

K2
S ≤ 3eorb

does not hold for (toric) log del Pezzo surfaces of Picard number one.
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Generalization?

Unfortunately, this cannot be generalized to higher Picard rank case, even in
the toric case.
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Semicascades of toric del Pezzo surfaces

Definition
Let S be a toric log del Pezzo surface. We say that S admits a semicascade if
there exists a diagram as follows:

S′ = S′t
φt−−−−→ S′t−1

φt−1−−−−→ . . .
φ1−−−−→ S′0

πt

y πt−1

y π0

y
St := S St−1 . . . S0

where for each k
1 φk is a (toric) blow-down.
2 πk is the minimal resolution,
3 Either ρ(Sk−1) = ρ(Sk) or ρ(Sk−1) = ρ(Sk)− 1,
4 S0 is either a surface of type (O) or P(1, 1, n).
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Proposition

A toric graph of type (O) is one of the following graphs:

G(P2)
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0
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0

n

Gn(0, 1), n = 0, 1, 2

−1−n

0

n−1 −1

Gn(1, 1), n = 0, 1, 2

−1−n−1
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Figure: Toric graphs of type (O)
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Results

Theorem

Every singular toric log del Pezzo surface admits a semicascade.

Theorem

Let S be a singular toric log del Pezzo surface of Picard number ρ with t
singular points. Then ρ ≤ t+ 2 and the equality holds if and only if S is the
blow up of P(1, 1, n) at the two smooth torus-fixed points where n ≥ 2.

It generalizes the results of Dias and Suyama obtained for t ≤ 3.

DongSeon Hwang (Ajou U) Cascades 26 August 2021 20 / 28



Results

Theorem

Every singular toric log del Pezzo surface admits a semicascade.

Theorem

Let S be a singular toric log del Pezzo surface of Picard number ρ with t
singular points. Then ρ ≤ t+ 2 and the equality holds if and only if S is the
blow up of P(1, 1, n) at the two smooth torus-fixed points where n ≥ 2.

It generalizes the results of Dias and Suyama obtained for t ≤ 3.

DongSeon Hwang (Ajou U) Cascades 26 August 2021 20 / 28



DongSeon Hwang (Ajou U) Cascades 26 August 2021 21 / 28



Application to K-stability

Recall that we always have ρ ≥ t− 2.

Theorem

Let S be a singular Kähler–Einstein toric log del Pezzo surface of Picard
number ρ with t singular points. Then we have ρ = t− 2. Moreover, S admits
a semicascade to one of S1(2, 2), S2(2, 3), or S2(2, 4).

Corollary
Let S be a Kähler–Einstein toric log del Pezzo surface. Then the maximal
cones of the corresponding fan are either all smooth or all singular.
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Cascades for Fano type

Definition
Let S be a rational Q-homology P2 of Fano type. We say S admits a cascade
if there exists a diagram as follows:

S′ = S′t
φt−−−−→ S′t−1

φt−1−−−−→ . . .
φ1−−−−→ S′0

πt

y πt−1

y π0

y
S := St St−1 . . . S0

where for each k,
1 φk is a blowdown.
2 πk is the contraction of all (−n)-curves with (−n) ≤ −2.
3 Sk is a Q-homology P2 of Fano type.
4 S0 is basic, i.e. either Gorenstein or "KT"-type.

There are 12 types of basic Q-homology P2’s of Fano type.
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Smooth del Pezzo surfaces

Theorem (Pasquale del Pezzo(1885, 1887))
Every smooth del Pezzo surface is either a Hirzebruch surface or a blowup of
P2 at most 8 general points.

Corollary
Let S be a smooth del Pezzo surface. Then, S admits a morphism to P2 as
follows:

S := Sd → Sd+1 → . . .→ S9 = P2

unless S is a Hirzebruch surface.
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Classification of Q-homology P2’s of Fano type

Theorem (H., in preparation)
Let S be a Q-homology P2 of Fano type. Then, S admits a cascade unless
S ∼= P(1, 1, n).

In principle, this gives a "classification" of such surfaces by inverting the
cascade process.
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Idea of main theorem

It is enough to show that following.

Theorem

Under the assumption in Cascade Conjecture, we further assume that the
canonical divisor is ample and there exists a (−1)-curve E with E.D ≤ 2
where D is the reduced exceptional divisor of the minimal resolution of S.
Then, S has at most three singular points.
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Thank you.
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