Conjecture generation using Machine Intelligence

The University of
Nottingham
Challenger Mishra, Computer Laboratory, Cambridge: July 2023

Hilbert's 23 problems

The thirkeenth problem:
$x^{\wedge} 7+a x^{\wedge} 3+b x^{\wedge} 2+c x+1=0$.
Can one write down the solubion (x) as a composition of a finite number of 2 variable algebraic/continuous functions? - Hilbert (1900)

It is possible to construct any continuous funckion involving multiple variables using a finite sel of three-variable functions [Kolmogorov, 1956]

Only kwo variable functions are required! [Arnold, 1957 (aged 19)]

A mathematical supernova

Neurocomputing

Kolmogorov Arnold representation

$$
\begin{gathered}
f(\mathbf{x})=f\left(x_{1}, \ldots, x_{n}\right)=\sum_{q=0}^{2 n} \Phi_{q}\left(\sum_{p=1}^{n} \phi_{q, p}\left(x_{p}\right)\right) . \\
f(\mathbf{x})=\sum_{q=0}^{2 n} \Phi\left(\sum_{p=1}^{n} \lambda_{p} \phi\left(x_{p}+\eta q\right)+q\right) .
\end{gathered}
$$

"The Kolmogorov theorem was discovered during a friendly mathematical duel between Kolmogorov and fellow soviet Mathematician V.I. Arnol'd ... Kolmogorov won." - Robert Hecht-Nielsen

Hilbert's conjectures beg the question what constitutes a good conjecture?

Geomebric Sampling Techniques Theo Long, MPhil, Cambridge

The subtle art of making conjectures

Conway: Oberwolfach 1987 (with Hirzebruch)

Robbert Dijkgraaf: hetps:// wwwi,quantamagazine.org/the-subtle-art-of-the-mathematical-conjecture-20190507/

Good conjectures are milestones in mathematics. They are

1. nonerivial;
2. with potentially substantial evidence in favour of it (e.g., Goldbach's conjecture);
3. Kerse (e.g., Collalz conjecture);
4. can potentially unlock new theorems (e.g., RH);
5. "outrageous" - John Conway.

If a conjecture is proved within a few months, then perhaps its creabor should have pondered il a bil longer before announcing it to the world. - Robbert Dijkgraaf (we might ignore this sagely advice alm).

Let's consider a class of conjectures...

Conjectures on Inequalities

INEQUALITIES
By
G. H. HARDY J. e. Littlewood
G. POLYA

It is often really difficult to trace the origin of a familiar inequality. It is quite likely to occur first as an auxiliary
proposition, often without explicit statement, in a memoir on geometry or astronomy; it may have been rediscovered, many
years later, by half a dozen different authors; and no accessible Years later, by half a dozen different authors; and no accessible
statement of it may be quite complete. We have almost always found, even with the most famous inequalities, that we have a little new to add.

$f<g$

Wide ranging applications result from an ability to bound functions in mathemakics.

We aim ko build an oracle that interacts with mathematicians ko generate novel conjectures about inequalities which agree on a large amount of data. First we address the question: is there any structure in this space of relations?

Symmelry as an organising principle for conjeclures

Symmetries are a guiding principle for understanding nature khrough modern theoretical physics.

We now seek to understand whelher bools from classical invariant theory help us give structure to a space of inequality relations.

The space of Relations and Conjectures

Let f, g be continuous real valued functions over a compact set D.
space of relations (R): tuples (f, g).
Space of conjectures (C): tuples (f, g) such that $f<g$ over D.
$\operatorname{Note}(0,0) \in R$ but $(0,0) \notin C$.
We pose the following questions:

1. What is the largest group acting linearly on C?
2. Are there any free group actions on this space?

The space of conjectures (C)

A visualisation of a smooth approximation of $p(a, b):=1+\delta(a)-\operatorname{sgn}(b)$. When the smooth approximation approaches $p(a, b)$, the conditions $a \neq 0$ and $b>0$ are met strictly.

Consider a set of linear Eransformations acking on C.
$\mathscr{G}:=\{A \in \mathbb{G}(2, \mathbb{R}): A(f, g) \in \mathcal{C}, \forall(f, g) \in \mathcal{C}\}$, where
$A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}a & c \\ 0 & b\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right) ; \quad a, b, c \in \mathbb{R}, a \neq 0, b>0$.
This forms a group and admits a semi direct product struckure: $\mathscr{G}=\mathscr{T} \rtimes \mathscr{H}$, where \mathscr{T} is a group of positive dilations parameterised by b, and \mathscr{H} is the subgroup corresponding to $b=1 / 2$.

Group elements can be thought of as zeroes of the function $p(a, b):=1+\delta(a)-\operatorname{sgn}(b)$.

Does this group or any subgroup act freely on C? If so, perhaps we could study quotients of C.

The space of conjectures (C)

Various subgroups of \mathscr{G}.

The Oracle

The conjecture space (C) can be seen as a subset of the space of relations (R).

This is a sampling problem! One approach is a naive search ala geometric gradient descent (our space admits a metric). Every point in C and its orbit are conjectures.

Algorithm 1 Oracle

1: Inputs: Mathematical features $\left\{x_{i}\right\}_{i=1}^{N}$, function class $\mathcal{F}_{d_{1}, d_{2}}$, and hyperparameters: tolerance (tol), batch-size (b), maximum epochs (emax), learning rate (η)
2: $\theta \leftarrow$ random real vector
3: Parameterise: $c_{\theta}:=\left(f_{\theta}, g_{\theta}\right):=\mathcal{P}(\theta) ; f_{\theta}, g_{\theta} \in \mathcal{F}\left(K^{\mathcal{T}}[x]\right)$.
4: for $a \leftarrow 1$ to emax do
for $b \leftarrow 1$ to b do
if $\mathcal{L}\left(c_{\theta}\right) \leq$ tol then
return θ
$\theta \leftarrow \theta-\eta \mathcal{J}_{\theta}^{-1} \nabla \mathcal{L}(\theta)$
$\omega\left(c_{\theta}\right) \leftarrow \frac{2}{b} \sum_{i \in \text { rand }} \operatorname{sgn}\left(f_{\theta}\left(x_{i}\right)-g_{\theta}\left(x_{i}\right)\right)$
$\mathcal{L}\left(c_{\theta}\right) \leftarrow\left(1-\omega\left(c_{\theta}\right)^{2}\right)^{2}$
: Output: $c_{\theta}=\mathcal{P}(\theta) ; f_{\theta}<g_{\theta}$.

Some number theoretic conjectures!

$\#$	Conjecture $\left(c_{\theta}\right)$
1	$\pi(a b) \geq \pi(a)+\pi(b)$
2	$\pi(a b)+\pi(a+b)+\pi(a)+\pi(b) \leq 2 a b$
3	$4(\pi(a)+\pi(b))+\pi(a+b) \leq 4 \pi(a b)$
4	$\pi(a b)+2 \pi(a+b) \geq \pi(a)+\pi(b)$
5	$\pi(a+b) \leq \pi(a)+\pi(b)$
6	$\pi(a b c) \geq \pi(a) \pi(b) \pi(c)$
7^{\dagger}	$\pi(a b c \ldots) \geq \pi(a) \pi(b) \pi(c) \ldots$
8	$\pi(a+b+c) \leq \pi(a)+\pi(b)+\pi(c)$
9^{\dagger}	$\pi(a+b+c+\ldots) \leq \pi(a)+\pi(b)+\pi(c)+\ldots$

10	$\pi(a) \pi(b) \pi(c) \leq \sqrt{(\pi(a)+\pi(b)+\pi(c))^{2}+(\pi(a b c))^{2}}$
$11^{\dagger \star}$	$\left(\left(\Sigma_{i} \pi\left(a_{i}\right)\right)^{2}+\left(\pi\left(\Pi_{i} a_{i}\right)\right)^{2}\right)^{1 / 3} \leq \Pi_{i} \pi\left(a_{i}\right) \leq\left(\left(\Sigma_{i} \pi\left(a_{i}\right)\right)^{2}+\left(\pi\left(\Pi_{i} a_{i}\right)\right)^{2}\right)^{1 / 2}$
12	$\pi(a b+b c+c a)^{3} \geq 2 \pi(a b c)^{2}+\pi(a b c)+\pi(a+b+c)^{2}$
13	$\pi(a+b+c)^{2}+\pi(a b c) \geq \pi(a b+b c+c a)^{3}+2 \pi(a b c)^{2}$
14	$\pi(a b+b c+c a)^{7} \geq \pi(a+b+c)^{7}$
15	$\pi\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)^{2}+\pi\left(\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}\right) \geq \pi\left(\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{3} \alpha_{1}\right)^{3}+\pi\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$
16	$\pi\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)^{3}+4 \pi\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)^{2}+4 \pi\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)^{3}+3+l$ dots $\geq \pi\left(\alpha_{1} \alpha_{2}+\ldots\right)$
17°	$\pi\left(\chi_{2}\right)^{3}-\pi\left(\chi_{3}\right)^{2}+\pi\left(\chi_{3}\right) \geq \pi\left(\chi_{1}\right)$
18	$\pi\left(\chi_{1}\right)^{3} \geq \pi\left(\chi_{2}\right)^{3}$

19	$5 \pi\left(\chi_{2}\right)^{3} \geq \pi\left(\chi_{1}\right)$	
20	$\pi\left(\chi_{1}\right)+\pi\left(\chi_{3}\right)<\pi\left(\chi_{2}\right)$	
21	$5 \pi\left(\pi\left(\chi_{1}\right)\right)+2 \pi\left(\pi\left(\chi_{3}\right)\right) \geq \pi\left(\pi\left(\chi_{2}\right)\right)$	
22	$\pi\left(\pi\left(\chi_{2}\right)\right) \geq 2 \pi\left(\pi\left(\chi_{3}\right)\right)+3 \pi\left(\pi\left(\chi_{1}\right)\right)$	
22	$11\left(\pi(a b)+\frac{a b}{\log (a b)}\right)>9 \pi(a+b)+\frac{9(a+b)}{\log (a+b)}$	
23	$\pi(x+\sqrt{x}) \leq 3 \pi(x)+1$	
$24 \dagger \dagger$	$\pi(x)^{2}>x^{3}+2 x+2$	
25	$\pi(x+\sqrt{x})<3 \pi(x)$	
26	$\pi(x+\sqrt{x})<\frac{12}{5} \pi(x)+1$	

A theorem for the prime counting function

Oullook

1. Representations: symbolic, HOL, NLP
2. Coupling with proof assistanks
3. Quantum processor
4. Brining in machine architectures
5. Applications: Physical systems, Machine Learning, Number theory, Group theory, Random Matrix models, ...
6. Conjectures beget conjectures?
7. Rethinking mathematics education.

Limitations:

1. Curse of dimensionaliby!
2. Needs easily computable functions.
3. Human readabilily.

Computer Science > Machine Learning

SSubmited on 12 Unu 2023$]$
 Mathematical conjecture generation using machine intelligence

Challenger Mishra, Subhayan Roy Moulik, Rahul Sarkar

Mathematical conjecture generation using machine intelligence

Challenger Mishra ${ }^{1}$, Subhayan Roy Moulik ${ }^{2}$, and Rahul Sarkar ${ }^{3}$
${ }^{1}$ The Computer Laboratory, University of Cambridge,Cambridge, CB3 0FD
${ }^{2}$ DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA
${ }^{3}$ Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305
cm2099@cam.ac.uk, sr2068@cam.ac.uk, rsarkar@stanford.edu

Abstract
Conjectures have historically played an important role in the development of pure mathematics. We propose a systematic approach to finding abstract patterns in mathematical data, in order to generate conjectures about mathematical inequalities, using machine intelligence. We focus on strict inequalities of type $f<g$ and associate them with a vector space. By geometerising this space, which we refer to as a conjecture space, we prove that this space is isomorphic to a Banach manifold. We develop a structural understanding of this conjecture space
by studying linear automorphisms of this manifold and show that this space admits several free group actions. Based on these insights, we propose an algorithmic pipeline to generate novel group actions. Based on these insights, we propose an algorithmic pipeline to generate novel
conjectures using geometric gradient descent, where the metric is informed by the invariances of the conjecture space. As proof of concept, we give a toy algorithm to generate novel conjectures about the prime counting function and diameters of Cayley graphs of non-abelian simple groups. We also report private communications with colleagues in which some conjectures were proved, and highlight that some conjectures generated using this procedure are still unproven. Finally, we propose a pipeline of mathematical discovery in this space and highlight the importance of domain expertise in this pipeline.

Subhayan Roy Moulik, Dept of Applied Mathematics and
Theoretical Physics,
Cambridge

Rahul Sarkar,
Institute for Computational
and Mathemakical Engineering, stanford

Being humbled in Chess @Berkeley, 2023

MATHEMATIGAL CONJECTURE GENERATION USING MACHINE INTELLIGENCE

as an ORGANISING PRINCIPLE

Let's make some conjectures?

