Isometry-Invariant and Subdivision-Invariant Representations of Embedded Simplicial Complexes

Taejin Paik
May 24, 2023

Seoul National University
paiktj@snu.ac.kr

3D Objects

Figure 1: 3D objects
https://www.thingiverse.com/thing:151081
https://github.com/krober10nd/SeismicMesh
https://en.wikipedia.org/wiki/Fullerene

Triangular Mesh

- Triangular mesh can be used to represent complex 3D objects, and it is widely used in computer graphics and computer vision.
- The mesh is created by connecting vertices with edges to form triangular faces.
- W/e can consider a triangular mesh as a type of simplicial complex.

Triangular Mesh

- Triangular mesh can be used to represent complex 3D objects, and it is widely used in computer graphics and computer vision.
- The mesh is created by connecting vertices with edges to form triangular faces.
- We can consider a triangular mesh as a type of simplicial complex.

Triangular Mesh

- Triangular mesh can be used to represent complex 3D objects, and it is widely used in computer graphics and computer vision.
- The mesh is created by connecting vertices with edges to form triangular faces.
- We can consider a triangular mesh as a type of simplicial complex.

How to analyze?

Tasks:

- Classifying
- Identifying the category or group that a 3D object belongs to based on its features or characteristics.
- Regression
- Predicting a numerical value for a target variable based on the features or characteristics of a 3D object.
- Clustering
- Grouping similar 3D objects together based on their features or characteristics, without prior knowledge of their categories or groups.

Vector Representation

- Our goal is to find a suitable representation vector with constant size based on our task.
- This vector can be used to cluster similar simplicial complexes together, study their properties, and for supervised learning tasks.

Vector Representation

- Our goal is to find a suitable representation vector with constant size based on our task.
- This vector can be used to cluster similar simplicial complexes together, study their properties, and for supervised learning tasks.

Classical Approaches

Gupta, A., Watson, S., \& Yin, H. (2020, July). 3d point cloud feature explanations using gradient-based methods. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

Su, H., Maji, S., Kalogerakis, E., \& Learned-Miller, E. (2015). Multi-view convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE international conference on computer vision (pp. 945-953).
https://keras.io/examples/vision/pointnet/

Isometry Invariance

$$
6
$$

Our Goal

- Finding a representation vector of each simplicial complex in Euclidean space
- Invariances
- Isometry Invariance
- Subdivision Invariance

First, let's briefly look at the definition of a simplicial complex.

Our Goal

- Finding a representation vector of each simplicial complex in Euclidean space
- Invariances
- Isometry Invariance
- Subdivision Invariance

First, let's briefly look at the definition of a simplicial complex.

Preliminaries

Simplex

Definition

A k-simplex is a convex hull of $k+1$ affinely independent points in an ambient space \mathbb{R}^{n}.

Simplicial Complex

Definition

A simplicial complex K is defined as a finite collection of simplices that satisfy:

1. If τ is a face of σ and $\sigma \in K$, then $\tau \in K$.
2. Assume that σ_{0} and σ_{1} are elements of K. Then, $\sigma_{0} \cap \sigma_{1}$ is a face of σ_{0} and σ_{1} if it is not the empty set.

Embedded Simplicial Complex

- We primarily focus on embedded simplicial complex, which is defined as a union of simplices in a given simplicial complex K with the subspace topology inherited from the ambient Euclidean space.
- For a simplicial complex K, we will also call the embedded
simplicial complex K for ease of notation.

Embedded Simplicial Complex

- We primarily focus on embedded simplicial complex, which is defined as a union of simplices in a given simplicial complex K with the subspace topology inherited from the ambient Euclidean space.
- For a simplicial complex K, we will also call the embedded simplicial complex K for ease of notation.

Notations

Definition

For an embedded simplicial complex K in \mathbb{R}^{n}, we write $M K$ to denote $\left\{M^{-1} x \mid x \in K\right\}$ for $M \in \mathrm{GL}_{n}(\mathbb{R})$.

Also, for a vector v in \mathbb{R}^{n}, we denote the set $\{x+v \mid x \in K\}$ as $K+v$.

Definition

Suppose f is a function from S^{n-1} and R be a matrix $O(n)$.
Then, the function obtained by applying the matrix R to the input of f, that is, the function $x \mapsto f(R x)$, is denoted as $R^{*} f$

Notations

Definition

For an embedded simplicial complex K in \mathbb{R}^{n}, we write $M K$ to denote $\left\{M^{-1} x \mid x \in K\right\}$ for $M \in \mathrm{GL}_{n}(\mathbb{R})$.

Also, for a vector v in \mathbb{R}^{n}, we denote the set $\{x+v \mid x \in K\}$ as $K+v$.

Definition

Suppose f is a function from S^{n-1} and R be a matrix $O(n)$. Then, the function obtained by applying the matrix R to the input of f, that is, the function $x \mapsto f(R x)$, is denoted as $R^{*} f$.

Invariance and Equivariance

- Invariance refers to the property of remaining unchanged under certain transformations or operations.

$$
\text { ex) } f: S^{2} \rightarrow \mathbb{R}^{m} \text {, and } \mathcal{P}\left(R^{*} f\right)=\mathcal{P}(f) \text { for } R \in O(3) \text {. }
$$

- Pooling in neural networks (maximum or average)
- Equivariance is the property of a function or operation that preserves its behavior under a transformation of its inputs. It means that if we apply a transformation to the input of a function, the output of the function will be transformed in the same way.

for $R \in O(3)$.

Invariance and Equivariance

- Invariance refers to the property of remaining unchanged under certain transformations or operations.

$$
\text { ex) } f: S^{2} \rightarrow \mathbb{R}^{m} \text {, and } \mathcal{P}\left(R^{*} f\right)=\mathcal{P}(f) \text { for } R \in O(3)
$$

- Pooling in neural networks (maximum or average)
- Equivariance is the property of a function or operation that preserves its behavior under a transformation of its inputs. It means that if we apply a transformation to the input of a function, the output of the function will be transformed in the same way.

$$
\begin{aligned}
& \text { ex) } f: S^{2} \rightarrow \mathbb{R}^{m} \text {, and } \mathcal{P}\left(R^{*} f\right)=R^{*}(\mathcal{P}(f)): S^{2} \rightarrow \mathbb{R}^{k} \\
& \quad \text { for } R \in O(3) \text {. }
\end{aligned}
$$

Proposed Approach

Overview of Our Approach

We'll introduce the operators here one by one:

- $K \subset \mathbb{R}^{3}$
- $\mathcal{F}_{K}: S^{2} \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$
- $\mathcal{D} \mathcal{F}_{K}: S^{2} \rightarrow \mathbb{R}^{a}$
- $\mathcal{P}\left(\mathcal{D} \mathcal{F}_{K}\right) \in \mathbb{R}^{b}$

First, we introduce the Euler curve transform \mathcal{F}.

Overview of Our Approach

We'll introduce the operators here one by one:

- $K \subset \mathbb{R}^{3}$
- $\mathcal{F}_{K}: S^{2} \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$
- $\mathcal{D} \mathcal{F}_{K}: S^{2} \rightarrow \mathbb{R}^{a}$
- $\mathcal{P}\left(\mathcal{D} \mathcal{F}_{K}\right) \in \mathbb{R}^{b}$

Properties:

- $\mathcal{D} \mathcal{F}_{R K+v}=R^{*}\left(\mathcal{D} \mathcal{F}_{K}\right)$
- $\mathcal{P}\left(\mathcal{R}^{*}\left(\mathcal{D} \mathcal{F}_{K}\right)\right) \simeq \mathcal{P}\left(\mathcal{D} \mathcal{F}_{K}\right)$
for $R \in \mathrm{O}(3)$ and $v \in \mathbb{R}^{3}$.

First, we introduce the Euler curve transform \mathcal{F}.

Euler Characteristic

Let K be a simplicial complex.

$$
\chi(K)=\sum_{i=0}^{\infty}(-1)^{i} c_{i}
$$

where c_{i} is the number of i-dimensional simplices in K.

Therefore, the Euler characteristic is not affected by the subdivision of the simplicial complex.

Euler Characteristic

Let K be a simplicial complex.

$$
\chi(K)=\sum_{i=0}^{\infty}(-1)^{i} c_{i}
$$

where c_{i} is the number of i-dimensional simplices in K.

$$
\chi(K)=\sum_{i=0}^{\infty}(-1)^{i} \text { rk } H_{i}(K)
$$

Therefore, the Euler characteristic is not affected by the subdivision of the simplicial complex.

Semialgebraic Set (1)

Definition

A semialgebraic set is a subset of n-dimensional Euclidean space that can be expressed as a finite union or intersection of sets of two types:

$$
\left\{\bar{x} \in \mathbb{R}^{n}: f(\bar{x})>0\right\} \text { and }\left\{\bar{x} \in \mathbb{R}^{n}: g(\bar{x})=0\right\}
$$

where f and g are polynomials in $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ with real coefficients.

Semialgebraic Set (2)

- Each simplex is a semialgebraic set.

- Semialgebraic sets are closed under unions.
- Therefore, an embedded simplicial complex is a semialgebraic set.

Semialgebraic Set (2)

- Each simplex is a semialgebraic set.

- Semialgebraic sets are closed under unions.
- Therefore, an embedded simplicial complex is a semialgebraic set.

Semialgebraic Set (2)

- Each simplex is a semialgebraic set.

- Semialgebraic sets are closed under unions.
- Therefore, an embedded simplicial complex is a semialgebraic set.

Semialgebraic Set (3)

- One of the main properties of semialgebraic sets is that they admit a well-defined notion of Euler characteristics.

```
Theorem (van den Dries)
Each semialgebraic set K\subseteq\mp@subsup{\mathbb{R}}{}{m}}\mathrm{ has a finite partition
K=C C}\cup\cdots\cup\mp@subsup{C}{i}{}\mathrm{ into cells }\mp@subsup{C}{i}{
- Euler characteristic for semialgebraic set is (well) defined
    similarly.
```


where c_{i} is the number of i-cells.

Semialgebraic Set (3)

- One of the main properties of semialgebraic sets is that they admit a well-defined notion of Euler characteristics.

Theorem (van den Dries)

Each semialgebraic set $K \subseteq \mathbb{R}^{m}$ has a finite partition $K=C_{1} \cup \cdots \cup C_{j}$ into cells C_{i}.

- Euler characteristic for semialgebraic set is (well) defined similarly.

$$
\chi(K)=\sum_{i=0}^{\infty}(-1)^{i} c_{i}
$$

where c_{i} is the number of i-cells.

Euler Integration

Additivity property: for semialgebraic sets A and B, we have

$$
\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B) .
$$

Definition

I et X be a semialgebraic set in \mathbb{R}^{n}. We call an integer-valued function $f: X \rightarrow \mathbb{Z}$ constructible if $f^{-1}(i)$ is semialgebraic subset for every $i \in \mathbb{Z}$. We denote the set of bounded compactly supported constructible functions on X as $\mathrm{CF}(X)$

- For every $f \in \mathrm{CF}(X)$, we define

Euler Integration

Additivity property: for semialgebraic sets A and B, we have

$$
\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)
$$

Definition

Let X be a semialgebraic set in \mathbb{R}^{n}. We call an integer-valued function $f: X \rightarrow \mathbb{Z}$ constructible if $f^{-1}(i)$ is semialgebraic subset for every $i \in \mathbb{Z}$. We denote the set of bounded compactly supported constructible functions on X as $\mathrm{CF}(X)$.

- For every $f \in \operatorname{CF}(X)$, we define

$$
\int_{X} f d \chi:=\sum_{i \in \mathbb{Z}} i \cdot \chi\left(f^{-1}(i)\right)
$$

Euler Curve Transform

- The Euler curve transform is an operator denoted as \mathcal{R} that maps from $\mathrm{CF}\left(\mathbb{R}^{n}\right)$ to $\mathrm{CF}\left(S^{n-1} \times \mathbb{R}\right)$:

$$
\mathcal{R}(f)(v, r)=\int_{\mathbb{R}^{n}} f(x) \cdot 1_{x \cdot v \leq r}(x) d \chi(x) .
$$

- For a simplicial complex K, if we put $f=1_{K}$,
where $K_{v, r}:=\left\{x \in \mathbb{R}^{n} \mid x \cdot v \leq r\right\} \cap K$.

Euler Curve Transform

- The Euler curve transform is an operator denoted as \mathcal{R} that maps from $\mathrm{CF}\left(\mathbb{R}^{n}\right)$ to $\mathrm{CF}\left(S^{n-1} \times \mathbb{R}\right)$:

$$
\mathcal{R}(f)(v, r)=\int_{\mathbb{R}^{n}} f(x) \cdot 1_{x \cdot v \leq r}(x) d \chi(x)
$$

- For a simplicial complex K, if we put $f=1_{K}$,

$$
\mathcal{R}\left(1_{K}\right)(v, r)=\int_{\mathbb{R}^{n}} 1_{\{x \in K \mid x \cdot v \leq r\}} d \chi=\chi\left(K_{v, r}\right)
$$

where $K_{v, r}:=\left\{x \in \mathbb{R}^{n} \mid x \cdot v \leq r\right\} \cap K$.

$$
K_{v, r}:=\left\{x \in \mathbb{R}^{n} \mid x \cdot v \leq r\right\} \cap K
$$

$$
K_{v, r}:=\left\{x \in \mathbb{R}^{n} \mid x \cdot v \leq r\right\} \cap K
$$

Injectivity

Theorem (Ghrist et al., 2018)

The Euler curve transform $\mathcal{R}: \operatorname{CF}\left(\mathbb{R}^{n}\right) \rightarrow \mathrm{CF}\left(S^{n-1} \times \mathbb{R}\right)$ is injective.

Therefore, instead of the original simplicial complex K, we can deal with $\mathcal{R}\left(1_{K}\right)$.

[^0]- To simplify notation, for each embedded simplicial complex K, we define a function \mathcal{F}_{K} :

$$
\begin{aligned}
& \mathcal{F}_{K}: S^{n-1} \longrightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R}) \\
& v \longmapsto\left(\mathcal{F}_{K}(v): \mathbb{R} \longrightarrow \mathbb{R}\right) \\
& r \longmapsto \chi\left(K_{v, r}\right)
\end{aligned}
$$

- Note that $\mathcal{R}\left(1_{K}\right)(v, r)=\chi\left(K_{v, r}\right)$
- For each direction $v \in S^{n-1}$, we will call the curve $\mathcal{F}_{K}(v)$ the Euler curve.
- By the injectivity, $K_{1} \neq K_{2}$ implies $\mathcal{F}_{K_{1}} \neq \mathcal{F}_{K_{2}}$.
- To simplify notation, for each embedded simplicial complex K, we define a function \mathcal{F}_{K} :

$$
\begin{aligned}
\mathcal{F}_{K}: S^{n-1} & \longrightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R}) \\
v & \\
\longmapsto\left(\mathcal{F}_{K}(v): \quad \mathbb{R}\right. & \longrightarrow \mathbb{R}) \\
r & \longmapsto \chi\left(K_{v, r}\right)
\end{aligned}
$$

- Note that $\mathcal{R}\left(1_{K}\right)(v, r)=\chi\left(K_{v, r}\right)$
- For each direction $v \in S^{n-1}$, we will call the curve $\mathcal{F}_{K}(v)$ the Euler curve.
- By the injectivity, $K_{1} \neq K_{2}$ implies $\mathcal{F}_{K_{1}} \neq \mathcal{F}_{K_{2}}$.

Euler Curves

Figure 6: An example of $\mathcal{F}_{K}: S^{2} \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$

Properties (1)

Proposition

Let K be an embedded simplicial complex in \mathbb{R}^{3}. Then, for $R \in \mathrm{O}(3)$ and $w \in \mathbb{R}^{3}$,

$$
\mathcal{F}_{R K+w}(v)(r)=\mathcal{F}_{K}(R v)(r-v \cdot w)
$$

That is, the transform is $\mathrm{O}(3)$-equivariant, and if the embedded simplicial complex is translated, then the resulting function is also translated.

Properties (2)

Proposition

Assume that there are translation-invariant functionals $\left\{\mathcal{D}_{i}\right\}_{i=1}^{m}$ on the set $\operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$, that is, if there exist $t \in \mathbb{R}$ such that $f(x)=g(x+t)$ for every x, then $\mathcal{D}_{i} f=\mathcal{D}_{i} g \in \mathbb{R}$ for every $1 \leq i \leq m$. Let $\mathcal{D} \mathcal{F}_{K}$ be a function
$\mathcal{D} \mathcal{F}_{K}: S^{2} \longrightarrow \mathbb{R}^{m}$

$$
v \longmapsto\left\{\mathcal{D}_{1} \circ \mathcal{F}_{K}(v), \ldots, \mathcal{D}_{m} \circ \mathcal{F}_{K}(v)\right\} .
$$

Then, $\mathcal{D} \mathcal{F}_{*}$ is $\mathrm{O}(3)$-equivariant, subdivision-invariant, and translation-invariant on the set of embedded simplicial complexes.

Translation-Invariant Operator (1)

- One of the simplest translation-invariant functionals for $\operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$ is the maximum functional, i.e.,

$$
\max \{f(x): x \in \mathbb{R}\}
$$

- However, the maximum functional cannot capture the various features of a function

Translation-Invariant Operator (1)

- One of the simplest translation-invariant functionals for $\operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$ is the maximum functional, i.e.,

$$
\max \{f(x): x \in \mathbb{R}\}
$$

- However, the maximum functional cannot capture the various features of a function.

Translation-Invariant Operator (2)

- Instead, we can stack several translation-equivariant operators and apply the max functional at the end to get various invariant features.
- Let $T_{c}(f)$ denote the translation operator by c, that is, the
function $f(x-c)$ where c is a constant.
- Let $\left\{G_{i}: \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})\right\}_{i=1}^{n}$ be
translation-equivariant operators.
- Let \mathcal{H} be the maximum functional on $\operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$.
- For a function $f \in \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$,

$$
=\mathcal{H} \circ G_{n} \circ \cdots \circ G_{1}(f)
$$

Translation-Invariant Operator (2)

- Instead, we can stack several translation-equivariant operators and apply the max functional at the end to get various invariant features.
- Let $T_{c}(f)$ denote the translation operator by c, that is, the function $f(x-c)$ where c is a constant.
translation-equivariant operators.
- Let \mathcal{H} be the maximum functional on $\operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$.
- For a function $f \in \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$,

$$
\mathcal{H} \circ G_{n} \circ \cdots \circ G_{1} \circ T_{c}(f)=\mathcal{H} \circ G_{n} \circ \cdots \circ T_{c} \circ G_{1}(f)
$$

$$
=\mathcal{H} \circ G_{n} \circ \cdots \circ G_{1}(f) .
$$

Translation-Invariant Operator (2)

- Instead, we can stack several translation-equivariant operators and apply the max functional at the end to get various invariant features.
- Let $T_{c}(f)$ denote the translation operator by c, that is, the function $f(x-c)$ where c is a constant.
- Let $\left\{G_{i}: \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})\right\}_{i=1}^{n}$ be translation-equivariant operators.
- Let \mathcal{H} be the maximum functional on $\operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$.
- For a function $f \in \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$,

Translation-Invariant Operator (2)

- Instead, we can stack several translation-equivariant operators and apply the max functional at the end to get various invariant features.
- Let $T_{c}(f)$ denote the translation operator by c, that is, the function $f(x-c)$ where c is a constant.
- Let $\left\{G_{i}: \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})\right\}_{i=1}^{n}$ be translation-equivariant operators.
- Let \mathcal{H} be the maximum functional on $\operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$.
- For a function $f \in \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$,

$=\mathcal{H} \circ G_{n} \circ \cdots \circ G_{1}(f)$.

Translation-Invariant Operator (2)

- Instead, we can stack several translation-equivariant operators and apply the max functional at the end to get various invariant features.
- Let $T_{c}(f)$ denote the translation operator by c, that is, the function $f(x-c)$ where c is a constant.
- Let $\left\{G_{i}: \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})\right\}_{i=1}^{n}$ be translation-equivariant operators.
- Let \mathcal{H} be the maximum functional on $\operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$.
- For a function $f \in \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})$,

$$
\begin{aligned}
\mathcal{H} \circ G_{n} \circ \cdots \circ G_{1} \circ T_{c}(f) & =\mathcal{H} \circ G_{n} \circ \cdots \circ T_{c} \circ G_{1}(f) \\
& =\cdots \\
& =\mathcal{H} \circ T_{c} \circ G_{n} \circ \cdots \circ G_{1}(f) \\
& =\mathcal{H} \circ G_{n} \circ \cdots \circ G_{1}(f)
\end{aligned}
$$

Cross-Correlation

Definition

For a bounded measurable function f and a bounded compact supported measurable function g, the cross-correlation is defined as:

$$
(f \star g)(\tau) \triangleq \int_{-\infty}^{\infty} f(t+\tau) g(t) d t
$$

For $c \in \mathbb{R}$, we have

$$
\begin{aligned}
\left(T_{c}(f) \star g\right)(\tau) & =\int_{-\infty}^{\infty} T_{c}(f)(t+\tau) g(t) d t \\
& =\int_{-\infty}^{\infty} f(t+\tau-c) g(t) d t \\
& =(f \star g)(\tau-c)=T_{c}(f \star g)(\tau)
\end{aligned}
$$

1D-Convolution

- CNN(Convolutional Neural Network):
- Discretization of the cross-correlation.
- CNN can be used to approximate a translation-equivariant operator

Figure 7: How 1D-CNN works

- So far, we have defined

$$
\mathcal{F}_{K}: S^{2} \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})
$$

and

$$
\mathcal{D} \mathcal{F}_{K}: S^{2} \rightarrow \mathbb{R}^{a}
$$

- Properties:

$$
\begin{aligned}
& \text { - } \mathcal{D} \mathcal{F}_{K+v}=\mathcal{D} \mathcal{F}_{K} \text { for } v \in \mathbb{R}^{3} \\
& \text { - } \mathcal{D} F_{R K}=R^{*}\left(\mathcal{D} \mathcal{F}_{K}\right) \text { for } R \in O(3) \text {. }
\end{aligned}
$$

- But, we cannot process all the data in practice, and need to discretize.
- So far, we have defined

$$
\mathcal{F}_{K}: S^{2} \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})
$$

and

$$
\mathcal{D} \mathcal{F}_{K}: S^{2} \rightarrow \mathbb{R}^{a}
$$

- Properties:
- $\mathcal{D} \mathcal{F}_{K+v}=\mathcal{D} \mathcal{F}_{K}$ for $v \in \mathbb{R}^{3}$.
- $\mathcal{D} \mathcal{F}_{R K}=R^{*}\left(\mathcal{D} \mathcal{F}_{K}\right)$ for $R \in \mathrm{O}(3)$.
- But, we cannot process all the data in practice, and need to discretize.
- So far, we have defined

$$
\mathcal{F}_{K}: S^{2} \rightarrow \operatorname{Map}(\mathbb{R} \rightarrow \mathbb{R})
$$

and

$$
\mathcal{D} \mathcal{F}_{K}: S^{2} \rightarrow \mathbb{R}^{a}
$$

- Properties:
- $\mathcal{D} \mathcal{F}_{K+v}=\mathcal{D} \mathcal{F}_{K}$ for $v \in \mathbb{R}^{3}$.
- $\mathcal{D} \mathcal{F}_{R K}=R^{*}\left(\mathcal{D} \mathcal{F}_{K}\right)$ for $R \in \mathrm{O}(3)$.
- But, we cannot process all the data in practice, and need to discretize.

In practice:

1. Draw n points from S^{2} as uniformly as possible:

$$
\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=X \subset S^{2}
$$

2. For each point, we obtain a discretized Euler curve

$$
F_{K}: X \rightarrow \mathbb{R}^{d}
$$

(where d is a predetermined resolution of the Euler curves.)
3. Using CNNs, activation functions, and a max pooling layer, we obtain

In practice:

1. Draw n points from S^{2} as uniformly as possible:

$$
\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=X \subset S^{2}
$$

2. For each point, we obtain a discretized Euler curve

$$
\mathcal{F}_{K}: X \rightarrow \mathbb{R}^{d} .
$$

(where d is a predetermined resolution of the Euler curves.)
3. Using CNNs, activation functions, and a max pooling layer, we obtain

In practice:

1. Draw n points from S^{2} as uniformly as possible:

$$
\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=X \subset S^{2}
$$

2. For each point, we obtain a discretized Euler curve

$$
\mathcal{F}_{K}: X \rightarrow \mathbb{R}^{d} .
$$

(where d is a predetermined resolution of the Euler curves.)
3. Using CNNs, activation functions, and a max pooling layer, we obtain

$$
\mathcal{D} \mathcal{F}_{K}: X \rightarrow \mathbb{R}^{a} .
$$

O(3)-Equivariant Operator

- The only thing left to do is to build an O(3)-invariant operator.
- As before, to get a $O(3)$-invariant operator, we can stack several $O(3)$-equivariant operators first, and then stack an O(3)-invariant operator using a pooling layer.
- Now we need to make an operator

$$
\mathcal{T}: \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{2}}\right)
$$

that can approximate an $\mathrm{O}(3)$-equivariant operator:

$$
" \mathcal{T}\left(R^{*} f\right) \simeq R^{*}(\mathcal{T}(f))^{\prime}
$$

O(3)-Equivariant Operator

- The only thing left to do is to build an O(3)-invariant operator.
- As before, to get a $O(3)$-invariant operator, we can stack several $\mathrm{O}(3)$-equivariant operators first, and then stack an $\mathrm{O}(3)$-invariant operator using a pooling layer.
- Now we need to make an operator

$$
\mathcal{T}: \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{2}}\right)
$$

that can approximate an $\mathrm{O}(3)$-equivariant operator:

O(3)-Equivariant Operator

- The only thing left to do is to build an O(3)-invariant operator.
- As before, to get a $O(3)$-invariant operator, we can stack several $O(3)$-equivariant operators first, and then stack an $\mathrm{O}(3)$-invariant operator using a pooling layer.
- Now we need to make an operator

$$
\mathcal{T}: \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{2}}\right)
$$

that can approximate an $\mathrm{O}(3)$-equivariant operator:

$$
" \mathcal{T}\left(R^{*} f\right) \simeq R^{*}(\mathcal{T}(f))^{\prime}
$$

Schema

We are going to make \mathcal{T} via a graph neural network:

1. Predetermined $r>0$ and uniform samples $X \subset S^{2}$.
2. Construct a graph

- Consider the points $X=\left\{x_{1}, \ldots, x_{n}\right\}$ as nodes of a graph.
- Connect the points where the distance between two points is less than r.

3. Consider the function $\mathcal{D F}_{K}: X \rightarrow \mathbb{R}^{a}$ as node features.
4. We perform a graph neural network on the graph.

Figure 8: Subdivision of the icosahedron

Graph Convolutional Network (1)

- Graph Convolutional Network (GCN) is a type of neural network that operates on graph structures.
- GCN is an operator that updates feature vectors for each node in a graph by modeling interactions between neighboring nodes and using both the graph structure and node features.

Graph Convolutional Network (2)

- Node feature $f: V \rightarrow \mathbb{R}^{k}$.
- New updated node feature $\mathcal{T}(f)$:

$$
\begin{aligned}
& \mathcal{T}(f)(v)=\operatorname{Mean}\left\{W_{\theta} \cdot f(u): u \in \tilde{\mathcal{N}}(v)\right\} \\
& \text { where } \tilde{\mathcal{N}}(v)=\{v\} \cup \mathcal{N}(v) .
\end{aligned}
$$

Neighborhood of v_{0}

Extension

- Now, we need to show

$$
" \mathcal{T}\left(R^{*} f\right) \simeq R^{*}(\mathcal{T}(f)) "
$$

for a function $f \in \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right)$, but this does not make sense. $\left(\because \mathcal{T}: \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{2}}\right)\right)$

- Thus, we extend \mathcal{T} :

$$
\mathcal{T}^{\prime}: \operatorname{Map}\left(S^{2} \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(S^{2} \rightarrow \mathbb{R}^{m_{2}}\right)
$$

where $\mathcal{T}^{\prime}(f)(x)=\operatorname{Mean}\left\{W_{\theta} \cdot f(u):\|x-u\|<r, u \in X\right\}$ Obviously, $\left.\mathcal{T}^{\prime}(f)\right|_{x}=\mathcal{T}\left(\left.f\right|_{x}\right)$.

- Now, the statements $\mathcal{T}^{\prime}\left(R^{*} f\right)$ and $R^{*}\left(\mathcal{T}^{\prime}(f)\right)$ make sense.

Extension

- Now, we need to show

$$
" \mathcal{T}\left(R^{*} f\right) \simeq R^{*}(\mathcal{T}(f)) "
$$

for a function $f \in \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right)$, but this does not make sense. $\left(\because \mathcal{T}: \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{2}}\right)\right)$

- Thus, we extend \mathcal{T} :

$$
\mathcal{T}^{\prime}: \operatorname{Map}\left(S^{2} \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(S^{2} \rightarrow \mathbb{R}^{m_{2}}\right)
$$

where $\mathcal{T}^{\prime}(f)(x)=\operatorname{Mean}\left\{W_{\theta} \cdot f(u):\|x-u\|<r, u \in X\right\}$.
Obviously, $\left.\mathcal{T}^{\prime}(f)\right|_{X}=\mathcal{T}\left(\left.f\right|_{X}\right)$.

- Now, the statements $\mathcal{T}^{\prime}\left(R^{*} f\right)$ and $R^{*}\left(\mathcal{T}^{\prime}(f)\right)$ make sense.

Extension

- Now, we need to show

$$
" \mathcal{T}\left(R^{*} f\right) \simeq R^{*}(\mathcal{T}(f)) "
$$

for a function $f \in \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right)$, but this does not make sense. $\left(\because \mathcal{T}: \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(X \rightarrow \mathbb{R}^{m_{2}}\right)\right)$

- Thus, we extend \mathcal{T} :

$$
\mathcal{T}^{\prime}: \operatorname{Map}\left(S^{2} \rightarrow \mathbb{R}^{m_{1}}\right) \rightarrow \operatorname{Map}\left(S^{2} \rightarrow \mathbb{R}^{m_{2}}\right)
$$

where $\mathcal{T}^{\prime}(f)(x)=\operatorname{Mean}\left\{W_{\theta} \cdot f(u):\|x-u\|<r, u \in X\right\}$.
Obviously, $\left.\mathcal{T}^{\prime}(f)\right|_{X}=\mathcal{T}\left(\left.f\right|_{X}\right)$.

- Now, the statements $\mathcal{T}^{\prime}\left(R^{*} f\right)$ and $R^{*}\left(\mathcal{T}^{\prime}(f)\right)$ make sense.

$\mathrm{O}(3)$-Equivariance

Theorem

Let f be a bounded measurable function on S^{2}. Assume that $x_{1}, x_{2}, \ldots, x_{n}$ are independent identically distributed random variables from the uniform distribution on S^{2}. Then, for $R \in \mathrm{O}(3)$ and $\epsilon>0$,

$$
\mathbb{P}\left[\left\|R^{*} \mathcal{T}^{\prime}(f)(x)-\mathcal{T}^{\prime}\left(R^{*} f\right)(x)\right\|_{\infty}>\epsilon\right] \longrightarrow 0
$$

for every $x \in S^{2}$ as n goes to infinity.

- Using several GCN layers, activation layers, and a pooling layer at the end, we can approximate an $\mathrm{O}(3)$-invariant operator.

[^1]
Summary

- First, sample points $X=\left\{x_{1}, \ldots, x_{n}\right\} \subset S^{2}$ uniformly.

$$
\begin{array}{ll}
1 K \subset \mathbb{R}^{3} & 2 \mathcal{F}_{K}: X \rightarrow \mathbb{R}^{d} \\
3 \mathcal{D} \mathcal{F}_{K}: X \rightarrow \mathbb{R}^{m} & 4 \mathcal{P}\left(\mathcal{D} \mathcal{F}_{K}\right) \in \mathbb{R}^{k}
\end{array}
$$

\mathcal{F}_{K}

$\mathcal{D} \mathcal{F}_{K}$

$\mathcal{P}\left(\mathcal{D} \mathcal{F}_{K}\right)$

Figure 9: Simplified structure of the proposed architecture

Discretization Error

- Dealing with discretized Euler curves and using CNNs instead of the cross-correlation.
- The theorem for the GCN is about what happens as n goes to infinity, but we don't know how large the error will be for finite n.
- By stacking multiple neural network layers with discretization errors, there is a possibility that the discretization error could be amplified in the overall deep learning model.

Therefore, we conducted a very simple experiment to measure this.

Discretization Error

- Dealing with discretized Euler curves and using CNNs instead of the cross-correlation.
- The theorem for the GCN is about what happens as n goes to infinity, but we don't know how large the error will be for finite n.
- By stacking multiple neural network layers with discretization errors, there is a possibility that the discretization error could be amplified in the overall deep learning model.

Therefore, we conducted a very simple experiment to measure this.

Discretization Error

- Dealing with discretized Euler curves and using CNNs instead of the cross-correlation.
- The theorem for the GCN is about what happens as n goes to infinity, but we don't know how large the error will be for finite n.
- By stacking multiple neural network layers with discretization errors, there is a possibility that the discretization error could be amplified in the overall deep learning model.

Therefore, we conducted a very simple experiment to measure this.

Discretization Error

- Dealing with discretized Euler curves and using CNNs instead of the cross-correlation.
- The theorem for the GCN is about what happens as n goes to infinity, but we don't know how large the error will be for finite n.
- By stacking multiple neural network layers with discretization errors, there is a possibility that the discretization error could be amplified in the overall deep learning model.

Therefore, we conducted a very simple experiment to measure this.

Experiment

ANIM (ANimals in Motion)

- The dataset I used
- 229 mesh data
- 8 classes

Training Details

- Train the model to converge on the vertices of a regular octagon for each class.

- Randomly picked 5 for each class to train.

Test Details

- Apply a random isometric transformation to each data three times, to obtain three new data sets, which are then used as inputs to the neural network.

$\longrightarrow:$ Random isometric transform

Experimental Results

Figure 10: The outcomes for 3 datasets.

Discussion

- Theoretical error bound of each layer
- Computational cost
- Usage of persistent homology/cohomology techniques

Discussion

- Theoretical error bound of each layer
- Computational cost
- Usage of persistent homology/cohomology techniques

Discussion

- Theoretical error bound of each layer
- Computational cost
- Usage of persistent homology/cohomology techniques

Discussion

- Theoretical error bound of each layer
- Computational cost
- Usage of persistent homology/cohomology techniques

Thank You

[^0]: Ghrist, R., Levanger, R., \& Mai, H. (2018). Persistent homology and Euler integral transforms. Journal of Applied and Computational Topology, 2, 55-60.

[^1]: Paik, T. (2023). Invariant Representations of Embedded Simplicial Complexes. arXiv preprint arXiv:2302.13565.

