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Project Idea
R E l i ab l e e X p l A i na b l e  S w a r m In te l l i g e n c e f o r P e o p l e w i th R e d u c e d m O b i l i t y

To d e s i g n a n ovel f r a m e w o r k in w h i c h safety, security,
ethics, a n d explainabi l ity ar e e n t a n g l e d to d e v e l op a
Tr u st w o rthy Artificial S w a r m I n t e l l i g e n ce solut ion.

Th e f r a m e w o r k w i l l m a k e a t r u st w o r t h y c o l l a b o r a t i o n
a m o n g a s w a r m f o r m e d b y a u t o n o m o u s
w h e e l c ha ir s a n d f l y i n g r o b ot s t o al l o w a se a m l e ss d o or -
to-door exper ience for people with reduced mobi l i ty .

Thi s g o a l wil l resul t i n b en ef i t s for t h e se people, their
families, caregivers, sc ienti f i c c o m m u n i t y , industry, a n d
e n v ir o nm e n t , c r e a t i n g a scientific, e c o n o m i c ,
t e c h n o l o g i c a l a n d social factors.

Project Details

Duration
01/10/2022 –
30/09/2025

Type of Action
RIA

Grant Amount
€ 3.551.158.50

Call
H O R IZ O N -C L 4 -2 0 21-

HUMAN-01-01



6Use Cases
3 m a i n u s e c a s e s

AI for Autonomous Wheelchair in different  
scenarios: 1)Safety Assistant; 2) Driving  
Assistant; 3) Route Assistant; 4) Social  

Navigation. To adopt this technology in  
real-life scenario, new trustable social  
navigation approaches are required.

Flying robots capable of flying autonomously  
in an indoor/underground environment and  
generating a map of the building that would  

be latter used by the wheelchair.
The flying robot will collaborate with an  
orchestrator to optimize time and energy

consumption.

Mixed collaborative indoor environment  
where the swarm communicate with each  

other in emergency cases. The swarm  
would include the wheelchairs, the flying  

robots, the orchestrator, and intelligent  
cameras for people detection and crowd  

monitoring.

Navigation incrowded  
environment

D FK I

Flying robotmapping

H O V E R I N G S O L U TI O N S

Collaborative Navigation
CN R



6USE role and team
CIMAGROUP

Dataset optimization by removing redundant
data but ensuring shape and the model

performance.

Detection critical configuration in the 
dynamical system of the navigation process by

the used of Persistent homology and partial
matchings between the Persistent barcodes.

Dataset size reduction

USE

Critical Configuration
detection

USE

grupo.us.es/cimagroup/
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Visit our Website: rexasi-pro.spindoxlabs.com 

&

Follow us on LinkedIn!

Contact: info-rexasipro@spindox.it

mailto:info-rexasipro@spindox.it
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Universal approximation theorem
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An introduction to Simplicial-map Neural Networks

Simplicial complexes and simplicial maps
(1/4)

A simplicial complex is a set of simplices such that each shared face is a  
simplex.
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Things to recall:
Face
Maximal simplex
Star
Pure simplicial complex
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Simplicial complexes and simplicial maps (2/4)
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An introduction to Simplicial-map Neural Networks

Simplicial complexes and simplicial maps
(3/4)
Simplicial maps
Let K and L be two simplicial complexes. The simplicial map induced by
φ is defined as:

i

c j jφ  (x ) = ∑ λ φ(v )
j=0

where λj is the barycentric coordinates of x respect to vj.
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An introduction to Simplicial-map Neural Networks

Simplicial complexes and simplicial maps
(4/4)
Simplicial approximation
Let K and L be simplicial complexes and g : |K| → |L| a continuous  
function. A simplicial map is a simplicial approximation of g if

g(|st(v)|) ⊆ |st(φ(v))|,∀v∈K (0).
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The simplicial approximation extension
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For triangulations
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SMNN for classification
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• The classes are encoded in a maximal simplex |L|.
• Simplicial map is defined between a triangulation of the input 

dataset and |L|.
We need:
• To specify the “región of action” of the NN.
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SMNN for classification
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SMNN for classification
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An introduction to Simplicial-map Neural Networks

Adversarial examples

Adversarial attacks
Given a labelled dataset D and a neural network that correctly classifies  
D. Let B(r ) = {α ∈ Rd : ||α|| ≤ r}. Then, an adversarial example of  
size r is defined as x ′  = x + α with α ∈ B(r ) and label ℓ ′  where x ∈ D  
with label ℓ and ℓ ̸= ℓ ′.
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Robustness against adversarial examples

Theorem
Let D be a labelled dataset. Then, there exists a two-hidden-layer neural
network characterizing D and robust to adversarial attacks of size r > 0,
for rbeing small enough.
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Optimizing its structure
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An introduction to Simplicial-map Neural Networks

Take-home message and future work

1 SMNNs are constructive by definition and universal
approximation.

2 SMNNs can be refined to gain robustness against 
adversarial  examples.

3 Its bottleneck is the computation of the triangulation and they are  
strongly data dependant.

4 Future work:
Can SMNNs be trained?
Is it possible to optimize its architecture or avoid the Delaunay  
triangulation?

Eduardo Paluzo Hidalgo Joint work with Rocio Gonzalez-Diaz and Miguel A. Guti´errez-Naranjo |
Dept. of Applied Math I University of Sevilla | March 29, 2023 29 / 31



An introduction to Simplicial-map Neural Networks

Take-home message and future work

1 SMNNs are constructive by definition and universal
approximation.

2 SMNNs can be refined to gain robustness against 
adversarial  examples.

3 Its bottleneck is the computation of the triangulation and they are  
strongly data dependant.

4 Future work:
Can SMNNs be trained?
Is it possible to optimize its architecture or avoid the Delaunay  
triangulation? Thank you!
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