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1. Review of Terminology
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Neural Networks

Neural networks consist of a composition of layer functions, where a
layer function has the following typical form:

Data

Data

Data

Learnable, Linear

Fixed, Non-Linear

Edward Pearce-Crump Group Equivariant Neural Networks June 21, 2023 6 / 54



Shape of the Data

Physical processes often generate data that is high dimensional, and it can
typically be represented in the form of a high order tensor (an element of
(Rn)⊗k) so that complex relationships can be captured between different
features in the data.

Example: The adjacency matrix of a graph is a 2-order tensor

Graph Matrix Graph Matrix

1

2

4

5

3



1 2 3 4 5

1 0 1 0 1 0
2 1 0 1 0 0
3 0 1 0 0 1
4 1 0 0 0 0
5 0 0 1 0 0

 4

1

3

2

5



1 2 3 4 5

1 0 0 0 1 1
2 0 0 0 0 1
3 0 0 0 1 0
4 1 0 1 0 0
5 1 1 0 0 0
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Symmetries

The data often comes with a certain type of symmetry that is baked into
the data itself: e.g

permutations (labelling of a set, labelling of the vertices of a graph
etc.)

rotations (of the circle in the plane, of a sphere, etc.)

translations (of an object in an image, etc.)
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Groups: The Mathematics of Symmetries

Symmetries in mathematics are given by groups.

A group is a non-empty set G together with a binary operation • such that
the following axioms are satisfied:

1 Closure: for all g , h ∈ G , g • h ∈ G

2 Associativity: for all g , h, k ∈ G , (g • h) • k = g • (h • k)
3 Identity: there exists a unique element e ∈ G such that, for all

g ∈ G , g • e = g = e • g
4 Inverses: for all g ∈ G , there exists an element h ∈ G such that

g • h = e = h • g .
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Examples of Groups

the symmetric group Sn: permutations of [n] := {1, . . . , n}
the alternating group An: subgroup of Sn consisting of all even
permutations

the general linear group GL(n): the group of all invertible
transformations Rn → Rn

the special linear group SL(n): the subgroup of GL(n) consisting of
all invertible transformations whose determinant is +1.

the orthogonal group O(n): if we choose the standard basis of Rn,
this is the subgroup of GL(n) consisting of matrices A such that
A⊤A = In
the special orthogonal group SO(n): O(n) ∩ SL(n)

the symplectic group Sp(n), n = 2m: if we choose the symplectic
basis of Rn, this is the subgroup of GL(n) consisting of matrices A
such that A⊤JA = J, where J is the block diagonal matrix consisting

of m blocks of the form
[
0 1
−1 0

]
.
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Group Actions and Group Representations

We are interested in group actions, where a group G acts on the
elements of a set S , and, more specifically, if the elements of S index a
basis of a vector space, then we are interested in group representations,
which, in some sense, consider groups as matrices. This means that we
can employ the tools of linear algebra.

Example: S3 acts on [3] = {1, 2, 3} by permutating its elements, and so,
by indexing the standard basis {ei} of R3 by the elements of [3], we obtain
a representation S3 → GL(R3) that is given by σ(ei ) = eσ(i), and is
extended linearly on the basis.
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Group Equivariant Neural Networks

These are neural networks where the data lives in a vector space that is a
representation of a group, and the maps are equivariant to the group:

V

Learnable, Linear

Fixed, Non-Linear

G

G

G

G -equivariant

G -equivariant

W

W
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Group Equivariance: A Formal Definition

If ρV : G → GL(V ) and ρW : G → GL(W ) are two representations of G ,
then ϕ : V → W is said to be G -equivariant if, for all g ∈ G and v ∈ V ,

ϕ(ρV (g)[v ]) = ρW (g)[ϕ(v)] (1)

The set of all linear G -equivariant maps between V and W is denoted by
HomG (V ,W ), and, in particular, it forms a vector space.

Edward Pearce-Crump Group Equivariant Neural Networks June 21, 2023 13 / 54



2. Research Problem
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Given the nature of the data that we wish to learn from, we are interested
in group equivariant neural networks of the form:

(Rn)⊗k

Learnable, Linear

Fixed, Non-Linear

G(n)

G(n)

G(n)

G(n)-equivariant

G(n)-equivariant

(Rn)⊗l

(Rn)⊗l

G (n) is a subgroup of GL(n), and (Rn)⊗k is a representation of G (n)
given by the diagonal action over the tensor product:

ρk(g)(v1 ⊗ · · · ⊗ vk) := gv1 ⊗ · · · ⊗ gvk (2)

for all g ∈ G (n) and for all vectors vi ∈ Rn.
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Research Question

For different groups G (n), can we characterise all of the possible
G (n)–equivariant, learnable, linear layers that appear in a G (n)-equivariant
neural network where the layers are some tensor power of Rn?

In particular, can we find a basis or a spanning set of
HomG(n)((Rn)⊗k , (Rn)⊗l) in the standard basis of Rn?

???

G(n)

G(n) (Rn)⊗l

(Rn)⊗k
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Potential Benefits

1 Less training data is required: typically, the data does not need to
be augmented.

2 These architectures come with high levels of parameter sharing:
hence, there are fewer parameters overall.

3 Reduction in time, effort and cost needed to search for a neural
network architecture: the form of the architectures is restricted by the
symmetry group itself.

4 (Crucially, as we will see) we do not need to decompose the
representation spaces (Rn)⊗k into irreducibles of G (n); hence there is
no need for change of basis transformations into the Fourier domain.
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3. Relevant Literature
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Most Relevant Literature

1 Zaheer et al. (2017), arXiv:1703.06114: introduced the first
permutation equivariant neural network, called Deep Sets, for learning
from sets in a permutation equivariant manner.

2 Maron et al. (2019), arXiv:1812.09902: characterised all of the
learnable, linear, equivariant layer functions when the layers are some
tensor power of Rn for the symmetric group Sn in the practical cases,
by looking at fixed point equations representing the symmetric
subspace.

3 Finzi et al. (2021), arXiv:2104.09459: constructed a numerical
algorithm to find a basis to characterise the learnable, linear,
equivariant layer functions when the layers are some tensor power of
Rn for the orthogonal group O(n), special orthogonal group SO(n),
and symplectic group Sp(n), but only for small values of n and for
small orders of the tensors, since their algorithm runs out of memory
on higher values.
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4. Results
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a) Symmetric Group Sn

We showed that there exists a bijective correspondence between

The Set Partitions of [l + k]

A Basis of HomSn((Rn)⊗k , (Rn)⊗l )

The Sn orbits of [n]l+k

having at most n blocks

1 2 3

4 5

Pearce-Crump (2022): Connecting Permutation Equivariant Neural Networks and Partition

Diagrams, arXiv:2212.08648, under review.
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Bijection between Sn orbits and Set Partitions

Let (I , J) be a class representative of an Sn orbit of [n]l+k , where I ∈ [n]l

and j ∈ [n]k . Then, writing

(I , J) = (i1, i2, . . . , il , il+1, il+2, . . . il+k) (3)

we define the bijection, for all x , y ∈ [l + k], by

ix = iy ⇐⇒ x , y are in the same block of π (4)

The bijection (4) is independent of the choice of class representative since

ix = iy ⇐⇒ σ(ix) = σ(iy ) for all σ ∈ Sn (5)

Notice that the LHS of (4) is checking for an equality on the elements of
[n], whereas the RHS is separating the elements of [l + k] into blocks;
hence π must have at most n blocks.
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Example 1: EndS4(R4) (n = 4, k = 1, l = 1)

Set Partition
Diagram

Partition
π

Block Labelling
(Iπ | Jπ)

Standard Basis
Element Xπ

1

2

{1, 2} {1 | 1}


1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1


1

2

{1 | 2} {1 | 2}


1 2 3 4

1 0 1 1 1
2 1 0 1 1
3 1 1 0 1
4 1 1 1 0
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Example 2: HomS2((R2)⊗2,R2) (n = 2, k = 2, l = 1)

Set Partition
Diagram

Partition
π

Block Labelling
(Iπ | Jπ)

Standard Basis
Element Xπ

1

2 3

{1, 2, 3} {1 | 1, 1}
[1,1 1,2 2,1 2,2

1 1 0 0 0
2 0 0 0 1

]
1

2 3

{1, 2 | 3} {1 | 1, 2}
[1,1 1,2 2,1 2,2

1 0 1 0 0
2 0 0 1 0

]
1

2 3

{1, 3 | 2} {1 | 2, 1}
[1,1 1,2 2,1 2,2

1 0 0 1 0
2 0 1 0 0

]
1

2 3

{1 | 2, 3} {1 | 2, 2}
[1,1 1,2 2,1 2,2

1 0 0 0 1
2 1 0 0 0

]
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Other Relevant Literature

1 Martin (1990, 1994, 1996): first introduced the partition algebra
Pk(n) upon which these results are based.

2 Jones (1994): developed a surjective homomorphism between the
partition algebra and the centraliser algebra on a k-order tensor of Rn.

3 Benkart and Halverson (2019), arXiv:1709.07751: showed how the
partition algebra can be used to construct the invariant theory of the
symmetric group.
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b) Orthogonal Group O(n), Special Orthogonal Group
SO(n), Symplectic Group Sp(n)

We showed that, for O(n) and Sp(n), there exists a bijective
correspondence between

The Set Partitions of [l + k]

A Spanning Set of HomG(n)((Rn)⊗k , (Rn)⊗l )

whose blocks come in pairs

1 2 3

4 5

A Spanning Set of HomG(n)((Rn)⊗l+k ,R)
First Fundamental Theorem for G(n) :

6
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and, for SO(n), there exists a bijective correspondence between

The Set Partitions of [l + k]

A Spanning Set of HomSO(n)((Rn)⊗k , (Rn)⊗l )

whose blocks come in pairs

1 2 3

4 5

A Spanning Set of

First Fundamental Theorem for SO(n) :

6

together with those that have n

elements removed and the rest come in pairs

1 2 3

4 5 6

HomSO(n)((Rn)⊗l+k ,R)

Pearce-Crump (2022): Brauer’s Group Equivariant Neural Networks, arXiv:2212.08630, ICML

2023 (live oral presentation).
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Brauer’s Invariant Argument

It can be shown that
C =

∑
I∈[n]l ,J∈[n]k

CI ,JEI ,J (6)

is an element of HomG(n)((Rn)⊗k , (Rn)⊗l) (having chosen some basis of
Rn) if and only if the function

(Rn)⊗l+k → R (7)

which maps an element of the form

u(1)⊗ u(2)⊗ · · · ⊗ u(l)⊗ v(1)⊗ v(2)⊗ · · · ⊗ v(k) (8)

to ∑
I∈[n]l ,J∈[n]k

CI ,J

l∏
t=1

uit (t)
k∏

r=1

vjr (r) (9)

is an invariant for the group G (n).
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First Fundamental Theorem for O(n)

Suppose that Rn has associated with it a non-degenerate, symmetric,
bilinear form (·,·).

Pick the standard basis for Rn, so that (·,·) becomes the Euclidean inner
product on Rn.

If f : (Rn)⊗(l+k) → R is a polynomial function on elements in (Rn)⊗(l+k)

of the form

u(1)⊗ u(2)⊗ · · · ⊗ u(l)⊗ v(1)⊗ v(2)⊗ · · · ⊗ v(k) (10)

that is O(n)-invariant, then f must be a polynomial of the Euclidean inner
products

(u(i), u(j)), (u(i), v(j)), (v(i), v(j)) (11)
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Hence, from Brauer’s Invariant Argument, we get that

Theorem (Spanning Set of Invariants (Rn)⊗(l+k) → R for O(n))

The functions

(z(1), z(2))(z(3), z(4)) . . . (z(l + k − 1), z(l + k)) (12)

where z(1), . . . , z(l + k) is a permutation of

u(1), u(2), . . . , u(l), v(1), v(2), . . . , v(k)

form a spanning set of invariants (Rn)⊗(l+k) → R for O(n).
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Example 1: EndO(2)((R2)⊗2) (n = 2, k = 2, l = 2)

Set Partition Diagram Inner Products Spanning Set Element

1 2

3 4

(u(1), u(2))(v(1), v(2))


1,1 1,2 2,1 2,2

1,1 1 0 0 1
1,2 0 0 0 0

2,1 0 0 0 0
2,2 1 0 0 1


1 2

3 4

(u(1), v(1))(u(2), v(2))


1,1 1,2 2,1 2,2

1,1 1 0 0 0
1,2 0 1 0 0

2,1 0 0 1 0
2,2 0 0 0 1


1 2

3 4

(u(1), v(2))(u(2), v(1))


1,1 1,2 2,1 2,2

1,1 1 0 0 0
1,2 0 0 1 0

2,1 0 1 0 0
2,2 0 0 0 1
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First Fundamental Theorem for Sp(n)

Suppose that Rn (n = 2m) has associated with it a non-degenerate,
skew-symmetric, bilinear form ⟨·,·⟩.

Choosing the symplectic basis

B̃ := {e1, e1′ , . . . , em, em′} (13)

for Rn, where the i th basis vector in the set has a 1 in the i th position and
a 0 elsewhere, which satisfies the relations

⟨eα, eβ⟩ = ⟨eα′ , eβ′⟩ = 0 (14)

⟨eα, eβ′⟩ = −⟨eα′ , eβ⟩ = δα,β (15)

we have that ⟨·,·⟩ becomes the skew product

⟨x , y⟩ =
m∑
r=1

(xryr ′ − xr ′yr ) =
∑
i ,j

⟨ei , ej⟩xiyj (16)

for all x , y ∈ Rn.
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Note that, in this basis, the non-degenerate, symmetric, bilinear form (·,·)
which we can also associate with Rn, becomes the Euclidean inner product
on Rn since the symplectic basis is standard with respect to (·,·).

Then, if f : (Rn)⊗(l+k) → R is a polynomial function on elements in
(Rn)⊗(l+k) of the form

u(1)⊗ u(2)⊗ · · · ⊗ u(l)⊗ v(1)⊗ v(2)⊗ · · · ⊗ v(k) (17)

that is Sp(n)-invariant, then f must be a polynomial of the Euclidean
inner products

(u(i), v(j)) (18)

together with the skew products

⟨u(i), u(j)⟩, ⟨v(i), v(j)⟩ (19)

such that i < j in (19).

Hence, from Brauer’s Invariant Argument, we get that
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Theorem (Spanning Set of Invariants (Rn)⊗(l+k) → R for Sp(n),
n = 2m)

The functions

[z(1), z(2)][z(3), z(4)] . . . [z(l + k − 1), z(l + k)] (20)

where z(1), . . . , z(l + k) is a permutation of

u(1), u(2), . . . , u(l), v(1), v(2), . . . , v(k)

and

[z(i), z(i +1)] :=


(z(i), z(i + 1))

if z(i) = u(j) and z(i + 1) = v(m),
or z(i) = v(m) and z(i + 1) = u(j),
for some j ∈ [l ], m ∈ [k]

⟨z(i), z(i + 1)⟩ otherwise.

(21)
form a spanning set of invariants (Rn)⊗(l+k) → R for Sp(n), with n = 2m.
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Example 2: EndSp(2)((R2)⊗2) (n = 2, k = 2, l = 2)

Set Partition Diagram Inner/Skew Products Spanning Set Element

1 2

3 4

⟨u(1), u(2)⟩⟨v(1), v(2)⟩


1,1 1,1′ 1′,1 1′,1′

1,1 0 0 0 0
1,1′ 0 1 −1 0

1′,1 0 −1 1 0
1′,1′ 0 0 0 0


1 2

3 4

(u(1), v(1))(u(2), v(2))


1,1 1,1′ 1′,1 1′,1′

1,1 1 0 0 0
1,1′ 0 1 0 0

1′,1 0 0 1 0
1′,1′ 0 0 0 1


1 2

3 4

(u(1), v(2))(u(2), v(1))


1,1 1,1′ 1′,1 1′,1′

1,1 1 0 0 0
1,1′ 0 0 1 0

1′,1 0 1 0 0
1′,1′ 0 0 0 1
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First Fundamental Theorem for SO(n)

Suppose that Rn has associated with it a non-degenerate, symmetric,
bilinear form (·,·). Choose the standard basis for Rn, so that (·,·) becomes
the Euclidean inner product on Rn.

If f : (Rn)⊗(l+k) → R is a polynomial function on elements in (Rn)⊗(l+k)

of the form

u(1)⊗ u(2)⊗ · · · ⊗ u(l)⊗ v(1)⊗ v(2)⊗ · · · ⊗ v(k) (22)

that is SO(n)-invariant, then it must be a polynomial of the Euclidean
inner products

(u(i), u(j)), (u(i), v(j)), (v(i), v(j)) (23)

together with the n × n subdeterminants of the n × (l + k) matrix M
having as its columns:

M :=

 | | | | | |
u(1) u(2) . . . u(l) v(1) v(2) . . . v(k)
| | | | | |

 (24)
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Hence, from Brauer’s Invariant Argument, we get that

Theorem (Spanning Set of Invariants (Rn)⊗(l+k) → R for SO(n))

Functions of the form

(z(1), z(2))(z(3), z(4)) . . . (z(l + k − 1), z(l + k)) (25)

together with functions of the form

det(z(1), . . . , z(n))(z(n + 1), z(n + 2)) . . . (z(l + k − 1), z(l + k)) (26)

where z(1), . . . , z(l + k) is a permutation of

u(1), u(2), . . . , u(l), v(1), v(2), . . . , v(k)

form a spanning set of invariants (Rn)⊗(l+k) → R for SO(n).
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Example 3: HomSO(2)((R2)⊗3,R2) (n = 2, k = 3, l = 1)

Set Partition
Diagram

Inner Products Spanning Set Element

1

2 3 4

(u(1), v(1))(v(2), v(3))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 1 0 0 1 0 0 0 0
2 0 0 0 0 1 0 0 1

]

1

2 3 4

(u(1), v(2))(v(1), v(3))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 1 0 0 0 0 1 0 0
2 0 0 1 0 0 0 0 1

]

1

2 3 4

(u(1), v(3))(v(1), v(2))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 1 0 0 0 0 0 1 0
2 0 1 0 0 0 0 0 1

]
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Set Partition
Diagram

Inner Products Spanning Set Element

1

2 3 4

det(v(2), v(3))(u(1), v(1))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 0 1 −1 0 0 0 0 0
2 0 0 0 0 0 1 −1 0

]

1

2 3 4

det(v(1), v(3))(u(1), v(2))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 0 1 0 0 −1 0 0 0
2 0 0 0 1 0 0 −1 0

]

1

2 3 4

det(v(1), v(2))(u(1), v(3))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 0 0 1 0 −1 0 0 0
2 0 0 0 1 0 −1 0 0

]
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Set Partition
Diagram

Inner Products Spanning Set Element

1

2 3 4

det(u(1), v(3))(v(1), v(2))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 0 1 0 0 0 0 0 1
2 −1 0 0 0 0 0 −1 0

]

1

2 3 4

det(u(1), v(2))(v(1), v(3))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 0 0 1 0 0 0 0 1
2 −1 0 0 0 0 −1 0 0

]

1

2 3 4

det(u(1), v(1))(v(2), v(3))
[1,1,1 1,1,2 1,2,1 1,2,2 2,1,1 2,1,2 2,2,1 2,2,2

1 0 0 0 0 1 0 0 1
2 −1 0 0 −1 0 0 0 0

]
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Other Relevant Literature

1 Brauer (1937): first introduced the Brauer algebra for the purpose of
understanding the centraliser algebras of the groups O(n), SO(n) and
Sp(n)

2 Grood (1999): investigated the representation theory of the
Brauer–Grood algebra
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c) Alternating Group An

We showed that there exists a bijective correspondence between

The Set Partitions of [l + k]

A Basis of HomAn((Rn)⊗k , (Rn)⊗l )

The An orbits of [n]l+k

having at most n − 2 blocks

correspond to 1 An orbit

and those having either n − 1 or n blocks

correspond to 2 An orbits

Pearce-Crump (2023): How Jellyfish Characterise Group Equivariant Neural Networks,

arXiv:2301.10152, ICML 2023 (poster presentation).
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The set partitions that correspond to more than one An orbit are said to
split.

The basis elements corresponding to set partitions that do not split can be
found in exactly the same way as for the symmetric group Sn.

To find the basis elements corresponding to set partitions that split, we
use n-legged jellyfish

which correspond to the determinant map (Rn)⊗n → R defined on the
standard basis by

eI := ei1 ⊗ · · · ⊗ ein 7→
∣∣ei1 . . . ein

∣∣ (27)
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From before: HomS2((R2)⊗2,R2) (n = 2, k = 2, l = 1)

Set Partition
Diagram

Partition
π

Block Labelling
(Iπ | Jπ)

Standard Basis
Element Xπ

1

2 3

{1, 2, 3} {1 | 1, 1}
[1,1 1,2 2,1 2,2

1 1 0 0 0
2 0 0 0 1

]
1

2 3

{1, 2 | 3} {1 | 1, 2}
[1,1 1,2 2,1 2,2

1 0 1 0 0
2 0 0 1 0

]
1

2 3

{1, 3 | 2} {1 | 2, 1}
[1,1 1,2 2,1 2,2

1 0 0 1 0
2 0 1 0 0

]
1

2 3

{1 | 2, 3} {1 | 2, 2}
[1,1 1,2 2,1 2,2

1 0 0 0 1
2 1 0 0 0

]
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What about HomA2((R2)⊗2,R2)?
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Procedure

We follow the procedure given below (for general n, k , l):

1. Check which of the (k, l)–set partition diagrams appearing in the Sn
case split and which do not. In this case, all four (2, 1)–set partition
diagrams split.

2. For those that do not split, the basis matrix is the same as for the Sn
case.

3. Otherwise, we construct a jellyfish diagram for each (k, l)–set
partition diagram that splits, as follows: first, we flatten it, maintaining
the order of the vertices, then we add a new top row of n vertices and
connect the lowest numbered vertex in each block i to vertex i in the top
row, and finally we attach an n-legged jellyfish to the top row of vertices.
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For example, for the second set partition diagram

1

2 3

we obtain the following jellyfish diagram:

1 2 3

We can show that the jellyfish diagram corresponds to a map in
HomAn((Rn)⊗l+k ,R) that sends standard basis vectors indexed by the
elements of the Sn orbit that corresponds to the original (k, l)–set
partition diagram to ±1, and to 0 otherwise.
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4. We then calculate the two An orbits that the Sn orbit splits into,
using the possible outcomes of the map on standard basis vectors
indexed by its elements, namely ±1, as separate classes.

For the jellyfish diagram given above, as the S2 orbit is {(1, 1, 2), (2, 2, 1)},
the map takes e(1,1,2) to +1 and e(2,2,1) to −1. Hence the S2 orbit splits
into two A2 orbits, namely {(1, 1, 2)} and {(2, 2, 1)}.

5. Finally, we obtain the two basis matrices X+ and X−, each of which is
a sum of the matrix units in Hom((Rn)⊗k , (Rn)⊗l) that are indexed by the
elements of the An orbits.

For our example, we have that X+ = E(1|1,2) and X− = E(2|2,1)
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Example: HomA2
((R2)⊗2,R2) (n = 2, k = 2, l = 1)

Set Partition
Diagram

Partition
π

Standard Basis
Element X+

π

Standard Basis
Element X−

π

1

2 3

{1, 2, 3}
[1,1 1,2 2,1 2,2

1 1 0 0 0
2 0 0 0 0

] [1,1 1,2 2,1 2,2

1 0 0 0 0
2 0 0 0 1

]
1

2 3

{1, 2 | 3}
[1,1 1,2 2,1 2,2

1 0 1 0 0
2 0 0 0 0

] [1,1 1,2 2,1 2,2

1 0 0 0 0
2 0 0 1 0

]
1

2 3

{1, 3 | 2}
[1,1 1,2 2,1 2,2

1 0 0 1 0
2 0 0 0 0

] [1,1 1,2 2,1 2,2

1 0 0 0 0
2 0 1 0 0

]
1

2 3

{1 | 2, 3}
[1,1 1,2 2,1 2,2

1 0 0 0 1
2 0 0 0 0

] [1,1 1,2 2,1 2,2

1 0 0 0 0
2 1 0 0 0

]
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Other Relevant Literature

1 Bloss (2005): studied the centraliser algebra of the alternating group,
adapting the result of Jones (1994) for that of the symmetric group.

2 Comes (2020), arXiv:1612.05182: largely determined the theory of
alternating group An equivariance; however, they relied heavily on the
language of category theory in their exposition.
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Other Papers

1 Pearce-Crump (2023): Categorisation of Group Equivariant Neural
Networks, arXiv:2304.14144, under review: developed a category
theoretic framework around the characterisations given above, leading
to:

2 Pearce-Crump (2023): An Algorithm for Computing with Brauer’s
Group Equivariant Neural Network Layers, arXiv:2304.14165, under
review: allows us to compute with the layers characterised in Brauer’s
Group Equivariant Neural Networks in a faster way, using
decompositions into Kronecker product matrices.
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5. Closing Remarks

Edward Pearce-Crump Group Equivariant Neural Networks June 21, 2023 52 / 54



Limitations and Discussion

Given the current limitations of hardware, tensor product neural
networks require significant engineering efforts in order to achieve
the required scale

This is because storing high-order tensors in memory is not a
straightforward task.

This was demonstrated by Kondor et al. (2018), who had to develop
custom CUDA kernels in order to implement their tensor product
based neural networks.
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Nevertheless, we anticipate that with the increasing availability of
computing power, higher-order group equivariant neural networks
will become more prevalent in practical applications.

Notably, while the dimension of tensor power spaces increases
exponentially with their order, the dimension of the space of
equivariant maps between such tensor power spaces is often much
smaller, and the corresponding matrices are typically sparse.

Therefore, while storing these matrices may present some technical
difficulties, it should be feasible with the current computing power
that is available.
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