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Assumption: All rings are commutative and with unit.

Definition
Assume A = [aij ] is an m × m skewsymmetric matrix,
(i.e., aji = −aij and aii = 0) with entries in a ring R.

If m = 2ℓ then det A = f (aij)2.
The polynomial f (aij) is called the Pfaffian of the matrix A
and is denoted by Pf (A).
If m = 2ℓ + 1 by Pfaffians of A we mean the set

{Pf (A1),Pf (A2), . . . ,Pf (Am)},

where Ai denotes the skewsymmetric submatrix of A obtained
by deleting the ith row and ith column of A.

Vasiliki Petrotou Tom & Jerry triples and the 4-intersection formats



Notation
Unprojection review
Tom & Jerry triples

The 4-intersection format
Applications

References

Example
For m = 2 :

Pf (
(

0 a12
−a12 0

)
) = a12

For m = 5:

Pf (


0 a12 a13 a14 a15

−a12 0 a23 a24 a25
−a13 −a23 0 a34 a35
−a14 −a24 −a34 0 a45
−a15 −a25 −a35 −a45 0

) =

= {Pf (A1),Pf (A2), . . . ,Pf (A5)}

= {Pf (A1),Pf (A2),. . . ,Pf (A5)}
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where

Pf (A1) = a23a45 − a24a35 + a25a34,

Pf (A2) = a13a45 − a14a35 + a15a34,

Pf (A3) = a12a45 − a14a25 + a15a24,

Pf (A4) = a12a35 − a13a25 + a15a23,

Pf (A5) = a12a34 − a13a24 + a14a23.
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Definition
A Noetherian local ring R is a Gorenstein ring if inj dimRR < ∞.
More generally, a Noetherian ring R is called Gorenstein if for
every maximal ideal m of R the localization Rm is Gorenstein.

Examples of Gorenstein rings
The anticanonical ring R =

⊕
m≥0 H0(X ,OX (−mKX )) of a

(smooth) Fano n-fold.
The canonical ring R =

⊕
m≥0 H0(X ,OX (mKX )) of a

(smooth) regular surface of general type.
The Stanley-Reisner ring of a simplicial sphere over any field.
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Theorem
Let R = k[x1, . . . , xm]/I be the polynomial ring in n variables
divided by a homogeneous ideal I.

(Serre) If codim I = 1 or 2 then

R is Gorenstein ⇔ I is a complete intersection.

(Buchsbaum-Eisenbud (1977)) If codim I = 3 then
R is Gorenstein ⇔ I is generated by the 2n × 2n

Pfaffians of a skewsymmetric (2n + 1) × (2n + 1) matrix with
entries in k[x1, . . . , xm].

Question
Is there a structure theorem for codim I ≥ 4 ?
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A.Kustin & M.Milller (1983) introduced a procedure which
constructs more «complicated» Gorenstein rings from simpler
ones by increasing codimension. This procedure is called
Kustin-Miller unprojection.

M.Reid (1995) rediscovered what was essentially the same
procedure working with Gorenstein rings arising from K3
surfaces and 3-folds.
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Kustin-Miller unprojection
Parallel Kustin-Miller unprojection

Assumptions of Kustin-Miller unprojection:
J ⊂ R codimension 1 ideal
R Gorenstein
R/J Gorenstein.

Codimension : increasing by one.

Denote by i the canonical injection.
Under the assumptions above Reid proves that there exists ϕ such
that HomR(J ,R) is generated by i , ϕ as R-module.

Definition (M.Reid)

Unpr(J,R)= «graph of ϕ» = R[T ]
(Tα−ϕ(α): α∈J)
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Kustin-Miller unprojection
Parallel Kustin-Miller unprojection

Theorem (Kustin-Miller, Reid-Papadakis)
The ring Unpr(J,R) is Gorenstein.

Remarks
Unpr(J,R) has typically more complicated structure than both
R, R/J.
Unpr(J,R) is useful to construct/analyse Gorenstein rings in
terms of simpler ones.
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Kustin-Miller unprojection
Parallel Kustin-Miller unprojection

Kustin-Miller unprojection can be used many times over an
inductive way to produce Gorenstein rings of arbitrary
codimensions, whose properties are nevertheless controlled by just
a few equations as a number of new unprojection variables are
adjoined.

Applications
Construction of new interesting algebraic surfaces and 3-folds.
Explicit Birational Geometry.
(That is, writing down explicitly varieties, morphisms and
rational maps that Minimal Model Program says they exist.)
Algebraic Combinatorics.
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Kustin-Miller unprojection
Parallel Kustin-Miller unprojection

Neves and Papadakis (2013) develop a theory, which is called
parallel Kustin-Miller unprojection.

They set sufficient conditions on a positively graded Gorenstein
ring R and a finite set of codimension 1 ideals which ensure the
series of unprojections.

Furthermore, they give a simple and explicit description of the end
product ring which corresponds to the unprojection of the ideals.

This theory applies when all the unprojection ideals of a series of
unprojections correspond to ideals already present in the initial ring.
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Tom & Tom & Tom case

Assume J is a codimension 4 complete intersection ideal and M is
a 5 × 5 skewsymmetric matrix.

Definition
1 Assume 1 ≤ i ≤ 5. The matrix M is called Tomi in J if after

we delete the i-th row and i-th column of M the remaining
entries are elements of the codimension 4 ideal J .

2 Assume 1 ≤ i < j ≤ 5. The matrix M is called Jerryij in J if
all the entries of M that belong to the i-th row or i-th column
or j-th row or j-th column are elements of J .

Remark
In both cases the Pfaffian ideal of M is a subset of J .
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Tom & Tom & Tom case

Papadakis’ Calculation for Tom (2004)
Let R = k[xk , zk ,mk

ij ] , where 1 ≤ k ≤ 4 , 2 ≤ i < j ≤ 5 , be a
polynomial ring. Set J = (z1, z2, z3, z4). Denote by

N =


0 x1 x2 x3 x4

−x1 0 m23 m24 m25
−x2 −m23 0 m34 m35
−x3 −m24 −m34 0 m45
−x4 −m25 −m35 −m45 0

,

where

mij =
∑4

k=1 mk
ijzk .

Let I be the ideal generated by the Pfaffians P0,P1,P2,P3,P4 of
N. It holds that I ⊂ J .
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Tom & Tom & Tom case

Papadakis using multilinear and homological algebra calculates the
equations of the codimension 4 ring which occurs as unprojection
of the pair I ⊂ J .
More precisely, calculates 4 polynomials gi for i = 1, . . . , 4
and defines the map ϕ by

ϕ : J/I → R/I, zi + I 7→ gi + I.

Moreover, he proves that HomR/I(J/I,R/I) is generated as R/I-
module by the inclusion map i and ϕ. From the theory it follows
that the ideal

(P0,P1,P2,P3,P4,Tz1 − g1,Tz2 − g2,Tz3 − g3,Tz4 − g4)

of the polynomial ring R[T ] is Gorenstein of codimension 4.
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Tom & Tom & Tom case

We will now define Tom & Jerry triples.

Let

M =


0 m12 m13 m14 m15

−m12 0 m23 m24 m25
−m13 −m23 0 m34 m35
−m14 −m24 −m34 0 m45
−m15 −m25 −m35 −m45 0


be a 5 × 5 skewsymmetric matrix and J1, J2, J3 be three complete
intersection ideals of codimension 4.
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Tom & Tom & Tom case

Definition
We say that M is a Tom1 + Tom2 + Tom3 in J1, J2, J3 if the
entries of M satisfy the following conditions:

m12 ∈ J3, m13 ∈ J2, m14,m15 ∈ J2 ∩ J3, m23 ∈ J1,
m24,m25 ∈ J1 ∩ J3, m34,m35 ∈ J1 ∩ J2, m45 ∈ J1 ∩ J2 ∩ J3.

Remark
Equivalently, the matrix M is Tom1 in J1, Tom2 in J2 and Tom3 in
J3.

Similarly, we set conditions in the entries of M such that M is
Jerryij in J1, Jerrykl in J2 and Jerrymn in J3.
Tomi in J1, Tomj in J2 and Jerrykl in J3.
Tomi in J1, Jerryjk in J2 and Jerrylm in J3.
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Tom & Tom & Tom case

We work over the polynomial ring R = k[zi , cj ], where 1 ≤ i ≤ 7
and 1 ≤ j ≤ 25. Denote by Tom(1,2,3) the following 5 × 5
skewsymmetric matrix 0 c1z1+c2z2+c3z3+c4z6 c5z1+c6z2+c7z4+c8z5 c9z1+c10z2 c11z1+c12z2

0 c13z2+c14z3+c15z5+c16z7 c17z2+c18z3 c19z2+c20z3
0 c21z2+c22z5 c23z2+c24z5

−Sym 0 c25z2
0


which is Tom1+Tom2+Tom3 matrix in the ideals

J1 = (z2, z3, z5, z7), J2 = (z1, z2, z4, z5), J3 = (z1, z2, z3, z6).

Let I be the ideal generated by the Pfaffians of Tom(1,2,3).
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Tom & Tom & Tom case

Proposition
(i) For all t with 1 ≤ t ≤ 3, the ideal Jt/I is a codimension 1
homogeneous ideal of R/I with Gorenstein quotient.
(ii) For all t, s with 1 ≤ t < s ≤ 3, it holds that

codimR/I(Jt/I + Js/I) = 3.
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Tom & Tom & Tom case

Aim: Compution of ϕt : Jt/I → R/I for all t with 1 ≤ t ≤ 3.

Strategy: We combine Papadakis’ Calculation for Tom1 with the
fact that a Tomi matrix in an ideal J is related to Tom1 matrix in
the ideal J via a sequence of elementary row and column
operations.

Proposition
For all t with 1 ≤ t ≤ 3, the R/I-module HomR/I(Jt/I,R/I) is
generated by the two elements it and ϕt .
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Tom & Tom & Tom case

Proposition
For all t, s with 1 ≤ t, s ≤ 3 and t ̸= s, it holds that

ϕs(Js/I) ⊂ Jt/I.

.

Proposition
For all t, s with 1 ≤ t, s ≤ 3 and t ̸= s, there exists a
homogeneous element Ast such that

ϕs(ϕt(p)) = Astp

for all p∈ Jt/I.
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Tom & Tom & Tom case

Let T1,T2,T3 be three new variables of degree 6.

Definition

We define as Iun the ideal

(I) + (T1z2 − ϕ1(z2), T1z3 − ϕ1(z3), T1z5 − ϕ1(z5), T1z7 − ϕ1(z7),

T2z1 − ϕ2(z1), T2z2 − ϕ2(z2), T2z4 − ϕ2(z4),T2z5 − ϕ2(z5),

T3z1 − ϕ3(z1), T3z2 − ϕ3(z2), T3z3 − ϕ3(z3), T3z6 − ϕ3(z6),

T1T2 − A12, T1T3 − A13, T2T3 − A23)

of the polynomial ring R[T , S,W ]. We set Run = R[T , S,W ]/Iun.
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Tom & Tom & Tom case

Proposition
The homogeneous ideal Iun is a codimension 6 ideal with a minimal
generating set of 20 elements.

Theorem (P.)
The ring Run is Gorenstein.
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Assume that J is a fixed codimension 3 complete intersection ideal.

Question
Define a codimension 2 complete intersection ideal I such that I is
a subset of J .

One answer on this Question is given by the following computation.
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Papadakis’ Calculation for Unprojection of a complete
intersection inside a complete intersection, (2004)
Let R = k[ai , bi , xj ], where 1 ≤ i ≤ 3 and j ∈ {1, 3, 5} be the
standard graded polynomial ring. Fix J = (x1, x3, x5). Denote by A
the following 2 × 3 matrix(

a1 a2 a3
b1 b2 b3

)

and by Ai the 2 × 2 submatrix of A which is obtained by removing
the ith column.
Consider the ideal I = (a1x1 + a2x3 + a3x5, b1x1 + b2x3 + b3x5) of
R. It holds that I ⊂ J .
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Denote by hi for i= 1 . . . 3, the polynomial which is equal to the
determinant of the submatrix Ai and define the map ϕ by

ϕ : J/I → R/I,

ϕ(x1 + I) = h1 + I, ϕ(x3 + I) = −h2 + I, ϕ(x5 + I) = h3 + I

Papadakis proved that HomR/I(J/I,R/I) is generated as R/I-
module by the inclusion map i and ϕ. From the theory it follows
that the ideal

I + (Tx1 − h1,Tx3 − (−h2),Tx5 − h3)

of the polynomial ring R[T ] is Gorenstein of codimension 3.
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Let J1, J2, J3, J4 be four codimension 3 complete intersection ideals
and I is a codimension 2 complete intersection ideal.

Definition
We say that I is a 4-intersection ideal with respect to the ideals
J1, J2, J3, J4 if I is subset of each of the ideals J1, J2, J3, J4.

An example of a 4-intersection unprojection format is the following:
We work over the standard graded polynomial ring R = k[ci , xi ],
where 1 ≤ i ≤ 6. We set

I1234 = (c1x1x2 + c2x3x4 + c3x5x6, c4x1x2 + c5x3x4 + c6x5x6).

Then, I1234 is a 4-intersection ideal in the ideals

J1 = (x1, x3, x5), J2 = (x1, x4, x6), J3 = (x2, x3, x6), J4 = (x2, x4, x5).
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We proved that this initial data satisfies the conditions for parallel
Kustin-Miller unprojection.

For all t, with 1 ≤ t ≤ 4, denote by it : Jt/I1234 → R/I1234 the
inclusion map.

Aim: Definition of ϕt : Jt/I1234 → R/I1234 for all t with 1 ≤ t ≤ 4.

Strategy: We combine Papadakis’ Calculation for a complete
intersection I inside a complete intersection J with the fact that
I1234 is a complete intersection in Jt .

Let T1,T2,T3,T4 be four new variables of degree 3.
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Definition

We define as Iun the ideal

(I) + (T1x1-ϕ1(x1), T1x3-ϕ1(x3), T1x5-ϕ1(x5), T2x1-ϕ2(x1),

T2x4-ϕ2(x4), T2x6-ϕ2(x6), T3x2-ϕ3(x2), T3x3-ϕ3(x3), T3x6-ϕ3(x6),

T4x2-ϕ4(x2),T4x4-ϕ4(x4), T4x5-ϕ4(x5), T2T1-A21, T3T1-A31,

T4T1-A41, T3T2-A32, T4T2-A42, T4T3-A43)

of the polynomial ring R[T1,T2,T3,T4]. We set
Run = R[T1,T2,T3,T4]/Iun.

Theorem (P., 2021)
Iun is a codimension 6 Gorenstein ideal with 20 generators.
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Applications using Tom & Jerry triples unprojection format

We now give two applications of the construction of Run.

Theorem (P.)
There exists a family of quasismooth, projectively normal and
projectively Gorenstein Fano 3-folds X ⊂ P(13, 27), nonsingular
away from eight quotient singularities 1

2(1, 1, 1), with Hilbert series
of the anticanonical ring

1 − 20t4 + 64t6 − 90t8 + 64t10 − 20t12 + t16

(1 − t)3(1 − t2)7 .
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Theorem (P.)
There exists a family of quasismooth, projectively normal and
projectively Gorenstein Fano 3-folds X ⊂ P(13, 25, 32), nonsingular
away from four quotient singularities 1

2(1, 1, 1), and two quotient
singularities 1

3(1, 1, 2), with Hilbert series of the anticanonical ring

1−11t4−8t5+23t6+32t7−13t8−48t9−13t10+32t11+23t12−8t13−11t14+t18

(1−t)3(1−t2)5(1−t3)2 .
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Construction of the first family:
Denote by k = C the field of complex numbers.
Let Run be the ring and Iun the ideal which were defined above.
Substitute the variables (c1, . . . , c25) with a general element of k25.
R̂un: the ring which occurs from Run after this substitution.
Îun: the ideal which obtained by the ideal Iun after this substitution.
In what follows we set

degree zi = degree T1 = degree T2 = degree T3 = 2,

for all i with 1 ≤ i ≤ 7.
Since Run is Gorenstein, Proj R̂un ⊂ P(210) is a projectively
Gorenstein 3-fold.
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Let A = k[w1,w2,w3, z1, z2, z3, z5,T1,T2,T3] be the polynomial
ring over k with w1,w2,w3 variables of degree 1. Consider the
graded k-algebra homomorphism

ψ : R̂un[T1,T2,T3] → A

with

ψ(z1) = z1, ψ(z2) = z2, ψ(z3) = z3, ψ(z4) = f1,

ψ(z5) = z5, ψ(z6) = f2, ψ(z7) = f3, ψ(T1) = T1,

ψ(T2) = T2, ψ(T3) = T3

where
f1 = l1z1 + l2z2 + l3z3 + l4z5 + l5T1 + l6T2 + l7T3 + l8w2

1 +
l9w1w2 + l10w1w3 + l11w2

2 + l12w2w3 + l13w2
3 ,
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f2 = l14z1 + l15z2 + l16z3 + l17z5 + l18T1 + l19T2 + l20T3 + l21w2
1 +

l22w1w2 + l23w1w3 + l24w2
2 + l25w2w3 + l26w2

3 ,

f3 = l27z1 + l28z2 + l29z3 + l30z5 + l31T1 + l32T2 + l33T3 + l34w2
1 +

l35w1w2 + l36w1w3 + l37w2
2 + l38w2w3 + l39w2

3

and (l1, . . . , l39) ∈ k39 are general.

Denote by Q the ideal of the ring A generated by the subset ψ(̂Iun).
Let X = V (Q) ⊂ P(13, 27). Then X is a codimension 6
projectively Gorenstein 3-fold.

Proposition
The ring A/Q is an integral domain.
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Proposition
Consider X = V (Q) ⊂ P(13, 27). Denote by Xcone ⊂ A10 the affine
cone over X . The scheme Xcone is smooth outside the vertex of
the cone.

Proposition
Consider the singular locus Z = V (w1,w2,w3) of the weighted
projective space P(13, 27). The intersection of X with Z consists
of exactly eight points which are quotient singularities of type
1
2(1, 1, 1) for X .
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Proposition
The minimal graded resolution of A/Q as A-module is equal to

0 → A(−16) → A(−12)20 → A(−10)64 → A(−8)90 → A(−6)64

→ A(−4)20 → A

Moreover, the canonical module of A/Q is isomorphic to
(A/Q)(−1) and the Hilbert series of A/Q as graded A-module is
equal to

1 − 20t4 + 64t6 − 90t8 + 64t10 − 20t12 + t16

(1 − t)3(1 − t2)7 .
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Application using 4-intersection unprojection format
As an application of the construction of Run we proved the
following theorem.

Theorem (P.)
There exists a family of quasismooth, projectively normal and
projectively Gorenstein Fano 3-folds X ⊂ P(18, 2, 3), nonsingular
away from eight quotient singularities 1

3(1, 1, 2), with Hilbert series
of the anticanonical ring

1 − 6t2 + 15t4 − 20t6 + 15t8 − 6t10 + t12

(1 − t)8(1 − t2)(1 − t3) .
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