Group invariant machine learning by fundamental domain projections

Daniel Platt
3 May 2023
University of Nottingham Online Machine Learning Seminar

Abstract: In many applications one wants to learn a function that is invariant under a group action. For example, classifying images of digits, no matter how they are rotated. There exist many approaches in the literature to do this. I will mention two approaches that are very useful in many applications, but struggle if the group is big or acts in a complicated way. I will then explain our approach which does not have these two problems. The approach works by finding some "canonical representative" of each input element. In the example of images of digits, one may rotate the digit so that the brightest quarter is in the top-left, which would define a "canonical representative". In the general case, one has to define what that means. Our approach is useful if the group is big, and useless if the group is small, and I will present experiments for both cases. This is joint work with Benjamin Aslan and David Sheard.

Group actions

- Example: $S_{3}=$ permutation group of 3 elements $S_{3} \curvearrowright \mathbb{R}^{3}$, e.g. $(1,2) \cdot\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right)$

$\rightarrow f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ group invariant $: \Leftrightarrow f(g \cdot x)=f(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
\rightarrow Example:

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto \max \left\{x_{1}, x_{2}, x_{3}\right\}
$$

- Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ can train neural network $N N$
\Rightarrow Approximate max, but need not be group invariant
- Q1: how can find one group invariant NNs?
- Q2: does this improve performance of NNs?

Group actions

- Example: $S_{3}=$ permutation group of 3 elements $S_{3} \curvearrowright \mathbb{R}^{3}$, e.g. $(1,2) \cdot\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right)$

- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ group invariant $: \Leftrightarrow f(g \cdot x)=f(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Example:
$\left(x_{1}, x_{2}, x_{3}\right) \mapsto \max \left\{x_{1}, x_{2}, x_{3}\right\}$
- Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ can train neural network $N N$
- Approximate max, but need not be group invariant
- Q1: how can find one group invariant NNs?
\Rightarrow Q2: does this improve performance of NNs?

Group actions

- Example: $S_{3}=$ permutation group of 3 elements $S_{3} \curvearrowright \mathbb{R}^{3}$, e.g. $(1,2) \cdot\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right)$

- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ group invariant $: \Leftrightarrow f(g \cdot x)=f(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Example:

$$
\begin{aligned}
\max : \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto \max \left\{x_{1}, x_{2}, x_{3}\right\}
\end{aligned}
$$

- Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ can train neural network NN
- Approximate max, but need not be group invariant
- Q1: how can find one group invariant NNs?
- Q2: does this improve performance of NNs ?

Group actions

- Example: $S_{3}=$ permutation group of 3 elements $S_{3} \curvearrowright \mathbb{R}^{3}$, e.g. $(1,2) \cdot\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right)$

- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ group invariant $: \Leftrightarrow f(g \cdot x)=f(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Example:

$$
\begin{aligned}
\max : \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto \max \left\{x_{1}, x_{2}, x_{3}\right\}
\end{aligned}
$$

- Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ can train neural network $N N$ - Approximate max, but need not be group invariant
- Q1: how can find one group invariant NNs?

Group actions

- Example: $S_{3}=$ permutation group of 3 elements $S_{3} \curvearrowright \mathbb{R}^{3}$, e.g. $(1,2) \cdot\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right)$

- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ group invariant $: \Leftrightarrow f(g \cdot x)=f(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Example:

$$
\begin{aligned}
\max : \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto \max \left\{x_{1}, x_{2}, x_{3}\right\}
\end{aligned}
$$

- Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ can train neural network $N N$
- Approximate max, but need not be group invariant
- Q1: how can find one group invariant NNs?

Group actions

- Example: $S_{3}=$ permutation group of 3 elements $S_{3} \curvearrowright \mathbb{R}^{3}$, e.g. $(1,2) \cdot\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}, x_{1}, x_{3}\right)$

- $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ group invariant $: \Leftrightarrow f(g \cdot x)=f(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Example:

$$
\begin{aligned}
\max : \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto \max \left\{x_{1}, x_{2}, x_{3}\right\}
\end{aligned}
$$

- Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ can train neural network $N N$
- Approximate max, but need not be group invariant
- Q1: how can find one group invariant NNs?
- Q2: does this improve performance of NNs?

Previous approaches

1. Data augmentation: Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right)\right.$, $\left.\max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$, add pairs $\left(g \cdot\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ for all $g \in S_{3}$ to the training data
2. Restricting weights of neural networks [Zaheer et al., 2017] ("Deep Sets")

has $L(g \cdot x)=g \cdot L(x)$ (equivariant). Define $N N=$ pool $\circ L \circ \sigma \circ L \circ \sigma \circ L$, where:

- pool =some fixed group-invariant function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, e.g. $\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2}+x_{3}$
- $\sigma=$ some non-linearity, e.g. ReLU

Theorem: If $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is S_{3}-equivariant, then L is of this form.
3. Averaging techniques:

Let $N N: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a neural network architecture, not necessarily invariant

Previous approaches

1. Data augmentation: Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right)\right.$, max $\left.\left\{x_{1}, x_{2}, x_{3}\right\}\right)$, add pairs $\left(g \cdot\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ for all $g \in S_{3}$ to the training data
2. Restricting weights of neural networks [Zaheer et al., 2017] ("Deep Sets"):

$$
L:\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mapsto \lambda_{1}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\lambda_{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { for } \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

has $L(g \cdot x)=g \cdot L(x)$ (equivariant). Define $N N=$ pool $\circ L \circ \sigma \circ L \circ \sigma \circ L$, where:

$$
\checkmark \sigma=\text { some non-linearity, e.g. ReLU }
$$

Theorem: If L
$L: \mathbb{R}^{3} \rightarrow \mathbb{R}$

Let $N N: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a neural network architecture, not necessarily invariant

Previous approaches

1. Data augmentation: Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right)\right.$, max $\left.\left\{x_{1}, x_{2}, x_{3}\right\}\right)$, add pairs $\left(g \cdot\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ for all $g \in S_{3}$ to the training data
2. Restricting weights of neural networks [Zaheer et al., 2017] ("Deep Sets"):

$$
L:\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mapsto \lambda_{1}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\lambda_{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { for } \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

has $L(g \cdot x)=g \cdot L(x)$ (equivariant). Define $N N=$ pool $\circ L \circ \sigma \circ L \circ \sigma \circ L$, where:

- pool =some fixed group-invariant function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, e.g. $\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2}+x_{3}$
- $\sigma=$ some non-linearity, e.g. ReLU

Theorem: If $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is S_{3}-equivariant, then L is of this form
3. Averaging techniques:

Let $N N: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a neural network architecture, not necessarily invariant

Previous approaches

1. Data augmentation: Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$, add pairs $\left(g \cdot\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ for all $g \in S_{3}$ to the training data
2. Restricting weights of neural networks [Zaheer et al., 2017] ("Deep Sets"):

$$
L:\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mapsto \lambda_{1}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\lambda_{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { for } \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

has $L(g \cdot x)=g \cdot L(x)$ (equivariant). Define $N N=$ pool $\circ L \circ \sigma \circ L \circ \sigma \circ L$, where:

- pool =some fixed group-invariant function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, e.g. $\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2}+x_{3}$
- $\sigma=$ some non-linearity, e.g. ReLU

Theorem: If $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is S_{3}-equivariant, then L is of this form.
3. Averaging techniques:

Let $N N: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a neural network architecture, not necessarily invariant

$$
\begin{aligned}
\widetilde{N N}: \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto \sum N N\left(g \cdot\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{aligned}
$$

Previous approaches

1. Data augmentation: Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$, add pairs ($\left.g \cdot\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ for all $g \in S_{3}$ to the training data
2. Restricting weights of neural networks [Zaheer et al., 2017] ("Deep Sets"):

$$
L:\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mapsto \lambda_{1}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\lambda_{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { for } \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

has $L(g \cdot x)=g \cdot L(x)$ (equivariant). Define $N N=$ pool $\circ L \circ \sigma \circ L \circ \sigma \circ L$, where:

- pool =some fixed group-invariant function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, e.g. $\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2}+x_{3}$
- $\sigma=$ some non-linearity, e.g. ReLU

Theorem: If $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is S_{3}-equivariant, then L is of this form.
3. Averaging techniques:

Let $N N: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a neural network architecture, not necessarily invariant

Previous approaches

1. Data augmentation: Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right)\right.$, $\left.\max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$, add pairs ($\left.g \cdot\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ for all $g \in S_{3}$ to the training data
2. Restricting weights of neural networks [Zaheer et al., 2017] ("Deep Sets"):

$$
L:\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mapsto \lambda_{1}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\lambda_{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { for } \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

has $L(g \cdot x)=g \cdot L(x)$ (equivariant). Define $N N=$ pool $\circ L \circ \sigma \circ L \circ \sigma \circ L$, where:

- pool =some fixed group-invariant function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, e.g. $\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2}+x_{3}$
- $\sigma=$ some non-linearity, e.g. ReLU

Theorem: If $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is S_{3}-equivariant, then L is of this form.
3. Averaging techniques:

Let $N N: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a neural network architecture, not necessarily invariant

$$
\begin{aligned}
\widetilde{N N}: \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto \sum_{g \in S_{3}} N N\left(g \cdot\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{aligned}
$$

Previous approaches

1. Data augmentation: Given many pairs $\left(\left(x_{1}, x_{2}, x_{3}\right)\right.$, $\left.\max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$, add pairs ($\left.g \cdot\left(x_{1}, x_{2}, x_{3}\right), \max \left\{x_{1}, x_{2}, x_{3}\right\}\right)$ for all $g \in S_{3}$ to the training data
2. Restricting weights of neural networks [Zaheer et al., 2017] ("Deep Sets"):

$$
L:\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mapsto \lambda_{1}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\lambda_{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \text { for } \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

has $L(g \cdot x)=g \cdot L(x)$ (equivariant). Define $N N=$ pool $\circ L \circ \sigma \circ L \circ \sigma \circ L$, where:

- pool =some fixed group-invariant function $\mathbb{R}^{3} \rightarrow \mathbb{R}$, e.g. $\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2}+x_{3}$
- $\sigma=$ some non-linearity, e.g. ReLU

Theorem: If $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is S_{3}-equivariant, then L is of this form.
3. Averaging techniques:

Let $N N: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a neural network architecture, not necessarily invariant

$$
\begin{aligned}
\widetilde{N N}: \mathbb{R}^{3} & \rightarrow \mathbb{R} \\
\left(x_{1}, x_{2}, x_{3}\right) & \mapsto \sum_{g \in S_{3}} N N\left(g \cdot\left(x_{1}, x_{2}, x_{3}\right)\right)
\end{aligned}
$$

$\Rightarrow \widetilde{N N}$ is group invariant \rightsquigarrow train $\widetilde{N N}$ instead of $N N$

New approach: group invariant pre-processing [Aslan et al., 2023]

- Take $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $F(g \cdot x)=F(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$

Neural network $N N \rightsquigarrow$ define N

$$
\Rightarrow \quad \widetilde{N N}(g \cdot x)=N N(F(g \cdot x))=N N(F(x))=\widetilde{N N}(x)
$$

Train NN instead of NN
(Equivalent: train on data $(F(x), y)$ rather than $(x, y))$

How to get good F?

New approach: group invariant pre-processing [Aslan et al., 2023]

- Take $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $F(g \cdot x)=F(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Neural network $N N \rightsquigarrow$ define $\widetilde{N N}:=N N \circ F$
$\Rightarrow \quad \widetilde{N N}(g \cdot x)=\operatorname{NN}(F(g \cdot x))=\operatorname{NN}(F(x))=\widetilde{N N}(x)$
Train $\widetilde{N N}$ instead of NN
(Equivalent: train on data $(F(x), y)$ rather than $(x, y))$
How to get good F?

New approach: group invariant pre-processing [Aslan et al., 2023]

- Take $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $F(g \cdot x)=F(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Neural network $N N \rightsquigarrow$ define $\widehat{N N}:=N N \circ F$

$$
\Rightarrow \widetilde{N N}(g \cdot x)=N N(F(g \cdot x))=N N(F(x))=\widetilde{N N}(x)
$$

Train $\widetilde{N N}$ instead of $N N$
(Equivalent: train on data $(F(x), y)$ rather than $(x, y))$

New approach: group invariant pre-processing [Aslan et al., 2023]

- Take $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $F(g \cdot x)=F(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Neural network $N N \rightsquigarrow$ define $\widehat{N N}:=N N \circ F$

$$
\Rightarrow \widetilde{N N}(g \cdot x)=N N(F(g \cdot x))=N N(F(x))=\widetilde{N N}(x)
$$

Train $\widetilde{N N}$ instead of $N N$
(Equivalent: train on data $(F(x), y)$ rather than $(x, y))$

New approach: group invariant pre-processing [Aslan et al., 2023]

- Take $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $F(g \cdot x)=F(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Neural network $N N \rightsquigarrow$ define $\widehat{N N}:=N N \circ F$

$$
\Rightarrow \quad \widetilde{N N}(g \cdot x)=N N(F(g \cdot x))=N N(F(x))=\widetilde{N N}(x)
$$

Train $\widetilde{N N}$ instead of NN
(Equivalent: train on data $(F(x), y)$ rather than $(x, y))$
How to get good F ?

New approach: group invariant pre-processing [Aslan et al., 2023]

- Take $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $F(g \cdot x)=F(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Neural network $N N \rightsquigarrow$ define $\overline{N N}:=N N \circ F$

$$
\Rightarrow \quad \widetilde{N N}(g \cdot x)=N N(F(g \cdot x))=N N(F(x))=\widetilde{N N}(x)
$$

Train $\widetilde{N N}$ instead of $N N$
(Equivalent: train on data $(F(x), y)$ rather than $(x, y))$
How to get good F ?

- $U \subset \mathbb{R}^{N}$ fundamental domain for $G \curvearrowright \mathbb{R}^{N}: \Leftrightarrow$

1. U open and connected
2. for all $x \in X$ the orbit $G \cdot x:=\{g \cdot x: g \in G\}$ intersects \bar{U}
3. if $G \cdot x$ intersects U, then the intersection is unique

New approach: group invariant pre-processing [Aslan et al., 2023]

- Take $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $F(g \cdot x)=F(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Neural network $N N \rightsquigarrow$ define $N N:=N N \circ F$

$$
\Rightarrow \quad \widetilde{N N}(g \cdot x)=N N(F(g \cdot x))=N N(F(x))=\widetilde{N N}(x)
$$

Train $\widetilde{N N}$ instead of NN
(Equivalent: train on data $(F(x), y)$ rather than $(x, y))$
How to get good F ?
$\triangleright U \subset \mathbb{R}^{N}$ fundamental domain for $G \curvearrowright \mathbb{R}^{N}: \Leftrightarrow$

1. U open and connected
2. for all $x \in X$ the orbit $G \cdot x:=\{g \cdot x: g \in G\}$ intersects \bar{U}
3. if $G \cdot x$ intersects U, then the intersection is unique
$\triangleright F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ def by $x \mapsto$ intersection of $G \cdot x$ and \bar{U}

New approach: group invariant pre-processing [Aslan et al., 2023]

- Take $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ s.t. $F(g \cdot x)=F(x)$ for all $g \in S_{3}$ and $x \in \mathbb{R}^{3}$
- Neural network $N N \rightsquigarrow$ define $N N:=N N \circ F$

$$
\Rightarrow \quad \widetilde{N N}(g \cdot x)=N N(F(g \cdot x))=N N(F(x))=\widetilde{N N}(x)
$$

Train $\widetilde{N N}$ instead of NN
(Equivalent: train on data $(F(x), y)$ rather than $(x, y))$
How to get good F ?
$\triangleright U \subset \mathbb{R}^{N}$ fundamental domain for $G \curvearrowright \mathbb{R}^{N}: \Leftrightarrow$

1. U open and connected
2. for all $x \in X$ the orbit $G \cdot x:=\{g \cdot x: g \in G\}$ intersects \bar{U}
3. if $G \cdot x$ intersects U, then the intersection is unique

- $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ def by $x \mapsto$ intersection of $G \cdot x$ and \bar{U}

Example: $G=S_{3} \curvearrowright \mathbb{R}^{3}, U:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}>x_{2}>x_{3}\right\}$

$$
\begin{aligned}
& F: \mathbb{R}^{3} \rightarrow \bar{U} \\
& \left(x_{1}, x_{2}, x_{3}\right) \mapsto \\
& \left(\begin{array}{c}
\max \left\{x_{1}, x_{2}, x_{3}\right\} \\
\operatorname{middle}\left\{x_{2}, x_{2}, x_{3}\right\} \\
\min \left\{x_{1}, x_{2}, x_{3}\right\}
\end{array}\right)
\end{aligned}
$$

How to get $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$?

- Approach 1: Combinatorial Fundamental Domain

```
[Dixon and Majeed, 1988] }=>\mathrm{ for any G}\subset\mp@subsup{S}{n}{}\mathrm{ subgroup:
combinatorial algorithm to compute U and F for the action G\curvearrowright S S we extend
to case G\curvearrowright 乕n
Approach 2: Dirichlet Fundamental Domain
G\subsetS S}\curvearrowright\mp@subsup{\mathbb{R}}{}{n}\mathrm{ acts through isometries, i.e. }|x|=|g\cdotx
x
    U:={x\in\mp@subsup{\mathbb{R}}{}{n}:\langlex,\mp@subsup{x}{0}{}\rangle>\langleg\cdotx,\mp@subsup{x}{0}{}\rangle\mathrm{ for all }g\inG}\mathrm{ , where }\langle\cdot,\cdot\rangle\mathrm{ is dot product}
F:\mathbb{R}
    x\mapsto\tilde{g}x}\mathrm{ where }\tilde{g}\inG\mathrm{ s.t. }\langle\tilde{g}x,\mp@subsup{x}{0}{}\rangle=\mp@subsup{\operatorname{max}}{g\inG}{{g}\cdotx,\mp@subsup{x}{0}{}
e.g. }\mp@subsup{S}{3}{}\curvearrowright\mp@subsup{\mathbb{R}}{}{3},\mp@subsup{x}{0}{}=(3,2,1),\mathrm{ project }y=(\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\mp@subsup{y}{3}{}
to maximise }\langley,\mp@subsup{x}{0}{}\rangle=3\mp@subsup{y}{1}{}+2\mp@subsup{y}{2}{}+\mp@subsup{y}{3}{}\mathrm{ want to order }\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\mp@subsup{y}{3}{}\mathrm{ s.t. biggest coord first
\}={(\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\mp@subsup{y}{3}{})\in\mp@subsup{\mathbb{R}}{}{3}:\mp@subsup{y}{1}{}\geq\mp@subsup{y}{2}{}\geq\mp@subsup{y}{3}{}}\mathrm{ same as before!
```


How to get $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$?

- Approach 1: Combinatorial Fundamental Domain [Dixon and Majeed, 1988] \Rightarrow for any $G \subset S_{n}$ subgroup: combinatorial algorithm to compute U and F for the action $G \curvearrowright S_{n}$, we extend to case $G \curvearrowright \mathbb{R}^{n}$

Approach 2: Dirichlet Fundamental Domain $G \subset S_{n} \curvearrowright \mathbb{R}^{n}$ acts through isometries, i.e $x_{0} \in \mathbb{R}^{n}$ generic, define

to maximise want to order y_{1}, y_{2}, y_{3} s.t. biggest coord first $\rightsquigarrow \bar{U}=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}: y\right.$ $\left.y_{2} \geq y_{3}\right\}$ same as before!

How to get $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$?

- Approach 1: Combinatorial Fundamental Domain [Dixon and Majeed, 1988] \Rightarrow for any $G \subset S_{n}$ subgroup: combinatorial algorithm to compute U and F for the action $G \curvearrowright S_{n}$, we extend to case $G \curvearrowright \mathbb{R}^{n}$
- Approach 2: Dirichlet Fundamental Domain

How to get $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$?

- Approach 1: Combinatorial Fundamental Domain [Dixon and Majeed, 1988] \Rightarrow for any $G \subset S_{n}$ subgroup: combinatorial algorithm to compute U and F for the action $G \curvearrowright S_{n}$, we extend to case $G \curvearrowright \mathbb{R}^{n}$
- Approach 2: Dirichlet Fundamental Domain $G \subset S_{n} \curvearrowright \mathbb{R}^{n}$ acts through isometries, i.e. $|x|=|g \cdot x|$
$x_{0} \in \mathbb{R}^{n}$ generic, define

$U:=\left\{x \in \mathbb{R}^{n}:\left\langle x, x_{0}\right\rangle>\left\langle g \cdot x, x_{0}\right\rangle\right.$ for all $\left.g \in G\right\}$, where $\langle\cdot, \cdot\rangle$ is dot product

 e.g. $S_{3} \curvearrowright \mathbb{R}^{3}, x_{0}=(3,2,1)$, project $y=\left(y_{1}, y_{2}, y_{3}\right)$ to maximise want to order y_{1}, y_{2}, y_{3} s.t. biggest coord first $\leadsto \bar{U}=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}: y_{1}\right.$ $\left.y_{2} \geq y_{3}\right\}$ same as before!

How to get $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$?

- Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] \Rightarrow for any $G \subset S_{n}$ subgroup:
combinatorial algorithm to compute U and F for the action $G \curvearrowright S_{n}$, we extend to case $G \curvearrowright \mathbb{R}^{n}$
- Approach 2: Dirichlet Fundamental Domain $G \subset S_{n} \curvearrowright \mathbb{R}^{n}$ acts through isometries, i.e. $|x|=|g \cdot x|$ $x_{0} \in \mathbb{R}^{n}$ generic, define

$$
U:=\left\{x \in \mathbb{R}^{n}:\left\langle x, x_{0}\right\rangle>\left\langle g \cdot x, x_{0}\right\rangle \text { for all } g \in G\right\}, \text { where }\langle\cdot, \cdot\rangle \text { is dot product }
$$

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

$$
x \mapsto \widetilde{g} x \text { where } \widetilde{g} \in G \text { s.t. }\left\langle\widetilde{g} x, x_{0}\right\rangle=\max _{g \in G}\left\langle g \cdot x, x_{0}\right\rangle
$$

e.g. $S_{3} \curvearrowright \mathbb{R}^{3}, x_{0}=(3,2,1)$, project $y=\left(y_{1}, y_{2}, y_{3}\right)$
to maximise

How to get $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$?

- Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] \Rightarrow for any $G \subset S_{n}$ subgroup:
combinatorial algorithm to compute U and F for the action $G \curvearrowright S_{n}$, we extend to case $G \curvearrowright \mathbb{R}^{n}$
- Approach 2: Dirichlet Fundamental Domain $G \subset S_{n} \curvearrowright \mathbb{R}^{n}$ acts through isometries, i.e. $|x|=|g \cdot x|$ $x_{0} \in \mathbb{R}^{n}$ generic, define

$$
U:=\left\{x \in \mathbb{R}^{n}:\left\langle x, x_{0}\right\rangle>\left\langle g \cdot x, x_{0}\right\rangle \text { for all } g \in G\right\}, \text { where }\langle\cdot, \cdot\rangle \text { is dot product }
$$

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

$$
x \mapsto \widetilde{g} x \text { where } \widetilde{g} \in G \text { s.t. }\left\langle\widetilde{g} x, x_{0}\right\rangle=\max _{g \in G}\left\langle g \cdot x, x_{0}\right\rangle
$$

e.g. $S_{3} \curvearrowright \mathbb{R}^{3}, x_{0}=(3,2,1)$, project $y=\left(y_{1}, y_{2}, y_{3}\right)$

[^0]
How to get $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$?

- Approach 1: Combinatorial Fundamental Domain [Dixon and Majeed, 1988] \Rightarrow for any $G \subset S_{n}$ subgroup:
combinatorial algorithm to compute U and F for the action $G \curvearrowright S_{n}$, we extend to case $G \curvearrowright \mathbb{R}^{n}$
- Approach 2: Dirichlet Fundamental Domain $G \subset S_{n} \curvearrowright \mathbb{R}^{n}$ acts through isometries, i.e. $|x|=|g \cdot x|$ $x_{0} \in \mathbb{R}^{n}$ generic, define

$$
U:=\left\{x \in \mathbb{R}^{n}:\left\langle x, x_{0}\right\rangle>\left\langle g \cdot x, x_{0}\right\rangle \text { for all } g \in G\right\}, \text { where }\langle\cdot, \cdot\rangle \text { is dot product }
$$

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

$$
x \mapsto \widetilde{g} x \text { where } \widetilde{g} \in G \text { s.t. }\left\langle\widetilde{g} x, x_{0}\right\rangle=\max _{g \in G}\left\langle g \cdot x, x_{0}\right\rangle
$$

e.g. $S_{3} \curvearrowright \mathbb{R}^{3}, x_{0}=(3,2,1)$, project $y=\left(y_{1}, y_{2}, y_{3}\right)$
to maximise $\left\langle y, x_{0}\right\rangle=3 y_{1}+2 y_{2}+y_{3}$ want to order y_{1}, y_{2}, y_{3} s.t. biggest coord first

How to get $F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$?

- Approach 1: Combinatorial Fundamental Domain
[Dixon and Majeed, 1988] \Rightarrow for any $G \subset S_{n}$ subgroup:
combinatorial algorithm to compute U and F for the action $G \curvearrowright S_{n}$, we extend to case $G \curvearrowright \mathbb{R}^{n}$
- Approach 2: Dirichlet Fundamental Domain $G \subset S_{n} \curvearrowright \mathbb{R}^{n}$ acts through isometries, i.e. $|x|=|g \cdot x|$ $x_{0} \in \mathbb{R}^{n}$ generic, define

$$
U:=\left\{x \in \mathbb{R}^{n}:\left\langle x, x_{0}\right\rangle>\left\langle g \cdot x, x_{0}\right\rangle \text { for all } g \in G\right\}, \text { where }\langle\cdot, \cdot\rangle \text { is dot product }
$$

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

$$
x \mapsto \widetilde{g} x \text { where } \widetilde{g} \in G \text { s.t. }\left\langle\widetilde{g} x, x_{0}\right\rangle=\max _{g \in G}\left\langle g \cdot x, x_{0}\right\rangle
$$

e.g. $S_{3} \curvearrowright \mathbb{R}^{3}, x_{0}=(3,2,1)$, project $y=\left(y_{1}, y_{2}, y_{3}\right)$
to maximise $\left\langle y, x_{0}\right\rangle=3 y_{1}+2 y_{2}+y_{3}$ want to order y_{1}, y_{2}, y_{3} s.t. biggest coord first $\rightsquigarrow \bar{U}=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}: y_{1} \geq y_{2} \geq y_{3}\right\}$ same as before!

For more general groups

- Groups can be large, e.g. $S_{15} \curvearrowright \mathbb{R}^{15}$ has $\left|S_{15}\right|=15$! $\approx 10^{12}$
\Rightarrow data augmentation and averaging techniques impossible (NN with restricted weights still possible)
Ours can be generalised to $G \curvearrowright M$ for M a complete Riemannian manifold

Remark: for Lie groups $G \curvearrowright M$: choose U to be

For more general groups

- Groups can be large, e.g. $S_{15} \curvearrowright \mathbb{R}^{15}$ has $\left|S_{15}\right|=15$! $\approx 10^{12}$
\Rightarrow data augmentation and averaging techniques impossible (NN with restricted weights still possible)

Ours can be generalised to $G \curvearrowright M$ for M a complete Riemannian manifold

Remark: for Lie groups $G \curvearrowright M$: choose U to be

For more general groups

- Groups can be large, e.g. $S_{15} \curvearrowright \mathbb{R}^{15}$ has $\left|S_{15}\right|=15$! $\approx 10^{12}$
\Rightarrow data augmentation and averaging techniques impossible (NN with restricted weights still possible)
- Ours can be generalised to $G \curvearrowright M$ for M a complete Riemannian manifold

Remark: for Lie groups $G \curvearrowright M$: choose U to be

For more general groups

- Groups can be large, e.g. $S_{15} \curvearrowright \mathbb{R}^{15}$ has $\left|S_{15}\right|=15$! $\approx 10^{12}$
\Rightarrow data augmentation and averaging techniques impossible (NN with restricted weights still possible)
- Ours can be generalised to $G \curvearrowright M$ for M a complete Riemannian manifold

$$
U:=\left\{x \in M: d\left(x, x_{0}\right)<d\left(g \cdot x, x_{0}\right) \text { for all } g \in G\right\}
$$

$$
\text { e.g. } S L(2, \mathbb{Z}) \curvearrowright \mathbb{H}^{2}
$$

Remark: for Lie groups $G \curvearrowright M$: choose U to be

For more general groups

\Rightarrow Groups can be large, e.g. $S_{15} \curvearrowright \mathbb{R}^{15}$ has $\left|S_{15}\right|=15$! $\approx 10^{12}$
\Rightarrow data augmentation and averaging techniques impossible (NN with restricted weights still possible)

- Ours can be generalised to $G \curvearrowright M$ for M a complete Riemannian manifold

$$
U:=\left\{x \in M: d\left(x, x_{0}\right)<d\left(g \cdot x, x_{0}\right) \text { for all } g \in G\right\}
$$

$$
\text { e.g. } S L(2, \mathbb{Z}) \curvearrowright \mathbb{H}^{2}
$$

- Remark: for Lie groups $G \curvearrowright M$: choose U to be slice

Example 1: Rotated MNIST

- 28×28 pixel images showing a digit, possibly rotated by $90^{\circ}, 180^{\circ}, 270^{\circ}$

$$
3 n \infty
$$

- Learn

$$
\begin{aligned}
h: \mathbb{R}^{28 \times 28} & \rightarrow\{0,1,2, \ldots, 9\} \\
x & \mapsto \text { the digit shown in } x
\end{aligned}
$$

- Have $\mathbb{Z}_{4} \curvearrowright \mathbb{R}^{28 \times 28}$ by rotation and h is \mathbb{Z}_{4}-invariant
(note $\mathbb{Z}_{4} \subset S_{28.28}=S_{784}$)
- Define U (fundamental domain) and F (projection) (small lie, x_{0} not generic)

Example 1: Rotated MNIST

- 28×28 pixel images showing a digit, possibly rotated by $90^{\circ}, 180^{\circ}, 270^{\circ}$

$3 n \infty$ か

- Learn

$$
\begin{aligned}
h: \mathbb{R}^{28 \times 28} & \rightarrow\{0,1,2, \ldots, 9\} \\
x & \mapsto \text { the digit shown in } x
\end{aligned}
$$

- Have $\mathbb{Z}_{4} \curvearrowright \mathbb{R}^{28 \times 28}$ by rotation and h is \mathbb{Z}_{4}-invariant (note $\mathbb{Z}_{4} \subset S_{28.28}=S_{784}$)
Define U (fundamental domain) and F (projection)
(small lie, x_{0} not generic)

Example 1: Rotated MNIST

- 28×28 pixel images showing a digit, possibly rotated by $90^{\circ}, 180^{\circ}, 270^{\circ}$

3010

- Learn

$$
\begin{aligned}
h: \mathbb{R}^{28 \times 28} & \rightarrow\{0,1,2, \ldots, 9\} \\
x & \mapsto \text { the digit shown in } x
\end{aligned}
$$

- Have $\mathbb{Z}_{4} \curvearrowright \mathbb{R}^{28 \times 28}$ by rotation and h is \mathbb{Z}_{4}-invariant (note $\mathbb{Z}_{4} \subset S_{28.28}=S_{784}$)
- Define U (fundamental domain) and F (projection): (small lie, x_{0} not generic)
$x_{0}=\left(\begin{array}{ccc|ccc}4 & 4 & \cdots & 3 & 3 & \cdots \\ 4 & 4 & \cdots & 3 & 3 & \cdots \\ \vdots & \vdots & & \vdots & \vdots & \\ \hline 2 & 2 & \cdots & 1 & 1 & \cdots \\ 2 & 2 & \cdots & 1 & 1 & \cdots \\ \vdots & \vdots & & \vdots & \vdots & \end{array}\right), \quad \bar{U}:=\left\{x \in \mathbb{R}^{28 \times 28}:\left\langle x, x_{0}\right\rangle=\max _{g \in S_{4}}\left\langle g \cdot x, x_{0}\right\rangle\right\}$
$F: \mathbb{R}^{28 \times 28} \rightarrow \mathbb{R}^{28 \times 28}, \quad x \mapsto x$ rotated so that top left quadrant is brightest

Example 1: Rotated MNIST

- 28×28 pixel images showing a digit, possibly rotated by $90^{\circ}, 180^{\circ}, 270^{\circ}$

3010

- Learn

$$
\begin{aligned}
h: \mathbb{R}^{28 \times 28} & \rightarrow\{0,1,2, \ldots, 9\} \\
x & \mapsto \text { the digit shown in } x
\end{aligned}
$$

	No pre-processing	F
Linear	0.677 ± 0.001	0.784 ± 0.001
MLP	0.939 ± 0.001	0.953 ± 0.003
SimpNet (19)	0.979	0.979

(pre-processing useful for very small models)

- Have $\mathbb{Z}_{4} \curvearrowright \mathbb{R}^{28 \times 28}$ by rotation and h is \mathbb{Z}_{4}-invariant (note $\mathbb{Z}_{4} \subset S_{28.28}=S_{784}$)
- Define U (fundamental domain) and F (projection): (small lie, x_{0} not generic)
$x_{0}=\left(\begin{array}{ccc|ccc}4 & 4 & \cdots & 3 & 3 & \cdots \\ 4 & 4 & \cdots & 3 & 3 & \cdots \\ \vdots & \vdots & & \vdots & \vdots & \\ 2 & 2 & \cdots & 1 & 1 & \cdots \\ 2 & 2 & \cdots & 1 & 1 & \cdots \\ \vdots & \vdots & & \vdots & \vdots & \end{array}\right), \bar{U}:=\left\{x \in \mathbb{R}^{28 \times 28}:\left\langle x, x_{0}\right\rangle=\max _{g \in S_{4}}\left\langle g \cdot x, x_{0}\right\rangle\right\}$
$F: \mathbb{R}^{28 \times 28} \rightarrow \mathbb{R}^{28 \times 28}, \quad x \mapsto x$ rotated so that top left quadrant is brightest

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

- have procedure $M \in \mathbb{R}^{12 \times 15} \rightsquigarrow f_{1}, \ldots, f_{15}$ polynomials such that

$$
\mathrm{CY}(M):=\left\{x \in \mathbb{C P}^{k_{1}} \times \cdots \times \mathbb{C P}^{k_{12}}: f_{1}(x)=0, \ldots, f_{15}(x)=0\right\}
$$

is Calabi-Yau manifold

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & 1 & \cdots \\
0 & 0 & 0 & 0 & 1 & 1 & \cdots \\
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 & 0 & 1 & \cdots \\
0 & 0 & 1 & 2 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 2 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)
$$

\rightarrow geometric invariant "second Hodge number" $h^{2}:\{$ Calabi-Yau $m f\} \rightarrow \mathbb{Z}$

- Iearn

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

- have procedure $M \in \mathbb{R}^{12 \times 15} \rightsquigarrow f_{1}, \ldots, f_{15}$ polynomials such that

$$
\mathrm{CY}(M):=\left\{x \in \mathbb{C P}^{k_{1}} \times \cdots \times \mathbb{C P}^{k_{12}}: f_{1}(x)=0, \ldots, f_{15}(x)=0\right\}
$$

is Calabi-Yau manifold

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & 1 & \cdots \\
0 & 0 & 0 & 0 & 1 & 1 & \cdots \\
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 & 0 & 1 & \cdots \\
0 & 0 & 1 & 2 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 2 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)
$$

\triangleright geometric invariant "second Hodge number" $h^{2}:\{$ Calabi-Yau mf $\} \rightarrow \mathbb{Z}$ Learn

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

- have procedure $M \in \mathbb{R}^{12 \times 15} \rightsquigarrow f_{1}, \ldots, f_{15}$ polynomials such that

$$
\mathrm{CY}(M):=\left\{x \in \mathbb{C P}^{k_{1}} \times \cdots \times \mathbb{C P}^{k_{12}}: f_{1}(x)=0, \ldots, f_{15}(x)=0\right\}
$$

is Calabi-Yau manifold

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & 1 & \cdots \\
0 & 0 & 0 & 0 & 1 & 1 & \cdots \\
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 & 0 & 1 & \cdots \\
0 & 0 & 1 & 2 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 2 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)
$$

\triangleright geometric invariant "second Hodge number" h^{2} : \{Calabi-Yau mf $\} \rightarrow \mathbb{Z}$

- Learn

$$
\begin{aligned}
h: \mathbb{R}^{12 \times 15} & \rightarrow \mathbb{Z} \\
M & \mapsto h^{2}(\mathrm{CY}(M))
\end{aligned}
$$

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

- have procedure $M \in \mathbb{R}^{12 \times 15} \rightsquigarrow f_{1}, \ldots, f_{15}$ polynomials such that

$$
\mathrm{CY}(M):=\left\{x \in \mathbb{C P}^{k_{1}} \times \cdots \times \mathbb{C P}^{k_{12}}: f_{1}(x)=0, \ldots, f_{15}(x)=0\right\}
$$

is Calabi-Yau manifold

$$
\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & 0 & 1 & \cdots \\
0 & 0 & 0 & 0 & 1 & 1 & \cdots \\
1 & 0 & 0 & 1 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 & 0 & 1 & \cdots \\
0 & 0 & 1 & 2 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 & 2 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right)
$$

\triangleright geometric invariant "second Hodge number" $h^{2}:\{$ Calabi-Yau mf $\} \rightarrow \mathbb{Z}$

- Learn

$$
\begin{aligned}
h: \mathbb{R}^{12 \times 15} & \rightarrow \mathbb{Z} \\
M & \mapsto h^{2}(\mathrm{CY}(M))
\end{aligned}
$$

- Fact: h invariant under action of $S_{12} \times S_{15}$ acting by row/column permutations

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

$$
\begin{aligned}
& \text { - Let } x_{0}=\left(\begin{array}{ccccc}
10^{179} & 10^{178} & 10^{177} & \ldots & 10^{165} \\
\vdots & \vdots & \vdots & & \vdots \\
10^{29} & 10^{28} & 10^{27} & \ldots & 10^{15} \\
10^{14} & 10^{13} & 10^{12} & \ldots & 10^{0}
\end{array}\right) \in \mathbb{R}^{12 \times 15} \\
& U:=\left\{M \in \mathbb{R}^{12 \times 15}:\left\langle M, x_{0}\right\rangle<\left\langle g \cdot M, x_{0}\right\rangle \text { for all } g \in S_{12} \times S_{15}\right\} \\
& =\left\{M \in \mathbb{R}^{12 \times 15}: \begin{array}{c}
M \text { is lexicographically smaller } \\
g \cdot M \text { for all } g \in S_{12} \times S_{15}
\end{array}\right\}
\end{aligned}
$$

-F: $M \mapsto$ lexicographically smallest row/column permutation of M E.g. $F\left(\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right)=\left(\begin{array}{ll}0 & 2 \\ 3 & 1\end{array}\right)$

- Compute F ? For $M \in \mathbb{R}^{12 \times 15}$ apply random permutations until get no smaller (Side note: F in polynomial time \rightsquigarrow graph ismomorphism problem (unsolved))

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

$$
\begin{aligned}
& \text { - Let } x_{0}=\left(\begin{array}{ccccc}
10^{179} & 10^{178} & 10^{177} & \ldots & 10^{165} \\
\vdots & \vdots & \vdots & & \vdots \\
10^{29} & 10^{28} & 10^{27} & \ldots & 10^{15} \\
10^{14} & 10^{13} & 10^{12} & \ldots & 10^{0}
\end{array}\right) \in \mathbb{R}^{12 \times 15} \\
& U:=\left\{M \in \mathbb{R}^{12 \times 15}:\left\langle M, x_{0}\right\rangle<\left\langle g \cdot M, x_{0}\right\rangle \text { for all } g \in S_{12} \times S_{15}\right\} \\
& =\left\{M \in \mathbb{R}^{12 \times 15}: \begin{array}{c}
M \text { is lexicographically smaller } \\
g \cdot M \text { for all } g \in S_{12} \times S_{15}
\end{array}\right\}
\end{aligned}
$$

- $F: M \mapsto$ lexicographically smallest row/column permutation of M

$$
\text { E.g. } F\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right)
$$

- Compute F ? For $M \in \mathbb{R}^{12 \times 15}$ apply random permutations until get no smaller
(Side note: F in polynomial time \rightsquigarrow graph ismomorphism problem (unsolved))

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

- Let $x_{0}=\left(\begin{array}{ccccc}10^{179} & 10^{178} & 10^{177} & \ldots & 10^{165} \\ \vdots & \vdots & \vdots & & \vdots \\ 10^{29} & 10^{28} & 10^{27} & \ldots & 10^{15} \\ 10^{14} & 10^{13} & 10^{12} & \ldots & 10^{0}\end{array}\right) \in \mathbb{R}^{12 \times 15}$

$$
\begin{aligned}
U: & =\left\{M \in \mathbb{R}^{12 \times 15}:\left\langle M, x_{0}\right\rangle<\left\langle g \cdot M, x_{0}\right\rangle \text { for all } g \in S_{12} \times S_{15}\right\} \\
& =\left\{M \in \mathbb{R}^{12 \times 15}: \begin{array}{c}
M \text { is lexicographically smaller } \\
g \cdot M \text { for all } g \in S_{12} \times S_{15}
\end{array}\right\}
\end{aligned}
$$

- $F: M \mapsto$ lexicographically smallest row/column permutation of M

$$
\text { E.g. } F\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right)
$$

- Compute F ? For $M \in \mathbb{R}^{12 \times 15}$ apply random permutations until get no smaller (Side note: F in polynomial time \rightsquigarrow graph ismomorphism problem (unsolved))

Example 2: Complete Intersection Calabi-Yau (CICY) matrices

$$
\begin{aligned}
& \text { Let } x_{0}=\left(\begin{array}{ccccc}
10^{179} & 10^{178} & 10^{177} & \ldots & 10^{165} \\
\vdots & \vdots & \vdots & & \vdots \\
10^{29} & 10^{28} & 10^{27} & \ldots & 10^{15} \\
10^{14} & 10^{13} & 10^{12} & \ldots & 10^{0}
\end{array}\right) \in \mathbb{R}^{12 \times 15} \\
& U:=\left\{M \in \mathbb{R}^{12 \times 15}:\left\langle M, x_{0}\right\rangle<\left\langle g \cdot M, x_{0}\right\rangle \text { for all } g \in S_{12} \times S_{15}\right\} \\
& =\left\{M \in \mathbb{R}^{12 \times 15}: \begin{array}{c}
M \text { is lexicographically smaller } \\
g \cdot M \text { for all } g \in S_{12} \times S_{15}
\end{array}\right\}
\end{aligned}
$$

- $F: M \mapsto$ lexicographically smallest row/column permutation of M

$$
\text { E.g. } F\left(\begin{array}{ll}
2 & 0 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
3 & 1
\end{array}\right)
$$

- Compute F ? For $M \in \mathbb{R}^{12 \times 15}$ apply random permutations until get no smaller (Side note: F in polynomial time \rightsquigarrow graph ismomorphism problem (unsolved))

	Original dataset	Randomly permuted		
MLP	0.554 ± 0.015	0.395 ± 0.029		
MLP+pre-processing	0.858 ± 0.009	0.417 ± 0.086		Inception
Inception	0.970 ± 0.009	0.844 ± 0.117		[Erbin and Finotello, 2021]
G G-inv MLP	0.895 ± 0.029	0.914 ± 0.023		

Example 3: Kreuzer-Skarke toric variety list

- $M \in \mathbb{R}^{4 \times 26} \leftrightarrow$ polytope in \mathbb{R}^{4} with 26 vertices
\rightsquigarrow Calabi-Yau manifold CY(M)
- Learn

$$
\begin{aligned}
h: \mathbb{R}^{4 \times 26} & \rightarrow \mathbb{Z} \\
M & \mapsto h^{2}(\mathrm{CY}(M))
\end{aligned}
$$

- x_{0}, U, F as before \rightsquigarrow

Model	Acc (orig)
MLP with reduced input	46.89%
MLP	82.96%
MLP+F	85.56%
Invariant MLP	67.16%

First line from
[Berglund et al., 2021]

Thank you for the attention!

References I

E- Aslan, B., Platt, D., and Sheard, D. (2023).
Group invariant machine learning by fundamental domain projections.
In NeurIPS Workshop on Symmetry and Geometry in Neural Representations, pages 181-218. PMLR.

囯 Berglund, P., Campbell, B., and Jejjala, V. (2021).
Machine learning kreuzer-skarke calabi-yau threefolds.
arXiv preprint arXiv:2112.09117.
Rixon, J. D. and Majeed, A. (1988).
Coset representatives for permutation groups.
Portugaliae mathematica, 45:61-68.
目 Erbin, H. and Finotello, R. (2021).
Machine learning for complete intersection calabi-yau manifolds: a methodological study.

```
Physical Review D, 103(12):126014.
```


References II

Raheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).
Deep sets.
Advances in neural information processing systems, 30.

Image credit

- Polytope image:
https://en.wikipedia.org/wiki/Simple_polytope\#/media/File:
Associahedron_K5.svg
- Tesselation of hyperbolic plane:
https://www.pngwing.com/en/free-png-cmyrj
This presentation is licensed under Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0).

[^0]: to maximise
 $\rightsquigarrow \bar{U}=\left\{\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}\right.$

