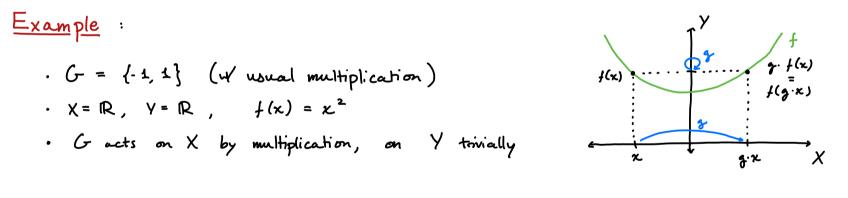
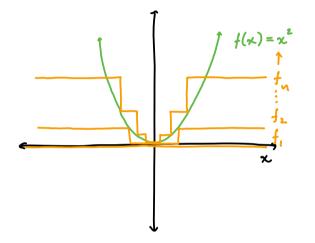


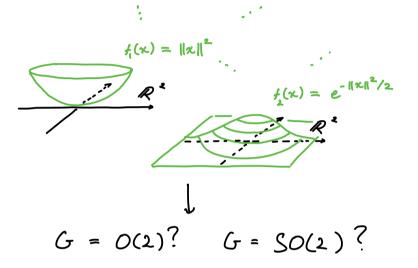
A
$$G$$
 - equivariant $f: X \rightarrow Y : g \cdot f(x) = f(g \cdot x)$



Approximation by equivariant functions I dentifiability of groups given equivariant functions

<u>vs</u>

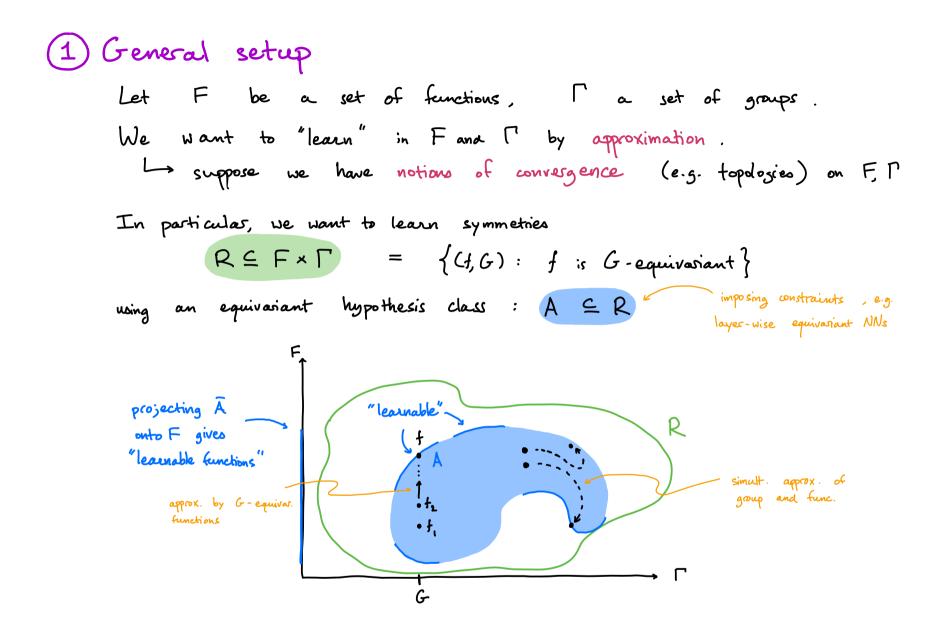




Outline

(1) General setup

(2) Repurposing EMLPs (Finzi et al. 2021) : a failed (?) experiment L> need "approximate equivasiance" · the "failure" is already worst-case (3) Symmetry non-uniqueness : the "failure" is a special case of a general result La what does "learning a group" mean? 4 GCNNs : they can't "fail" Lo but semigroup convolutions can



How do you design NNs with learnable symmetries? <u>Idea</u>: Fix a class of groups Γ . For any $G \in \Gamma$, a layer is of the form input $\begin{bmatrix} \chi \end{bmatrix} \xrightarrow{G-equives.} \int_{\chi} \int$

This is the GCNN design pattern. (see Zhou et al. 2021, Dehmamy et al. 2021) $(\Gamma = "space groups", \sigma = any point wire nonlinearity)$

Problem : if (is too large, no non-trivial or exist. (ree also Sergeant - Perturis et al. 2023)

2 EMLPs (Finzi et al. 2021)

Briefly, for a fixed G, an EMLP layer is:

input
$$[x] \longrightarrow \widetilde{W}x \xrightarrow{(non-lin.)} \sigma(\widetilde{W}x)$$

 $\stackrel{(non-lin.)}{\widetilde{W}} \sigma(\widetilde{W}x)$
 $\stackrel{(make G-equivariant"}{\longleftarrow} by projecting onto a subspace
free param. W
 $\stackrel{(make G-equivariant"}{\longleftarrow} by projecting on the generators of G:
discrete: $h, \dots h_m$
Lie algebra : $A, \dots A_n$$$

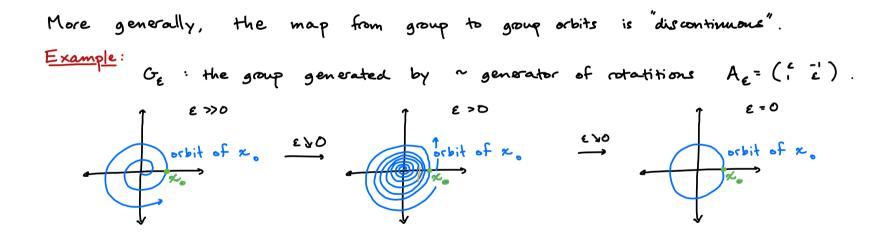
Formally,
$$g\widetilde{W} = \widetilde{W}g \iff \widetilde{W} = Project Onto Nullspace (W, CN,A)
where
$$C_{h,A} = \begin{pmatrix} h, \otimes h_{i}^{-1} - I \\ h_{m} \otimes h_{m}^{-1} - I \\ A_{i} \otimes I - I \otimes A_{i}^{T} \end{pmatrix}$$
(Finzi et al. 2021, Theorem 1)
 $A_{i} \otimes I - I \otimes A_{i}^{T}$$$

Idea : learn the generators simultaneously with W

Approximate equivasiance is needed

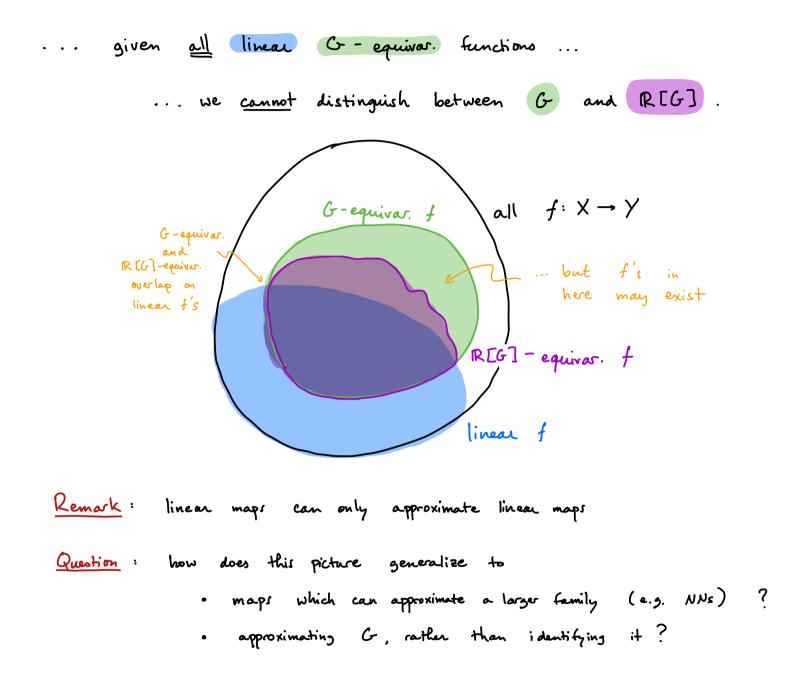
<u>Problem</u>: no gradient signal, since C_{hA} "usually" has trivial nullspace Formal statements can be made ...

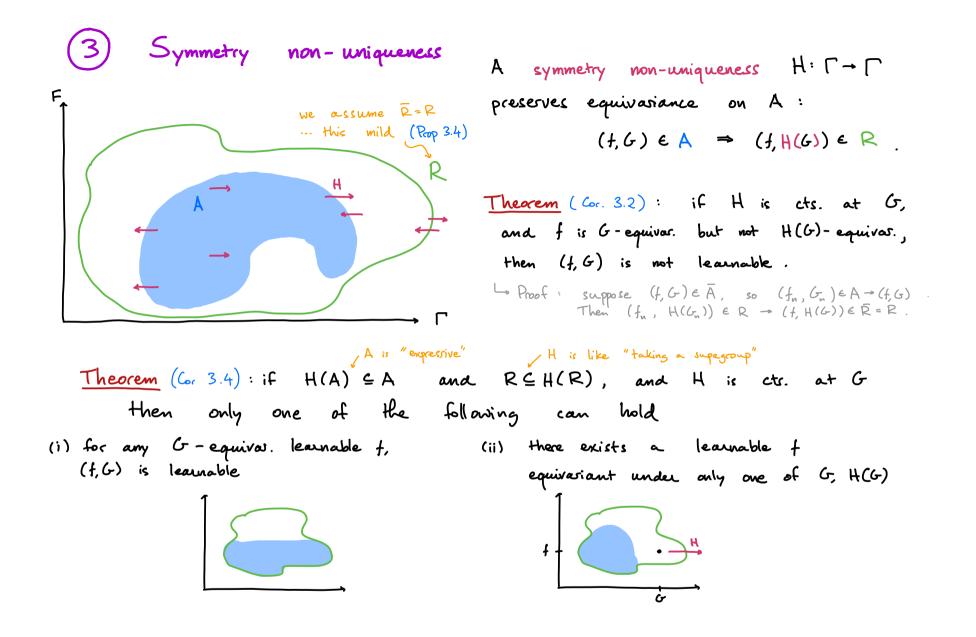
- Prop: for Lebesgue almost-every A \in GL(\mathbb{R}^d) there exist no non-constant uniformly continuous { A^{κ} : $\kappa \in \mathbb{Z}$ }-invariant $f: \mathbb{R}^d \rightarrow \mathbb{R}$
- <u>Prop</u>: for (product-) Lebeogue a.e. $(A, B) \in GL(\mathbb{R}^d)^2$, there exist no non-trivial linear $W: \mathbb{R}^d \to \mathbb{R}^d$ s.t. AW = WA and BW = WB.



(2) EMLP results Consider $G = \{(0, 0), (0, 0)\} \cong S_2$. Using "simplified" nonlinearities, when trying to learn f:if f is non-linear, do not learn f unless $\hat{G} \cong \{(0, 0)\}$. if f is linear, $\hat{f} = \hat{f}$ but $\hat{G} \cong \{(0, 0)\}$: a, be \mathbb{R} ?

Rabbit hole: but why do we learn R[C-], rather than an even larger structure? . for semisimple groups, Schw/Jacobson means AW=WA br all G-equiv.W → AEREG] . this generalizes to all unitarizable G of type I, and maps W: X → Y, X≠Y.





4 GCCNS

We call integral operators maps L between "signals" $f: X \rightarrow \mathbb{R}$ and $Lf: Y \rightarrow \mathbb{R}$ of the form $(Lf)(y) = \int k(x, y) f(x) \mu(dx)$ where k is the kernel function (i.e. "filter").

Lift - Mitty

Fact: let
$$t_x: X \to X$$
 be μ -preserving and invertible, and $t_y: Y \to Y$.
 $(Lf) \circ t_y \equiv L(f \circ t_x) \iff k(t_x'' \times, y) = k(x, t_y y) \quad \forall y \quad \text{for } \mu \text{-a.e. } \times$.
 $(Lf) \circ t_y \equiv L(f \circ t_x) \iff k(t_x'' \times, y) = k(x, t_y y) \quad \forall y \quad \text{for } \mu \text{-a.e. } \times$.
 $(Lf)(g_y, o_y) = \int L(g_y'' g_x, o_x, o_y) f(g_x, o_x) \lambda(dg_x) \mu_{x/o}(do_x) \quad \text{with} \quad L(g, o, p) = k((g, o), (id, p))$
Theorem $(Thm 4.12)$: [under conditions] If μ is $H(G)$ - invasiant, TFAE:
(i) any G - equivar. integral $L: L'(X) \to L^\infty(Y)$ is $H(G)$ - equivar.
(ii) $H(G)$ acts on X, Y as a subgroup of G
 \downarrow Proof idea : (ii) \Rightarrow (i) trivially. (i) \Rightarrow ("Fact" above) " $L(hg_y) g_x, o_x, ho_y$) = $L(g_y'' h g_x, h o_x, o_y)$ "

$$\frac{\text{Rabbit hole}}{(e. g. Worrall & Welling 2019)} = \int l(s_{e}) f(s_{e}s_{i}) \lambda(ds_{e}) + \text{then for any Tacting on the right on S}$$

$$If (Lf)(s_{i}) = \int l(s_{e}) f(s_{e}s_{i}) \lambda(ds_{e}) + \text{then for any Tacting on the right on S}$$

$$(L(t+1))(s_{i}) = \int l(s_{e}) f(s_{e}s_{i}+1) \lambda(ds_{e}) = ((Lf) \cdot t_{i})(s_{i})$$
so any super-semigroup T of S of which S is a right-ideal gives a non-uniqueness.

