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Main goal

Description of a (birationally) interesting wall-crossing

 Wall-crossing can be more complicated than was previously
known.

 Failure of the wall-crossing/MMP correspondence.

(Big picture: description of some classical moduli spaces)



Notation/Definition
X a smooth projective variety. v: a class (e.g. Chern character).

I An object E ∈ Db(X ) = Db(Coh(X )) is (semi)-stable with
respect to the "slope" µ, if µ(F )(≤) < µ(E ) fo any sub-object
F ⊂ E .

I Stab(X ): stability "manifold" of all stability conditions on X ,
[Bridgeland] (sometimes, we call it stability space)

I Mσ(v): space of σ-stable objects of class v in Db(X ) .
I For a non-singular 3-fold X , we define a

Pandharipande-Thomas stable pair (F , s) where F is a sheaf
supported on curves in X with zero-dimensional cokernel of
the sections s : OX → F .

I For a category C, we define the Grothendieck group K0(C) to
be a free abelian group (usually not f.g.) generated by the
objects in C with relations A + B = E for any short exact
sequence A→ E → B .



Minimal Model Program (MMP)

Let M be a smooth projective variety.

Definition. A Minimal Model Program (MMP) is a sequence of
divisorial contractions or flips

M = M0 99K M1 99K M2 99K ............ 99K MN

such that each Mi is at least Q− factorial (i.e. any Weil divisor is
Q− Cartier) and MN is either a minimal model (KMN

is nef) or has
a Mori fiber space structure.

We refer to each step in the sequence as "MMP step".



Stability manifold and wall-chamber decomposition

Figure 1: Stab(X)



Wall-Crossing/MMP correspondence
Let X be a variety, and M =Mσ(X ) the moduli space of stable
objects associated to a chamber in Stab(X ).

Figure 2:



Question

Is there a correspondence between the Bridgeland
wall-crossing in Stab(X ) and the Mori wall-crossing in
Mov(M)?



Surfaces

The answer is affirmative for most of the cases :

(some examples:)
I X=K3 surface [Bayer-Macrì(’14)]

I X=P2 [ Arcara-Bertram-Coskun-Huizenga(’13);
Bertram-Martinez-Wang (’14); Li-Zhao (’18)]

I X=Enriques Surface [Neur-Yoshioka(’19 ); Beckmann(’20)]

I M=Smooth projective surface [Toda(’13)]



MMP/Wall-crossing correspondence on surfaces

S : K3 surface, and v a primitive class.

Theorem [Bayer-Macrì] Let σ, δ be generic stability conditions
with respect to v . Then the two moduli spacesMσ(v) andMδ(v)
of Bridgeland-stable objects are birational to each other.

*Identify the Néron-Severi groups ofMσ(v) andMδ(v).

*C a chamber; the main result of [Bayer-Macrì] gives a natural map

lC : C → NS(MC (v))

to the Néron-Severi group of the moduli space, whose image is
contained in the ample cone ofMC (v).



(MMP/Wall-crossing correspondence on surfaces)

Theorem [Bayer-Macrì] Fix a base point σ ∈ Stab(S).
(a) Under the identification of the Néron-Severi groups, the maps
lC glue to a piece-wise analytic continuous map

L : Stab(S)→ NS(Mσ(v)).

(b) The map L is compatible, in the sense that for any generic
σ′ ∈ Stab(S), the moduli spaceMσ′(v) is the birational model
corresponding to L(σ′). In particular, every smooth K-trivial
birational model ofMσ(v) appears as a moduli spaceMC (v) of
Bridgeland stable objects for some chamber C ⊂ Stab(S).

*Part (b) says MMP can be run via wall-crossing:
Any birational model can be reached after wall-crossing as a moduli
space of stable objects.



threefolds

For P3:
I For some cases, the answer is "partially" affirmative.

I Hilbert scheme of twisted cubics in P3

[Schmidt (2015); Xia (2016)]

I Hilbert scheme of elliptic quartics in P3

[Gallardo-Huerta-Schmidt(2016)]

* Both Hilbert schemes have 2 irreducible components.

* Wall-Crossing ⇒ MMP

* Wall-Crossing : MMP

I We exhibit an example for which both directions are false.



Very rough idea of "Bridgeland stability conditions":

Then we can define "slope(E)" : = −Re(Z(v(E)))
Im(Z(v(E)))

 compare the slopes and define (semi-)stability.



Stability on abelian categoties

A an abelian category. A pair (A,Z ) is stability conditions if Z is a
group homomorphism, called a central charge Z : K0(A)→ C
where K0(A) is the Grothendieck group of A, such that
I For each non-zero object E in A, we have Im(Z (E )) ≥ 0 and

if Im(Z (E )) = 0, then Re(Z (E )) < 0,
I (Harder-Narasimhan filtration) For any non-zero object E in
A, there is a
filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ ... ⊂ En = E

where Ei are objects in A and Ai : = Ei/Ei−1 are semistable
objects with µ(Ai ) ≥ µ(Ai−1) for each i .

Example. Let C be a projective curve, and define Z as
Z (E) : = −deg(E) + i .rk(E), for any object E in Coh(C ).
Therefore (Coh(C ),Z ) defines stability conditions.



Stability conditions on higher dimensional varieties
Issue: We cannot define any central charge for A = Coh(X ) when
dim(X ) ≥ 2.

Solution: Try to find another abelian category in Db(X ).

*A torsion pair in an abelian category A is a pair T ,F of full
additive subcategories with (1) Hom(T ,F) = 0. (2) For all E ∈ A
there exists a short exact sequence 0→ T → E → F → 0 where
T ∈ T , F ∈ F .

*A heart of a bounded t-structure A on Db(X ) is a full additive
subcategory of Db(X ) such that
I Hom(A[i ],B[j ]) = 0 for all A,B ∈ A and i > j .
I Harder-Narasimhan property.

* A is an abelian category, and K0(A) = K0(X ) = K0(Db(X )).
*Fix a finite rank lattice Λ and a group homomorphism
v : K0(X )� Λ, such that the central charge factor via this
morphism.



Bridgeland stability conditions

Let X be a variety of dimension n. A pair σ = (A,Z ) is a
Bridgeland stability conditions on Db(X ) if
I A is a heart of a bounded t-structure,
I The central charge Z : Λ→ C, is an additive homomorphism,

(Λ finite rank lattice)
I For any non-zero object E in the heart, we have

Z (v(E )) ∈ H ∪ R<0, where H is the upper half plane in C,
I Support property.

Support property  Stab(X ) admits a chamber decomposition,
depending on v , such that:
(i) for a chamber C , the moduli spaceMσ(v) =MC (v) is
independent of the choice of σ ∈ C , and
(ii) walls consist of stability conditions with strictly semistable
objects of class v ([Bayer-Macrì]).



Stability conditions on P3

Bridgeland stability conditions does exist on P3 ([Macrì],
[Bayer-Macrì-Toda], [Bayer-Macrì-Stellari]):
I Double tilting Coh(P3) =< T ,F >
 new heart of a bounded t-structure

I Central charge
I Support property satisfied

*There exist a wall-chamber structre on Stab(P3)



Back to the problem/example

Setup

Recall: A smooth non-hyperelliptic genus 4 curve C embeds into
P3 as a (2,3)-complete intersection curve.

Question: How to compactify this 24-dimensional space?

Classical Answer Hilbert scheme of such curves.

However: Many irreducible components.
Hard to even list all the irreducible components!

Instead: Bridgeland stability conditions on Db(P3) give better
compactifications, depending on a choice of a stability condition
σ ∈ Stab(P3) givesMσ(1, 0,−6, 15), the moduli space of σ-stable
complexes E with Ch(E ) = Ch(IC ).



Approach

Following a path along the space of stability conditions to
understand how Mσ(1, 0,−6, 15) changes:
I beginning of the path: Efficient compactification, given by a

P15-bundle (choice of cubic) over P9 ( choice of quadric),
parametrising some non-torsion free sheaves in addition to
ideal sheaves.

I Large-volume limit Recovers the Hilbert scheme.
I Intermediate step: moduli space of PT stable pairs.
I Second wall-crossing: Detailed analysis of wall-crossing gives

novel features, as explained in the following.



Theorem 1 ([R20]). Fix v = (1, 0,−6, 15). There is a
wall-crossingMσ−(v)→Mσ+(v) such that:
I Mσ−(v) is a smooth and irreducible variety.

I Mσ+(v) = M̃σ−(v) ∪M′, where M̃σ−(v) is birational to
Mσ−(v) andM′ is a new irreducible component.

I There is a diagram (where σ0 is on the wall)

Mσ−(v) M̃σ−(v)

Mσ0(v)

small
contraction (φ)

divisorial
contraction (ψ)

where both φ and ψ have relative Picard rank 1. In particular,
M̃σ−(v) is not Q−factorial.



How to prove Theorem 1?

The components before and after crossing the wall:
I Mσ−(v): a blow-up of a P15-bundle over P9

I M′: a P17-bundle over Gr(2, 4)× Fl2, where Fl2 is the space
parametrizing flags Z2 ⊂ P ⊂ P3 where P is a plane and Z2 a
zero dimensional subscheme of length 2.

Let W is the wall betweenMσ−(v) andMσ+(v). Then we have
W = 〈IL(−1), ιP∗(IZ2)∨(−5)〉, where L is a line, P a plane, Z2 a
zero-dimensional subscheme of length 2, and ιP : P ↪→ P3 is the
inclusion map.



φ is small

Description of destabilizing locus:

Proposition ([R20]) The destabilizing locus inMσ−(v) when
crossing W is of dimension 10, and it contains the exceptional
locus of φ : Mσ−(v)→Mσ0(v) of dimension 8 which is a
P1-bundle over its 7-dimensional image under φ.

Corollary ([R20]) φ is a small contraction.



Key step to prove ψ is divisorial

Description of the intersection of the 2 components:

Theorem 2 ([R20]). The intersection M̃σ−(v) ∩M′ is the
exceptional divisor of the contraction map ψ. This exceptional
locus contains an open subset U such that ψ|U is a P13-bundle over
a 10-dimensional base. It degenerates to a 14-dimensional cone
over a quartic with the vertex a P9-bundle as a fiber over a
7-dimensional base.



Idea of the proof of Theorem 2
1. Subtle Ext-computations.
2. Technical lemmas.
3. The new component contains stable pairs whose underlying

curve is the union of a plane quintic with a line intersecting
this quintic, along with two marked points on the quintic.

Figure 3:



(Idea of the proof of Theorem 2)
4. The stable pairs arise as the degeneration of the ideal sheaf of

(2,3)-complete intersection curves ⇐⇒ the quintic has two
nodes that are colinear with the intersection point with the
line, and if the two marked points are the nodes.

Figure 4:



(Idea of the proof of Theorem 2)
4.1. (Partial) Normalization  canonical genus four curve C ′

Figure 5: colinearity



(Idea of the proof of Theorem 2)
Degeneration of the normalization

4.2. Construct a family C = Bl0(C ′ × A1) of normalized curves C ′:

Figure 6: C = Bl0(C ′ × A1)



(Idea of the proof of Theorem 2)
4.3. The plane quintic arises as the projection of a (2,3)-complete

intersection curve in P3 from the intersection point with the
line.

5. Construct as many objects as possible in the limit of the
P13-bundle to recover the 14-dimensional cone in its closure.
5.1. degenerate C5 ∪ L to C4 ∪ D, where C4 a plane quartic and D

a thickened line

Figure 7: The intersection point of the plane and the line is colinear with
the two points on the singularities points



(Idea of the proof of Theorem 2)
5.2. 12 (choice of C4) + 2 (2 parameters for infinitesimal

thickening direction)= 14-dimensional cone.

infinitesimal parameters:
I proportion of the deformations of L and C5
I deformation of the plane P ′ (containing L)

Figure 8: Infinitesimal directions



Corollary of Theorem 2
After giving a description of the singular locus ofM′, and then
using Theorem 2 we will get:

 Singular locus ofMσ+(v)
= Intersection of the two components ofMσ+(v)
= Exceptional locus of ψ

Corollary (of Theorem 2). ψ is a divisorial contraction.

Figure 9: Infinitesimal directions



Idea of the proof of relative Picard rank=1
I The relative Picard rank of φ is one: Non-trivial fibers of φ

are P1s which are all numerically equivalent (they occur in a
connected family).

I The relative Picard rank of ψ is one: Enough to show the
fibers have 1−dimensional N1 (numerical group of 1-cycles):
I P13: Projective contraction.
I 14-dim cone: Extend the method in [Fulger-Lehmann] from a

cone with point vertex to the one with the P9 vertex
(using the relation between N1(X ),N1(Y ),N1(Z ),N0(Y )):

Figure 10:



Proof of non-Q-factoriality of M̃σ−(v)

If it was Q-factorial,
I ψ is a divisorial contraction
I ψ is a of relative Picard rank one

I Mσ0(v) is the image of M̃σ−(v) under ψ

⇒ (1)Mσ0(v) would also be Q-factorial ([Kollár-Mori]).

On the other hand,Mσ0(v) is the image of the Q-factorial variety
Mσ−(v) under a small contraction,

⇒ (2)Mσ0(v) cannot be Q−factorial.

(1), (2) ⇒ contradiction.



Birational relationship betweenMσ−(v) and M̃σ−(v)

Figure 11:



(Birational relationship betweenMσ−(v) and M̃σ−(v))
N : Flip ofMσ−(v)

Figure 12:



Movable cone of the blow-up ofMσ−(v)

N : Flip ofMσ−(v)
N ′: Blow-up of N
N ′′: Blow-up ofMσ−(v)

Figure 13: birational model in the movable cone of N ′



Figure 14: Correspondence fails



Thank you for your attention!


