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Part I: Some Graph Learning Paradigms



What is graph learning?

Typical Tasks
� Graph/node/edge classification

� Graph/node/edge regression
� Edge prediction
� Graph distribution comparison
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How to represent graphs?

� Two graphsG andG ′ generally have a different number of vertices.

� Hence, we require ways to vectorise graphs via a map f, such that f(G), f(G ′) ∈ Rd.
� The map f needs to be permutation-invariant, i.e. oblivious to the ordering of the graph.
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What are typical algorithms for representing graphs?

Shallow approaches
� node2vec (encoder–decoder)
� Graph kernels (RKHS feature maps)
� Laplacian-based embeddings

Deep approaches
� Graph convolutional networks
� Graph isomorphism networks
� Graph attention networks
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Message passing
The predominant paradigm in graph machine learning

Concept

Neighbouring nodes can exchange messages x, y, z (vectors inRd), which are aggregated (via a
sum, a mean, or other permutation-invariant functions).

x y

z

A

B C

D

E

F G

aggregate(x, y, z)

Moral
Informative global representations can arise from entirely local measurements.
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Part II: A Brief Introduction to Curvature



What is curvature?

Motivation
Characterise how ‘curved’ an object (a surface, a manifold, a topological space, …) is. Curvature
can be extrinsic or intrinsic.

Gaussian curvature
Gaussian curvatureK is the product of the principal curvaturesκ1, κ2. It is an intrinsic property of a
surface and does not depend on a specific embedding.

K < 0 K = 0 K > 0
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Geometrical characterisations of curvature
Negative curvature

In negative curvature, geodesic triangles are ‘thinner’ than reference triangles and exhibit
‘angular defects.’
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Geometrical characterisations of curvature
Positive curvature

In positive Ricci curvature, corresponding (using parallel transport) points of spheres are closer than
their respective centres are.

Flat Positively curved
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Why is curvature useful?
Manifold setting

Curvature, despite being a local quantity, provides information about global characteristics of a
manifold.

Gauss–Bonnet∫
M KdA+

∫
∂M kg ds = 2πχ(M)

Bonnet–Myers

LetM be ad-dimensional Riemannian manifold. Assume that the Ricci curvature ofM is at least
as large as that ofSd, ad-dimensional sphere. We then have diam(M) 6 diam

(
Sd

)
. Moreover,

M is compact.
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Part III: Notions of Curvature in Graphs



Graphs

In the following, we will be dealing with a graphG = (V , E). We assume that the graph is
connected. Graphs lack a ‘smooth’ structure, requiring a different treatment in terms of
curvature.

Two curvature notions
1 Forman–Ricci curvature
2 Ollivier–Ricci curvature
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Why is curvature useful?
Graph setting

Graph curvature explains problems in training GNNs. Negative curvature constitutes a
bottleneck!

� J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong and M. M. Bronstein, ‘Understanding
over-squashing and bottlenecks on graphs via curvature’, International Conference on Learning
Representations, 2022, url: https://openreview.net/forum?id=7UmjRGzp-A

� K. Nguyen, T. Nguyen, H. Nong, V. Nguyen, N. Ho and S. Osher, ‘Revisiting Over-smoothing and
Over-squashing using Ollivier–Ricci Curvature’, Preprint, 2023, arXiv: 2211.15779 [cs.LG]

Graph curvature also serves as a characteristic property, simplifying graph learning tasks.

� C. Coupette, S. Dalleiger and B. Rieck, ‘Ollivier–Ricci Curvature for Hypergraphs: A Unified
Framework’, International Conference on Learning Representations (ICLR), 2023, arXiv: 2210.12048
[cs.LG], in press

� J. Southern∗, J. Wayland∗, M. Bronstein and B. Rieck, ‘Curvature Filtrations for Graph Generative
Model Evaluation’, Preprint, 2023, arXiv: 2301.12906 [cs.LG]
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Forman–Ricci curvature

The Forman–Ricci curvature of an edge (i, j) ∈ E is defined as

κFR(i, j) := 4 − di − dj + 3|#∆|, (1)

wheredi is the degree of node i and |#∆| is the number of 3-cycles (i.e. triangles) incident on i

and j.

−2 −1 0 1
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Ollivier–Ricci curvature

LetG be a graph with its shortest-path metric d andµv be a probability measure on G for node
v ∈ V . The Ollivier–Ricci curvature of a pair of nodes i 6= j ∈ V is then defined as

κOR(i, j) := 1 −
W1(µi, µj)

d(i, j)
, (2)

where W1 refers to the first Wasserstein distance betweenµi andµj.

Observation
This is, in some sense, the natural generalisation of Ricci curvature to a large class of objects.

History

First introduced by Ollivier1 for metric (measure) spaces, this notion of curvature was quickly
adopted for use in the graph setting.

1Y. Ollivier, ‘Ricci curvature of Markov chains on metric spaces’, Journal of Functional Analysis 256.3, 2009,
pp. 810–864.
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Useful properties ofκOR

Lower bound
It is sufficient to know the values ofκOR for each edge (i, j). IfκOR(i, j) > K for edges (i, j) ∈ E,
thenκOR(k, l) > K for all pairs of vertices (k, l).

A Bonnet–Myers-like theorem

IfκOR(i, j) > K > 0 for all edges (i, j) ∈ E, then for i, j ∈ V , we have

d(i, j) 6
W1(δi, µi) + W1(δj, µj)

κOR(i, j)
, (3)

where δi, δj refer to Dirac probability measures centred at node i and j, respectively. As a direct
consequence, we obtain a diameter bound via

diam(G) 6
supi W1(δi, µi)

K
. (4)
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How to pickµi?

It is common practice to define a version ofµi based on lazy random walks. Given a laziness
parameterα ∈ [0, 1], we set

µi(j) :=


α if i = j

1−α
deg(i) if i 6= j and i ∼ j

0 otherwise
, (5)

where deg(i) refers to the degree of node i.

Observations
1 This is supposed to mimic the idea of curvature being a local property of a manifold.
2 With this definition,κOR(i, j) ∈ [−2, 1] and W1(δi, µi) 6 1, leading to a Bonnet–Myers

bound of diam(G) 6 2
K .2

2Y. Lin, L. Lu and S.-T. Yau, ‘Ricci curvature of graphs’, Tohoku Mathematical Journal 63.4, 2011, pp. 605–627.
Curvature for Graph Learning Bastian Rieck 14/32



Ollivier–Ricci curvature
Canonical examples

κOR < 0 κOR = 0 κOR > 0

(figure inspired by K. Devriendt and R. Lambiotte, ‘Discrete curvature on graphs from the effective resistance’,
Journal of Physics: Complexity 3.2, 2022, p. 025008)

Curvature for Graph Learning Bastian Rieck 15/32



Ollivier–Ricci curvature
Examples

α = 0 α = 0.5 α = 1

−2 −1 0 1
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Part IV: Comparing Graph Generative Models



Problem

Given a distribution of graphsG = {G1, G2, . . . }, and different models for generating new graphs
G ′ = {G ′

1 , G ′
2, . . . }, how close (or similar) in the distributional sense areG andG ′?

Applications
� Drug and molecule design
� Road networks
� Vessel networks
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A new curvature-based comparison workflow
J. Southern∗, J. Wayland∗, M. Bronstein and B. Rieck, ‘Curvature Filtrations for Graph Generative Model Evaluation’, Preprint, 2023,
arXiv: 2301.12906 [cs.LG]

Joshua Southern Jeremy Wayland Michael Bronstein

Central premise

Since curvature is a multi-scale phenomenon, we need descriptors that are inherently capable of
leveraging the multi-scale structure of a graph.
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Proposed pipeline

We borrow ideas from persistent homology and use curvature as a filtration function of the graph.
The advantage is that the resulting topological representations can be compared more easily.

1 Calculate persistence diagrams based on a curvature filtration.
2 Convert persistence diagrams into more suitable representations.
3 Compare representations (permutation tests, averages, distances, …).
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Computational topology
Filtrations

Given a scalar-valued function f on a graph, we obtain a natural filtration of the graph by
analysing pre-images of f:

f−1((−∞, 0]) f−1((−∞, 1]) f−1((−∞, 2]) f−1((−∞, 3])
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Computational topology
Persistence diagrams

We can calculate topological features—here, connected components and cycles—alongside the
filtration, leading to multi-scale topological descriptors known as persistence diagrams:
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Persistence diagrams form a metric space but also afford representations in Banach spaces as
well as statistical analyses, making use of a transformation into Betti curves or persistence
landscapes.
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Results
Curvature filtrations are expressive

Success rate (↑) of distinguishing pairs of strongly-regular graphs when using either raw discrete curvature
values, or a curvature filtration.

Data set κOR (raw) κOR (filtration)

sr16622 1.00 1.00
sr261034 0.78 0.89
sr281264 1.00 1.00
sr361446 0.00 0.02
sr401224 0.00 0.93
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Results
Curvature filtrations help in substructure counting

MAE (↓) for counting substructures based on raw curvature values and curvature-based filtrations. The
Trivial Predictor always outputs the mean training target.

Method Triangle Tailed Triangles Star 4-Cycle

Trivial Predictor 0.88 0.90 0.81 0.93
GCN 0.42 0.32 0.18 0.28

κOR (raw) 0.33 0.31 0.40 0.31
κOR (filtration) 0.23 0.24 0.34 0.31
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Part V: Ollivier–Ricci Curvature for Hypergraphs



A framework for Ollivier–Ricci curvature on hypergraphs
C. Coupette, S. Dalleiger and B. Rieck, ‘Ollivier–Ricci Curvature for Hypergraphs: A Unified Framework’, International Conference on
Learning Representations (ICLR), 2023, arXiv: 2210.12048 [cs.LG], in press

Corinna Coupette Sebastian Dalleiger
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Hypergraphs

A simple hypergraphH = (V , E) is a tuple of verticesV and hyperedgesE ⊆ P(V) (graphs are
special cases of hypergraphs).

Hypergraphs capture higher-order relationships better than ordinary graphs.

Curvature for Graph Learning Bastian Rieck 25/32



How should curvature be generalised to hypergraphs?

For a pair of vertices (i, j) of a graph:

κOR(i, j) := 1 −
W1(µi, µj)

d(i, j)

Here, d(i, j) refers to the shortest-path distance.

For a hyperedge e, i.e. a set of vertices, of a
hypergraph:

κOR(e) := 1 −
Agg(e)

d(e)

Here, d(e) := max{d(i, j) | {i, j} ⊆ e}, with
d(i, j) being the shortest-path distance.
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How to choose aggregation functions?

Average aggregation

AggA(e) :=
2

|e|(|e|− 1)

∑
{i,j}⊆e

W1
(
µi, µj

)
(6)

Maximum aggregation

AggM(e) := max
{

W1(µi, µj) | {i, j} ⊆ e
}

(7)
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How to choose probability measures?
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Properties of hypergraph curvature

� Hypergraph curvature is negative/zero/positive for hypertrees/hypergrids/hypercliques,
respectively.

� We obtain simple lower and upper bounds for the curvature of an edge in terms of the total
variation distance between the probability measures.

� Hypergraph curvature relates local and global properties of a hypergraph.

Theorem
Given a subset of nodes s ⊆ V and an arbitrary probability measureµ, letδi denote a Dirac measure at
node i. If
(i) all curvatures based onµ are strictly positive, i.e.,κOR(s) > 0 for all s ⊆ V , and
(ii) W1(µi, µj) 6 Agg(s) for {i, j} = argmax(d(s)), then

d(s) 6
W1(δi, µi) + W1

(
δj, µj

)
κOR(s)

. (8)
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Results
Hypergraph curvature is discriminative

Hypergraphs built on authorships of American Physical Society (APS) papers. Different
collections (journals) exhibit distinct curvature patterns.
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Usingα = 0.1. Left (violet): equal-edges; right (blue): weighted-edges
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Results
Hypergraph curvature leads to interpretable embeddings

Hypergraphs built based on questions from StackOverflow forums (vertices: tags, edges:
questions). Using an RBF kernel between distributions, we calculate embeddings via kernel PCA.
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Discussion

Limitations
� Calculation does not scale well with increasing number of edges. Approximations required?

� Curvature is oblivious to attributes of the respective (hyper)graph.
� So far, we are only working with very localised probability measures.

Summary

� Curvature is expressive and useful for graph learning tasks.
� It provides a complementary multi-scale perspective on graphs and graph distributions.
� Even in the more structured setting of graphs, there are several non-canonical choices to be

made. We need to study their implications!
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