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Kummer studied this degeneration of the quartic, with 16 nodes
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Today, we consider a yet more serious degeneration:
to a union of planes forming a tetrahedron
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The more degenerate, the more combinatorial
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Polar duality of polytopes
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Mirror Symmetry

a) Calabi-Yau manifolds are the higher dimensional version of
Kummer's surfaces.

b) When plotting
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for complex 3-dimensional
Calabi-Yau hypersurfaces,
mathematical  physicists
found this diagram.

c) The observable symmetry in the diagram is referred to as
mirror symmetry.
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§Physics



Mirror Symmetry meets geometry

a) Batyrev discovered ('92)
that polar duality explains
the symmetry in the
diagram.
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b) Strominger-Yau-Zaslow
('96) proposed that more
generally mirror symmetry is
explained by a duality of
torus fibrations.
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c) Zharkov and Gross-Siebert found a way to bring polar duality
and dual torus fibrations together using degenerations.
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Every projective toric variety permits a continuous surjection to a
polytope.
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Conversely, every polytope with rational vertices gives rise to a
projective toric variety.

§Moment maps of projective toric varieties



If toric varieties meet in toric boundary strata, we can glue the
moment maps.
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In particular, we obtain a dictionary:

consisting of toric varieties

that meet in toric strata

degenerate manifolds Xj
<_> { glued from polyhedra

topological manifolds B }

§Gluing moment maps (7 / 2



If a manifold X degenerates into Xy, we may compose a retraction
map r : X — Xp with the moment maps p : Xog — B.
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§Strominger-Yau-Zaslow fibrations (8
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The composition o r is called the
topological Strominger-Yau-Zaslow torus fibration.

If dimg X > 2, there are typically singular torus fibres in the
fibration.

The image of the singular fibres in B is the discriminant A in the
fibration.

§Disciminant (9 / 22)
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The complement B\ A carries an integral affine structure, in
particular a Z"-local system of integral tangent vectors A.

Let ¢ : B\ A — B be the open inclusion and ¢,/ the pushforward
sheaf on B.

Definition

A tropical 1-cycle in B is a singular 1-cycle Btrop
with coefficients in ¢,A. The homology group is
denoted Hi(B, t.N\).

Lemma
There is a natural homomorphism

Hi(B, 1.\) — Ho(X,Z)/Z(SYZ-fiber)  Birop > B.

§Local system and tropical cycles (12



XYZW:t-F4(X,Y,Z7W)\i rank(H; (B, 1,A)) = 20
XYZ =t F(X,Y,Z,W) rank(Hy (B, 1x\)) =7

XYZ=t-T-Fy(X,Y,Z,W) rank(Hi (B, t.\)) =4
XY =t Fy(X,Y, Z,W) rank(H; (B, t,A)) = 1

XY =t-T-F(X,Y.ZW) [ /] rank(H(B,t.A)) =0

XY =t-TW [ 7] rank(Hy (B, 1,A)) =0

§Rank of Hy(B, t«A) (13 /2



Let A := Hom(A, Z) denote the local system dual to A.

Theorem (R. 2020, to appear in Geom.Topol.)

There is a natural pairing
Hi(B, 1.\) @ HY(B, .A) — Q. (1)

which is perfect if the discriminant A is symple.

For dim B = 2, symple means that the monodromy around each

point is ((1) l{) for some k > 0.

For dim B = 3, symple means that every vertex of A is trivalent
and the monodromy around each edge of A is like in the product
of the symple situation in dimension two plus a trival R-factor.

For dim B = 3, the pairing is not perfect if A has a fourvalent
point (conifold).

§Perfect Pairing and Injectivity
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Corollary
In the symple case, the natural homomorphism

Hi(B, txN\) — Ho(X,Z)/Z(SYZ-fiber)  Birop + BB

is injective.

Example

X

For the degeneration of a
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XY = tFo(X,Y,Z, W)

The map Hi(B, t:\) = Ho(X \ D, Z)/Z(SYZ-fiber) is an
isomorphism over Q.

§Injective map from tropical cycles
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Definition
A period integral fﬂ Q) is the integral of a holomorphic differential
n-form Q on a complex manifold X over an n-cycle 5 € H,(X,Z).

Example

For the elliptic curve @
X =C/(Z&Zr), iR

the parameter 7 is a period T T+1

integral because for Q = dz, C B

figdz:/Osz:[zK:T. a L R

A Calabi-Yau n-manifold has a unique (up to scale) differential
n-form €. It remains to think about what 3 to integrate over.

§Period integrals (16 / 22



Example
The Tate family is obtained by applying the exponential map

X=C/(Z®Zr) — C*/t’@=E
z — exp(2miz)

for t = exp(2miT) in the punctured unit disk.
This family E; can be extended over t = 0 with a degeneration.

What happens to the period
integral under degeneration?
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L 50 we get a log pole!

§Periods into a degeneration (17 /



Theorem (R.-Siebert, Publ. math. IHES 132 (2020))

Let Btrop be a tropical 1-cycle in the intersection
complex B of a degenerate Calabi-Yau n-fold Xp.
Let 5 € Hp(X,Z) denote the natural associated
n-cycle in X.  The period integral | 52 is well-
defined even over Artin rings supported at t =0
and is computed by the formula

1
W /B Q = k-logt+ (glueing term)+ (Ronkin-term)

for k € 7 the number of crossings of [Brop With
codimension one walls in B and t the smoothing
parameter.

§Theorem about periods in degenerations  (



Example
Fix a, b € C and consider the degeneration

xy = t(au™t +1)(1 + bu).
The dual intersection complex B is

eaf

e (1,1) (-1,1)

)Y

“‘/-3(‘ rop

The exponentiated period integral for the green tropical cycle is

exp<(2m_1)nl/ﬂﬂ>:a-b.

§Period for the goggle
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Theorem (Gross and Siebert, 2011)

If Xo is obtained from a B with simple discriminant, then there is a
canonical formal smoothing of Xy. The formal family is defined
over

C[H*(B, t:N)*][t].
Theorem (R.-Siebert)
The Ronkin term vanishes for Gross-Siebert formal families and the
period integral for Biop is computed via the map

Hi(B, ) = (HY(B, tN)*,  Brrop = B

trop

coming from the pairing Hy(B, t.\) @ HY(B, t.A) — Z, namely

1 * %k

where c1(p) € HY(B, 1.N\) is the class of a multivalued piecewise
linear function on B that is used to construct the formal family.

§Reconstructions
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Theorem (R.-Siebert)

The formal Gross-Siebert family is semi-universal, paramatrized in
canonical coordinates and analytifies to a holomorphic family.

We have seen mirror symmetry as an equality of Hodge numbers
earlier in the talk, in particular

HY(X,Qx) = HY(X,04)

holds for a mirror pair (X,)V<). The versal Gross-Siebert family is
literally defined over H}(X,0%) = H*(B, ..A) ® C with
exponentiated period integrals being monomials in the natural
linear coordinates. Under discrete Legendre transform (a
generalization of polar duality), the mirror dually constructed
family X satisfies

HY(B,u.A) ® C = H (X, Qy)

by a canonical isomorphism.

§Back to mirror symmetry
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