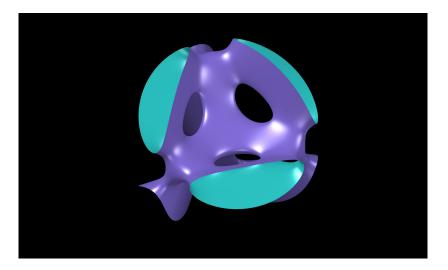


Polytopes, periods, degenerations

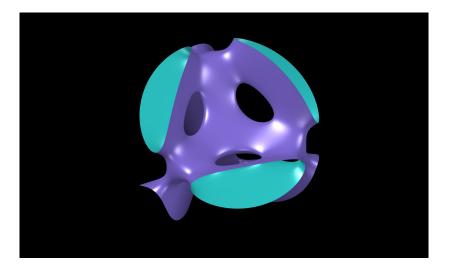
Helge Ruddat

Univ. Hamburg & JGU Mainz



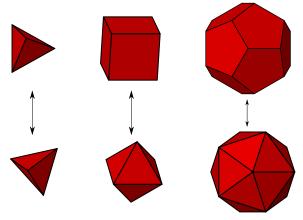
Kummer studied this degeneration of the quartic, with 16 nodes

§Geometry (1 / 22)



Today, we consider a yet more serious degeneration: to a union of planes forming a tetrahedron

The more degenerate, the more combinatorial



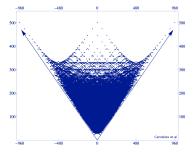
Polar duality of polytopes

Mirror Symmetry

- a) Calabi-Yau manifolds are the higher dimensional version of Kummer's surfaces.
- b) When plotting

Euler number *vs* total rank of cohomology

for complex 3-dimensional Calabi-Yau hypersurfaces, mathematical physicists found this diagram.

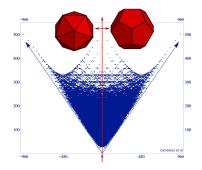


c) The observable symmetry in the diagram is referred to as mirror symmetry.

Mirror Symmetry meets geometry

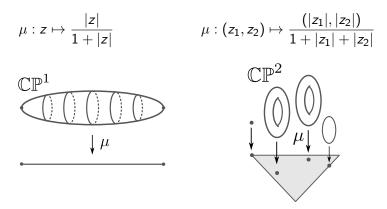
- a) Batyrev discovered ('92) that polar duality explains the symmetry in the diagram.
- b) Strominger-Yau-Zaslow

 ('96) proposed that more generally mirror symmetry is explained by a duality of torus fibrations.



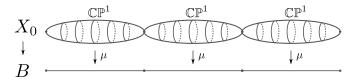
c) Zharkov and Gross-Siebert found a way to bring polar duality and dual torus fibrations together using degenerations.

Every projective toric variety permits a continuous surjection to a polytope.



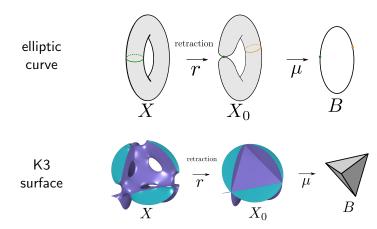
Conversely, every polytope with rational vertices gives rise to a projective toric variety.

If toric varieties meet in toric boundary strata, we can glue the moment maps.



In particular, we obtain a *dictionary*:

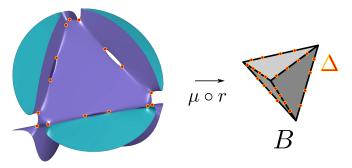
degenerate manifolds X_0 consisting of toric varieties that meet in toric strata $\end{pmatrix} \leftrightarrow \begin{cases} \text{topological manifolds } B \\ \text{glued from polyhedra} \end{cases}$ If a manifold X degenerates into X_0 , we may compose a retraction map $r: X \to X_0$ with the moment maps $\mu: X_0 \to B$.



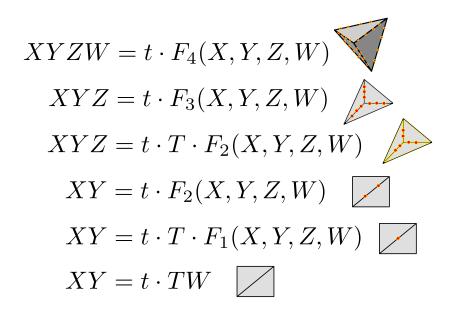
The composition $\mu \circ r$ is called the

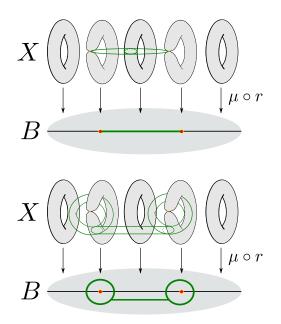
topological Strominger-Yau-Zaslow torus fibration.

If dim_{\mathbb{C}} $X \ge 2$, there are typically singular torus fibres in the fibration.



The image of the singular fibres in *B* is the discriminant Δ in the fibration.

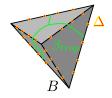




The complement $B \setminus \Delta$ carries an *integral affine structure*, in particular a \mathbb{Z}^n -local system of integral tangent vectors Λ .

Let $\iota : B \setminus \Delta \to B$ be the open inclusion and $\iota_*\Lambda$ the pushforward sheaf on B.

Definition A tropical 1-cycle in *B* is a singular 1-cycle β_{trop} with coefficients in $\iota_*\Lambda$. The homology group is denoted $H_1(B, \iota_*\Lambda)$.



Lemma

There is a natural homomorphism

$$H_1(B, \iota_*\Lambda) \to H_n(X, \mathbb{Z})/\mathbb{Z}(SYZ\text{-fiber}) \qquad \beta_{trop} \mapsto \beta.$$

$$XYZW = t \cdot F_4(X, Y, Z, W) \qquad \operatorname{rank}(H_1(B, \iota_*\Lambda)) = 20$$

$$XYZ = t \cdot F_3(X, Y, Z, W) \qquad \operatorname{rank}(H_1(B, \iota_*\Lambda)) = 7$$

$$XYZ = t \cdot T \cdot F_2(X, Y, Z, W) \qquad \operatorname{rank}(H_1(B, \iota_*\Lambda)) = 4$$

$$XY = t \cdot F_2(X, Y, Z, W) \qquad \operatorname{rank}(H_1(B, \iota_*\Lambda)) = 1$$

$$XY = t \cdot T \cdot F_1(X, Y, Z, W) \qquad \operatorname{rank}(H_1(B, \iota_*\Lambda)) = 0$$

$$XY = t \cdot TW \qquad \operatorname{rank}(H_1(B, \iota_*\Lambda)) = 0$$

§Rank of $H_1(B, \iota_*\Lambda)$ (13 / 2

Let $\check{\Lambda} := \text{Hom}(\Lambda, \mathbb{Z})$ denote the local system dual to Λ . Theorem (R. 2020, to appear in Geom.Topol.) There is a natural pairing

$$H_1(B,\iota_*\Lambda)\otimes H^1(B,\iota_*\check{\Lambda})\to \mathbb{Q}.$$
 (1)

which is perfect if the discriminant Δ is symple.

For dim B = 2, symple means that the monodromy around each point is $\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ for some $k \ge 0$.

For dim B = 3, symple means that every vertex of Δ is trivalent and the monodromy around each edge of Δ is like in the product of the symple situation in dimension two plus a trival \mathbb{R} -factor.

For dim B = 3, the pairing is not perfect if Δ has a fourvalent point (conifold).

Corollary

In the symple case, the natural homomorphism

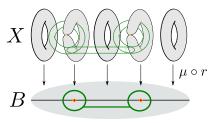
 $H_1(B, \iota_*\Lambda) \to H_n(X, \mathbb{Z})/\mathbb{Z}(SYZ\text{-fiber}) \qquad \beta_{trop} \mapsto \beta$

is injective.

Example

For the degeneration of a quadric with log Calabi-Yau boundary D a union of two \mathbb{P}^1

$$XY = tF_2(X, Y, Z, W)$$



The map $H_1(B, \iota_*\Lambda) \to H_2(X \setminus D, \mathbb{Z})/\mathbb{Z}(SYZ-fiber)$ is an isomorphism over \mathbb{Q} .

Definition A *period integral* $\int_{\beta} \Omega$ is the integral of a holomorphic differential *n*-form Ω on a complex manifold *X* over an *n*-cycle $\beta \in H_n(X, \mathbb{Z})$.

Example For the elliptic curve $X = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau),$ the parameter τ is a period integral because for $\Omega = dz$, $\oint_{\beta} dz = \int_{0}^{\tau} dz = [z]_{0}^{\tau} = \tau.$

A Calabi-Yau *n*-manifold has a unique (up to scale) differential *n*-form Ω . It remains to think about what β to integrate over.

Example

The Tate family is obtained by applying the exponential map

$$\begin{array}{rcl} X = \mathbb{C}/(\mathbb{Z} \oplus \mathbb{Z}\tau) & \to & \mathbb{C}^*/t^{\mathbb{Z}} =: E_t \\ z & \mapsto & \exp(2\pi i z) \end{array}$$

for $t = exp(2\pi i\tau)$ in the punctured unit disk. This family E_t can be extended over t = 0 with a degeneration.

What happens to the period integral under degeneration?

Observe that

$$\oint_{\beta} dz = \log t,$$

so we get a log pole!

Theorem (R.-Siebert, Publ. math. IHÉS 132 (2020))

Let β_{trop} be a tropical 1-cycle in the intersection complex B of a degenerate Calabi-Yau n-fold X₀. Let $\beta \in H_n(X, \mathbb{Z})$ denote the natural associated n-cycle in X. The period integral $\int_{\beta} \Omega$ is welldefined even over Artin rings supported at t = 0and is computed by the formula

$$rac{1}{(2\pi i)^{n-1}}\int_eta \Omega = \ \kappa \cdot \log t + (glueing \ term) + (Ronkin-term)$$

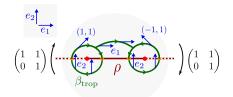
for $\kappa \in \mathbb{Z}$ the number of crossings of β_{trop} with codimension one walls in B and t the smoothing parameter.

Example

Fix $a, b \in \mathbb{C}$ and consider the degeneration

$$xy = t(au^{-1} + 1)(1 + bu).$$

The dual intersection complex B is



The exponentiated period integral for the green tropical cycle is

$$\exp\left(\frac{1}{(2\pi i)^{n-1}}\int_{\beta}\Omega\right)=a\cdot b.$$

Theorem (Gross and Siebert, 2011)

If X_0 is obtained from a B with simple discriminant, then there is a canonical formal smoothing of X_0 . The formal family is defined over

 $\mathbb{C}[H^1(B,\iota_*\check{\Lambda})^*][\![t]\!].$

Theorem (R.-Siebert)

The Ronkin term vanishes for Gross-Siebert formal families and the period integral for β_{trop} is computed via the map

$$H_1(B,\iota_*\Lambda) \to (H^1(B,\iota_*\check{\Lambda}))^*, \qquad \beta_{trop} \mapsto \beta_{trop}^{**}$$

coming from the pairing $H_1(B, \iota_*\Lambda) \otimes H^1(B, \iota_*\check{\Lambda}) \to \mathbb{Z}$, namely

$$\exp\left(\frac{1}{(2\pi i)^{n-1}}\int_{\beta}\Omega\right) = t^{\langle\beta_{trop},c_1(\varphi)\rangle}z^{\beta_{trop}^{**}}$$

where $c_1(\varphi) \in H^1(B, \iota_*\check{\Lambda})$ is the class of a multivalued piecewise linear function on B that is used to construct the formal family. Reconstructions (20 / 22) Theorem (R.-Siebert)

The formal Gross-Siebert family is semi-universal, paramatrized in canonical coordinates and analytifies to a holomorphic family.

We have seen mirror symmetry as an equality of Hodge numbers earlier in the talk, in particular

$$H^1(X,\Omega_X)\cong H^1(\check{X},\Theta_{\check{X}})$$

holds for a mirror pair (X, \check{X}) . The versal Gross-Siebert family is literally defined over $H^1(\check{X}, \Theta_{\check{X}}) = H^1(B, \iota_*\check{\Lambda}) \otimes \mathbb{C}$ with exponentiated period integrals being monomials in the natural linear coordinates. Under *discrete Legendre transform* (a generalization of polar duality), the mirror dually constructed family \check{X} satisfies

$$H^1(B,\iota_*\check{\Lambda})\otimes \mathbb{C} = H^1(\check{X},\Omega_{\check{X}})$$

by a canonical isomorphism.

