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My main motivation

There exist a lot of examples in mathematics where one has a nice inequality derived
under a specific set of assumptions.

One would like to know how a particular inequality generalizes / changes when some of
the assumptions are slightly altered or replaced by another set of assumptions.

Can one design a scheme that helps a mathematician in such a search? The goal is to
really make the daily job of an “inequality hunting” mathematician easier & faster.
Also add a computational toolbox that they can leverage.

We make some preliminary headways towards this problem. Work in progress...
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The space of relations

• Suppose D is a finite dimensional vector spaces over R. We assume that D has
dimension n.

• Let D̂ ⊆ D be a compact subset. We refer to D̂ as the feature space

• Let C (D̂) denote the Banach space of continuous, real valued functions on D̂
equipped with the supremum norm, i.e. if f ∈ C (D̂), then

∥f ∥C(D̂) := sup
x∈D̂

|f (x)|.

• We define a space of relations R := C (D̂)× C (D̂), which is again a Banach
space with the norm

∥(f , g)∥R := ∥f ∥C(D̂) + ∥g∥C(D̂), (f , g) ∈ R. (1)
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Inequality conjectures form a Banach manifold

What is a conjecture?

Definition

Let (f , g) ∈ R. We say that the tuple (f , g) is a conjecture if and only if f (x) < g(x)
for all x ∈ D̂. The set C := C< ⊔ C> is called the space of conjectures, where
C< := {(f , g) ∈ R : f (x) < g(x), ∀x ∈ D̂} and
C> := {(f , g) ∈ R : f (x) > g(x), ∀x ∈ D̂}.

Manifold structure for the space of conjectures:

Lemma

C, C< and C> are open subsets of R and each of them is a Banach manifold.
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Why a Banach manifold

Idea of the proof is simple:

• R is a Banach manifold.

• Any open subset of R is a Banach manifold.

• The conditions f < g and f > g are open conditions (due to compactness of D̂).

• Thus C> and C< are both open sets.

Note: Because of the compactness assumption infx∈D̂ |f (x)− g(x)| = ϵ > 0, and is

always attained by some x ∈ D̂.
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Group actions of the space of relations and conjectures
The space of conjectures C enjoys certain nice geometrical properties. Let GL(2,R)
denote the set of all invertible 2× 2 real valued matrices. We will denote I := ( 1 0

0 1 ). If
A ∈ GL(2,R) has the property that A(f , g) ∈ C for every (f , g) ∈ C, we say that A
leaves C invariant. In particular, we are interested in all the elements of GL(2,R) that
leave C invariant. For every

(
A11 A12
A21 A22

)
=: A ∈ GL(2,R), we first define the linear map

A : R → R, (f , g) 7→ (f̄ , ḡ),(
f̄
ḡ

)
:=

(
A11 A12

A21 A22

) (
f
g

)
.

One can check that this defines a group action on R

𭟋 : GL(2,R)×R → R, (A, (f , g)) 7→ A(f , g).

Moreover every A ∈ GL(2,R) defines a homeomorphism on R
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Which linear transformations leave C invariant?

Not every A ∈ GL(2,R) leaves C invariant. One can find two sets of non-trivial
subgroups of GL(2,R), both of which leave C invariant:
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The largest group of invertible matrices preserving C

Let G be the largest set of invertible 2× 2 matrices that leaves C invariant. Then G
has a nice characterization:

Lemma

The set G satisfies the following properties:

(a) Every element A ∈ G can be expressed in the form

A =

(
1 −1
1 1

)(
a c
0 b

)(
1 1
−1 1

)
, a, b, c ∈ C (D̂), a(x), b(x) ̸= 0, for any x ∈ D̂.

(b) G is a group, and a Banach manifold.
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Aside

One can also define the space of conjectures to be functions f ∈ C (D̂) such that
f (x) > 0 or f (x) < 0 for all x ∈ D̂.

This leads to a slightly smaller search space (about 2x).

On the other hand, if the conjecture space has very complicated geometry, it may be
better to have some redundancy in the parameterization (a form of relaxation for
non-convex optimization problems).

We have been experimenting with both kinds of oracles. So far it is hard to say which
one is better. Performance wise, this version is 2x faster.
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The computational oracle: version zero
The conjecture space C is a subset of the space of relations.

Basic idea: Start from some (f , g) ∈ R, and perform gradient descent to converge to
some point in C, by minimizing a loss function that is non-zero when (f , g) ̸∈ C.
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Cartoon visualization

Drawing courtesy Challenger Mishra.
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Number theoretic conjectures

Some number theoretic conjectures about the prime counting function:
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A closer look at some of the conjectures

# 5 on the list is the famous Second Hardy-Littlewood conjecture.
# 1 on the list is a new conjecture.
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An example new result

Theorem

If x , y are positive integers, then π(xy) ≥ π(x) + π(y), ∀ x , y ≥ 17. In addition, the
inequality holds for all 2 ≤ x , y < 17.

Proof idea:

• Prove the case for x , y ≥ 17. Uses the Rosser-Schoenfeld formula.

• Enumeratively check the cases 2 ≤ x , y ≤ 17.
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Proof of theorem

Proof.

By the Rosser-Schoenfeld formula, we have for any α ≥ 1.25506

x

log x
< π(x) <

αx

log x
, ∀ x ≥ 17. (2)

Now choose α = 1.26. Then note that for all x , y ≥ 17 we have: (i) log x < x
2α , and

(ii) log x + log y ≤ log x log y . Using the above facts, we get for all x , y ≥ 17

π(x) + π(y) < α

(
x

log x
+

y

log y

)
= α

(
x log y + y log x

log x log y

)
<

( xy
2 + xy

2

log x log y

)
=

(
xy

log x log y

)
≤

(
xy

log x + log y

)
=

xy

log(xy)
< π(xy).

(3)

The case 2 ≤ x , y < 17 has been enumeratively checked using a computer.
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Some new group theory conjectures
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What I’m working on: A problem from Fourier analysis

Basic question: When you are computing Fourier transform of a function under some
nice assumptions (say Schwartz function), what kind of error do you make when you
compute it using the DFT (discrete Fourier transform)?

Answer is well-known, and one of the lemmas that I use in one version of the proof is
the following:

Lemma

Let B := {(x1, . . . , xd) ⊆ Rd : |xi | ≤ bi , bi > 0, ∀i = 1, . . . , d}, and define
δ := maxi{bi}/mini{bi}. Suppose x ∈ Rd \ int(2B) and ω ∈ B, where int(·) denotes
interior of a set. Then we have the estimate |x | ≤ 2

√
1 + δ2(d − 1)|x + ω|.
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One can ask general versions of this lemma

• What happens when you change the shape of the convex body (or bounded
non-convex bodies) to something other than a cube?

• For example, consider the family of astroids in R2

|x/a|1/n + |y/b|1/n = 1, 0 < n ∈ Z, a, b, > 0.

• What will be the dependence on dimension d?

One can ask all kinds of questions, and it is not clear the formula should generalize.
But we have a starting point that we know is true, and would like to use it to find
appropriate generalizations (or help us finding the right generalizations).
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Outlook and limitations

1. How to connect to automatic theorem provers, and proof assistants?

2. Extend the framework to handle other kinds of conjectures (like equality
conjectures) - finite precision issues.

3. Using the symmetries of the conjecture space to cut down the search space. We
already do this by factoring in the dilation group. But what about other
symmetries?

4. What to do if problem itself has inbuilt symmetry?

5. What to do when it is not easy to generate training data exactly (precision issues
or numerical accuracy issues) – for example, say you wanted to recover the
isoperimetric inequaltiies.
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Questions

Contact (good till Feb 2024): rsarkar@stanford.edu

Soon to move to UC Berkeley, Math Department!
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