Machine Learning assisted exploration for affine Deligne-Lusztig varieties

Felix Schremmer

Joint work with: Bin Dong, Xuhua He, Pengfei Jin and Qingchao Yu

University of Hong Kong
October 18, 2023
(1) What does a mathematician do all day?
(2) ML for pure math
(3) Our case study

So what do you do all day?

- Think about mathematical problems
- Read
- Compute examples and search for patterns
- Try to prove these patterns

Is this good for anything?

Langlands program (oversimplified)

Is this good for anything?

Langlands program (simplified)

Shimura varieties

Affine Deligne-Lusztig varieties

So you must be good with numbers, right?

Take:

- A (certain) group. For today, $\mathbf{G}=\mathrm{SL}_{5}$.
- An element. For today, $b=\mathbf{1}=\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$.
- An element w of the affine Weyl group, e.g.

$$
w=\left(\begin{array}{ccccc}
0 & 0 & t^{-2} & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & t & 0 \\
0 & 0 & 0 & 0 & t^{-3} \\
0 & t^{4} & 0 & 0 & 0
\end{array}\right)
$$

(t : a formal variable)

Do you think in four dimensions?

To this given G, w, b, we associate an affine Deligne-Lusztig variety:

$$
X_{w}(\mathbf{1})=\left\{g \in \mathrm{SL}_{5} / I \mid g^{-1} \mathbf{1} \sigma(g) \in I w /\right\}
$$

(σ : Frobenius automorphism. I: Iwahori subgroup)

Key question: Compute $\operatorname{dim} X_{w}(b)$.

Known: Recursive algorithm (exponential complexity)

Expected: Closed formula.
(1) What does a mathematician do all day?
(2) ML for pure math
(3) Our case study

Step 0: Getting started

We model our problem as a functional relationship

$$
\begin{aligned}
f:\left\{w \text { such that } X_{w}(\mathbf{1}) \neq \emptyset\right\} & \rightarrow \mathbb{Z}_{\geq 0} \\
w & \mapsto \operatorname{dim} X_{w}(\mathbf{1})
\end{aligned}
$$

Goal: Find a closed formula to evaluate f (mathematical conjecture)

Step 1: Data generation

- Choose a computer representation of domain and target of the function, e.g.

$$
\left(\begin{array}{ccccc}
0 & 0 & t^{-2} & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & t & 0 \\
0 & 0 & 0 & 0 & t^{-3} \\
0 & t^{4} & 0 & 0 & 0
\end{array}\right) \leftrightarrow(2,5,1,3,4,0,4,-2,1,-3)
$$

(target is $\mathbb{Z}_{\geq 0}$, needs no further representation)

- Choose a suitable subset of the domain (e.g. 1000 randomly chosen elements)
- Evaluate the function f on these examples

Step 2: Model selection

- Choose a hypothesis class, i.e. a family of functions

$$
\hat{f}_{m}, \quad m \in \mathcal{M}
$$

hoping that one of these can approximate our target function f "well"

Typical choices: Neural network, linear model, decision tree. . .

- Choose a loss function, which evaluates how good the approximation \hat{f}_{m} is

Typical choices: ℓ_{1} or ℓ_{2} norm with regularization

Step 3: Training

- Split the dataset \mathbb{D} into a training and test part $\mathbb{D}=\mathbb{D}_{\text {train }} \sqcup \mathbb{D}_{\text {test }}$
- Find a model $m \in \mathcal{M}$ such that \hat{f}_{m} approximates f on $\mathbb{D}_{\text {train }}$ as good as possible (loss function)
- Optimization method depends on chosen hypothesis class
- Avoid overfitting: Compare test error vs. training error

Step 4: Evaluation

- Study the approximation function \hat{f}_{m} :
- Accuracy on training / test set
- Accuracy on different parts of the dataset
- Study the model m :
- Importance/Influence of different input variables
- Compare with prior subject knowledge

Step 5: Refinement

Do we have a simple, robust approximation \hat{f}_{m} that models our target function f very well (according to theory\&evidence)?

- Yes: New mathematical conjecture found!
- No: Consider all choices made in Steps 1-4 and repeat
(1) What does a mathematician do all day?
(2) ML for pure math
(3) Our case study

Problem and complexity

- Recall: Our target function f computes dimensions of ADLV

$$
w=\left(\begin{array}{ccccc}
0 & 0 & t^{-2} & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & t & 0 \\
0 & 0 & 0 & 0 & t^{-3} \\
0 & t^{4} & 0 & 0 & 0
\end{array}\right) \mapsto \operatorname{dim} X_{w}(\mathbf{1})=23 .
$$

- Dataset: 5000 randomly sampled elements w.
- Model: Let's try neural networks!

		Neurons / Layer		
		10	20	40
$$	1	0.53	0.53	0.52
	2	0.53	0.53	0.51
	3	0.52	0.51	0.51
		Avg. test error		

\rightsquigarrow Linear model is probably fine

A first linear model

- Represent an element w by 12 numbers:
- Five to signify the positions of the t^{\bullet} 's in the matrix
- Five to signify the t-exponents
- Two more of Lie-theoretic relevance
- Same dataset as before
- Test error: 0.65
- Model interpretation: hard
- If all t-exponents are pairwise distinct: Error 0.62. Interpretation hard

Better features

- Focus on those w's with pairwise distinct t-exponents.
- Associate two permutations to each w : Position of t 's in the matrix, and order of t-exponents

$$
\left(\begin{array}{ccccc}
0 & 0 & t^{-2} & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & t & 0 \\
0 & 0 & 0 & 0 & t^{-3} \\
0 & t^{4} & 0 & 0 & 0
\end{array}\right) \rightarrow \begin{gathered}
x y=(2,5,1,3,4) \\
y=(2,4,1,3,5)
\end{gathered}
$$

- Represent each permutation x, y by their inversion set (10 numbers) and length (1 number).
- \rightsquigarrow Test error: 0.65. Model Interpretability: Better!

Model coefficients

Inversions for x	$0.12,-0.04,-0.05,-0.24,0.14, \ldots$
Inversions for y	similar picture
$\ell(x), \ell(y)$	$0.1,0.1$
t-coefficients	$0.13,-0.09,-0.02,0.08,-0.10$
Length of w	0.52

- Leading term: $\frac{1}{2} \ell(w)$
- Besides, no significant contribution of $\ell(w)$, or t-coefficients
- Contribution of x, y needs further investigation

Restricting the dataset further

- Consider only those w's with $x=(1,2,3,4,5)$. E.g.

$$
w=\left(\begin{array}{ccccc}
0 & 0 & t^{5} & 0 & 0 \\
t^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & t^{-3} \\
0 & t^{-4} & 0 & 0 & 0
\end{array}\right)
$$

- Generate 5000 of those.
- Input features: Everything related to y.
- Target function: $g(w)=\operatorname{dim} X_{w}(\mathbf{1})-\frac{1}{2} \ell(w)$.
- Use ℓ_{2}-loss function: Avg. error: $\mathbf{0 . 3 0}$. Model interpretability: Tricky.
- Use ℓ_{1}-loss function: Avg. error $\mathbf{0 . 1 8}$.

Model interpretability: Trivial. Explicitly, $\hat{g}=\frac{1}{2} \ell(y)$.

Generalization

Return to the second data set. Our target function is

$$
g: w \mapsto \operatorname{dim} X_{w}(\mathbf{1})-\frac{1}{2} \ell(w)
$$

Approximation should simplify to $\frac{1}{2} \ell(y)$ whenever $x=(1,2,3,4,5)$.

We got a winner! $\hat{g} \approx \frac{1}{2} \ell(y x)$.

Story time

Virtual dimension $d_{w}(\mathbf{1})=\frac{1}{2}[\ell(w)+\ell(y x)]$ approximates $\operatorname{dim} X_{w}(\mathbf{1})$.

- Discovery of virtual dimension formula was a great breakthrough 10-20 years ago
- Our ML method can find the formula (today: the most tricky part)
- Analyse the data more carefully \rightsquigarrow obtain precise mathematical conjectures
- He 2014: Dimension \leq virtual dimension. Equality holds for $b=1$ and "most" w.
- He 2022: Dimension = virtual dimension for "most" (w, b)
- Our paper: ML suggests that (virtual dim. minus dim.) is bounded. We then give a proof!

The bigger picture

- AI4MATH works! We find old and new conjectures very fast (also works for more tricky patterns related to ADLV that require neural networks)
- Even "atypical" problems can be solved, by revising the full pipeline
- Interdisciplinary collaboration and modern technology lead us to a new way of researching pure mathematics

