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Plan

» Stable ranks: stable topological feature maps for (noisy)
data.

J. Agerberg, W. Chachélski, R. Ramanujam, based on work of O. Gavfert and H. Riihimaki.

» Microglia MorphOMICs detects microglia morphological
signatures across conditions.
G. Colombo, R. Cubero, L. Kanari, A. Venturino, R. Shulz, M. Scolamiero, J. Agerberg, H. Mathys, L.Tsai, W.

Chachélski, K. Hess, S. Siegert.

» Paramterized families of stable ranks.

A. Guidolin, J. Agerberg, |. Ren.
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Persistence Modules

Let K be a field. A persistence module is a functor

F:R — Vectg
v > F(v)
v<w +—  F(v)—> F(w).



Persistence Modules

Let K be a field. A persistence module is a functor

F:R — Vectg
v > F(v)
v<w +—  F(v)—> F(w).
A morphism of persistence modules ¢ : F — G is given by a

linear maps ¢(v): F(v) = G(v) s.tif v < w the following
diagram commutes

F(v<w)
F(v) ——— F(W)

4)(‘/)% hfﬁ(w)
G(v<w)
G(v) — G(w)

7T is the category of tame (i.e finitely generated) persistence
modules and morphisms between them.



Multi-Persistence Modules

More generally we can consider persistence modules as
functors of the form

F:R" — Vectg
v > F(v)
viw b F(v)—> F(w).



Multi-Persistence Modules

More generally we can consider persistence modules as
functors of the form

F:R" — Vectg
v > F(v)
viw b F(v)—> F(w).

and assume they are tame




Rank

» Tame persistence modules have finite projective
dimension;

» Multigraded Betti numbers can be computed {B; ,}vej -

We focus on the rank of a tame functor F: R" — Vectg

rank F = Zﬁo"/

Velo



Stable Rank

Let d be a distance on 7 and rank : 7 — IN associating to a
persistence module its rank

The idea of hierarchical stabilization is similar to the one of
persistence signatures (Bauer et al.)

A. Munk, H. Sieling, M. Wardetzky, Foundations of Computational Mathematics (2017).

Persistence Barcodes Versus Kolmogorov Signatures: Detecting Modes of One-Dimensional Signals, U. Bauer,
I = =
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Stability

Two functions f, g: [0,00) — [0, c0) are e-interleaved if:

f(v)>g(v+e) and g(v)>f(v+e), VYve[0, )

LN W s U B N @ o

The interleaving distance between two functions is:

d/(f,g) :=infle |f, g are € — interleaved]



Q>



Noise systems

For € € [0, ), noise of size € is a set S, of persistence modules

Multidimensional Persistence and Noise M. Scolamiero,W. Chacholski, R. Ramanujam, A. Lundman, S. Oberg
Found Comput Math (2017).

«O» «F>r «=)r» «E)»
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Noise systems

For € € [0, ), noise of size € is a set S, of persistence modules

Multidimensional Persistence and Noise M. Scolamiero,W. Chacholski, R. Ramanujam, A. Lundman, S. Oberg
Found Comput Math (2017).
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Standard noise in the direction of a cone V C IR"

V.= {Ftame | for any x in F(v), there is w in Cone(V) s.t. }

Iwllo = € and x is in ker (F(v) — F(v+ w))



Standard noise in the direction of a cone V C IR"

Y, - {F tame | for any x in F(v), there is w in Cone(V) s.t. }

Iwllo = € and x is in ker (F(v) — F(v+ w))

Given the cone V generated by (1,1) € R?, the following
1-tame functor is in V;




e Volume noise system

Given a tame functor F, consider dom(F) :={v e R" | F(v) = 0}

V. :={F €T | vol(dom(F)) < €}.

Master thesis of Daniel Lundin.



e Volume noise system

Given a tame functor F, consider dom(F) :={v e R" | F(v) = 0}

V. :={F €T | vol(dom(F)) < €}.

e Hilbert noise system

H. ={FeT| dimgF(v) <€}.
dom(F)

Master thesis of Daniel Lundin.



er=1 p-norms

Forp € [l,oo] consider the p-norm of a persistence module
F= @Ll[b;; d;) defined as:

L
(Tl ldi=bilP)?  if p# oo

IFll, =
P maxff:1|d,-—b,-| if p=o0

» Thesets SF :={FeT]| IFll, < €} form a noise system.

Wasserstein Stability for Persistence Diagrams P. Skraba, K. Turner arXiv:2006.16824v3.

Algebraic Wasserstein distances and stable homological invariants of data, J. Agergerg, A. Guidolin, |. Ren, M.
Scolamiero arXiv:2301.06484.



er=1 contours
A contour is a function C: [0, 0] x [0,00) — [0, o0] s.t:

» C(a,0)=a
» C(C(a,e),t)=C(a,e+1)

» C(a,e)<C(b,t)ifa<b, e<rt

Metrics and Stabilization in One Parameter Persistence, W.Chacholski, H. Riihimaki SIAM J. ApplL. Algebra
Geometry 2020



er=1 contours
A contour is a function C: [0, 0] x [0,00) — [0, o0] s.t:

» C(a,0)=a
» C(C(a,e),t)=C(a,e+1)

» C(a,e)<C(b,t)ifa<b, e<rt

Each contour defines a noise system with components:

Ce:= {F tame| for any v, F(v) = F(C(v,€)) is the zero map }

Metrics and Stabilization in One Parameter Persistence, W.Chacholski, H. Riihimaki SIAM J. ApplL. Algebra
Geometry 2020



Contours

A regular contour is a function C: [0, 0] x [0,00) — [0, 00] s.t:
» C(a,0)=a
» C(C(a,e),t)=C(a,e+1)

» C(a,e)<C(b,t)ifa<b, e<rt

» C(—€):]0,00] — [0, 0] is @ monomorphism Ye € [0, c0)

» C(a,—):[0,00) — [0, 0] is @ monomorphism whose image
is [a, o0], for every a € [0, 00).

Metrics and Stabilization in One Parameter Persistence, W.Chacholski, H. Riihimaki SIAM J. ApplL. Algebra
Geometry 2020



Densities

Each measurable function f : [0,00) — (0, c0) defines a contour:

Df:[0,00)x[0,00) —> [0, 0)

Dr(ase)
(a,e) +— De(ae) s.t f f(x)dx =€

; D;e(a, €)




Lifespan

If C(a,€):=a+e, the lifespan of [b, d) is its length d — b.

DA



Lifespan

If C(a,€):=a+e, the lifespan of [b, d) is its length d — b.

With density type contours D¢, we can differently weigh parts of
the parameter space.

L

ls
b1 dy b2

da

DA



p,C-norms

For p € [1,00] and C a regular contour, the (p, C)-norm of a
persistence module F =~ @le[b,-, d;) is defined as:

k O
Il c o= {E=6)7 Fpzeo
P max{€i}¢<:1 if p=o00

where ¢; denotes the lifespan of [b;, d;) with respect to C.



p,C-norms

For p € [1,00] and C a regular contour, the (p, C)-norm of a
persistence module F =~ @le[b,-, d;) is defined as:

k P
||F”p,C = {(Zi—l gi )

Tl

if p# o0
max{€i}¢<:1 if p=oc0

where ¢; denotes the lifespan of [b;, d;) with respect to C.

» The sets Sf’c ={FeT| |IFll,,c £e€}form a noise system.
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» Contour noise systems are closed under direct sums while
p-norm and volume noise systems are not.

DA



Examples of noise systems

dimension noise
L ]

domain noise
™

simple noise systems

Standard noise
direction of a cone
)

p-norm
L]

p,C-norm
®



Pesudo-Metrics

A Noise System S := {S,}cc[0,0) induces a pseudo-metric on 7.

ds(F, G) :=inf{e |F, Garee — close}

«O» «F>r «=)r» «E)»
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p-Wasserstein distance

Consider || ||, the p-normin R*.

dg(F, G) :=inf{e |F, Garee — close}
dgp coincides with the algebraic p-Wasserstein distance

[m]

=
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Examples of Pseudometrics

dimension noise
°

domain noise
L ]

simple noise systems

Standard dist.

direction of a cone
[ ]
1]

p-Wasserstein
L

param by
functions

Interleaving
p,C-Wasserstein L

param by .

p

param by
functions,p



Stable Rank Kernel
For X and Y in 7 the stable rank kernel w.r.t d is:

Ky(X,Y):= j ranky(X)rankg(Y)dx
0



Stable Rank Kernel

For X and Y in 7 the stable rank kernel w.r.t d is:

Ky(X,Y):= J ranky(X)ranky(Y)dx
0

2 0 o8 as
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Topological Morphology Descriptor

Input: a rooted tree T = (N, E) and a function f: N - R.

Output: barcode or persistence diagram.

(a.b)

/ )
.

[
&2

(ic)

o = N W & o«

(Rh).

Kanari et al. A topological representation of branching neuronal morphologies, Netroinform, (2017)



Neuronal Morphologies from different species

TMD representation of neurons from different animal species:
cat, dragonfly, fruit fly, mouse and rat.



Stability of TMD

The TMD algorithm is stable with respect to: error in measuring
the exact position of a node and omission or addition of a

small branch.
LA
AN AN
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pu— ’k pu -
>N % A ~%

e

One has to also account for intrinsic variability in the datal



Microglia Morphologies

S. Siegert’s lab at IST has been collecting and analysing almost
40,000 reconstructed microglia morphologies from mouse.

$1 Somatosensory cortex (S1)

OB
Hoechst

" Substantia nigra (SN

Microglial MorphOMICs unravel region- and sex-dependent morphological signatures from murine postnatal
development to degeneration, G. Colombo, R. Cubero, L.Kanari ..., W. Chacholski, K. Hess, S. Siegert.(Accepted:
Nature Neuroscience)



Microglia MorphOmics

The first step in Morphomics is to compute the TMD of

microglia trees.

MorphOMICs-part 1 — Topological morphelogical descripfor

. Traced microghia  ii.Rooled microglial tree i barcode  iv.Persistence diagram  v.P image ], vi-Average persistence image
ongest process. 2
e Lomete * § 2o I DS
; A 5 g it -
e 1 = Rg é & E] 7
B~ T s 2 %ﬁ . i
e, %- B 5 £E e £
L5 = g8 -
1 - 1
{ A .y B e
Root = Soma Last = tarminal point Litetime End radial distance End radial distance |
Edge = process. (distance from the soma ) from the soma from the soma |

n

Microglial MorphOMICs unravel region- and sex-dependent morphological signatures from murine postnatal
development to degeneration, G. Colombo, R. Cubero, L.Kanari ..., W. Chacholski, K. Hess, S. Siegert. Nature

Neuroscience 2022.



Microglia MorphOmics

The first step in Morphomics is to compute the TMD of
microglia trees.

MorphOMICs-part 1 — Topological morphelogical descripfor

I Traced microgha  ii.Rooted microglal tree i Persistence barcode  ivF diagram  v.P image ], vi.Average persistence image
s
-, 8 8. L°
s 3 5 gE 35 ~
R WS S £ s 32 <
o S H 52 52 c
B P, H 3= 2: 2
< o N £ gs 3y %
& §= 1
{ A , & b
Roct=Soma. Lest = el pint Litetime End radial distance End radial distance ||
Edge = process (distance from the soma. pm) from the soma from the soma |
h

Because of intrinsic variability within the data, average
persistence images or average stable ranks do not clearly

exhibit regional signatures.

Microglial MorphOMICs unravel region- and sex-dependent morphological signatures from murine postnatal
development to degeneration, G. Colombo, R. Cubero, L.Kanari ..., W. Chacholski, K. Hess, S. Siegert. Nature

Neuroscience 2022.



Bootstrap samples

The second step in Morphomics is to compute bootstrap
samples of the data.

MorphOMICs part 2- Bootstrapping

Bootstrap

Microglial pool
(po;:ulalt)ign size =n) Bootstrapped microglia

Redu[:ed

Qj.\a/

o Average
persistence image

- Persistence image of Random subeampllng of x cells from ©Bootstrapped
single microglia the population size n, iterated m times persistence image




Dimensionality reduction

Bootstrap samples are then visualized through dimensionality
reduction.

Spatial heterogeneity of adult microglia
Olfactory bulb
Frontal cortex

Somatosensory cortex
Substantia nigra

Cerebellum

UMAP 2

UMAP 1

Boostrap samples of persistence images allow to identify
spacial heterogeneity among adult microglia.



Classification with stable rank kernels
Standard stable ranks yield a similar visualization.

£
.}3,.. " ,*‘-:i*: oB

~ i

o &% FC
3| £

< - I

B SN

L S cB

UMAP1

To be compared to accuracy in classification per brain region
with stable rank kernel.

[ — . Bossrapingwith sampl szs 10 - Boastraing with sampl size 20 . Bossapingwihsampl 52250




Computation of the p, C-Wasserstein stable rank

> ﬂp,C(F)(t) is the minimal rank among all G that fitin a
mono-epi span F <= H - G of bar to bar morphisms s.t
d(F,G)<t.



Computation of the p, C-Wasserstein stable rank

> r/aﬁ<p,C(F)(t) is the minimal rank among all G that fitin a
mono-epi span F <= H - G of bar to bar morphisms s.t
d(F,G)<t.

» For each monomorphims ¢ : F <> H there exists a
bar-to-bar monomorphism q; F—>Hs.t
||coker(j_) |p,c <llcokerdl|, c. Dually for epimorphisms
morphisms can be assumed to be bar-to-bar.




The p, C-Wasserstein stable rank

» Consider a barcode decomposition of F = @:\Izl[bi, d;) s.t
{1 <> <...Cywhere C(b;,{;) =d; .
» The points 0 = tg < t; <... ty of discontinuity of a(p(l-_)

1-p . 1
aret; =27 (Z}:lff)p

> rank,(F)(t;) =N —i

000 025 050 075 100 00 25 50 75 100 o 2 4 6 [ 10

Algebraic Wasserstein distances and stable homological invariants of data, J. Agergerg, A. Guidolin, |. Ren, M.
Scolamiero arXiv:2301.06484.



Signal vs Noise-artificial example |

ccccc

High intensity pixels in images from class A are uniformly
distributed between 245 and 255, in images from class B
between 200 and 210. Low intensity pixels follow the same
distribution in both classes.



Signal vs Noise-artificial example |

Hierarchical clustering on p-Wasserstein stable ranks:
p = 1(left), p = oo (right).

I ey S

p = oo is more appropriate in distinguishing different
distributions of high intensity pixels.



Signal vs Noise-artificial example Il

ccccc

The number of low intensity pixels in images from class A is
uniformly distributed between 20 and 30, in images from class
B between 120 and 130. High intensity pixels follow the same
distribution in both classes.



Signal vs Noise-artificial example Il

Hierarchical clustering on p-Wasserstein stable ranks:
p = 1(left), p = oo (right).

ﬁﬁmgﬁ%@




Signal vs Noise-artificial example Il

Hierarchical clustering on p-Wasserstein stable ranks:
p = 1(left), p = oo (right).

p = 1 is more appropriate in distinguishing different
distributions of the number of low intensity pixels.



Dataset of brain artery trees

The dataset consists in 3D reconstructions of brain artery
trees of 98 individuals of age 18 —72. The structure of brain
arteries was found to significantly correlate with age.

Persistent homology analysis of brain artery trees. Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch,
and Sean Skwerer. The annals of applied statistics, 10(1):198, 2016.



Dataset of brain artery trees

The dataset consists in 3D reconstructions of brain artery
trees of 98 individuals of age 18 —72. The structure of brain
arteries was found to significantly correlate with age.

Classification task:

» We partitioned the indexing set | of the data, based on age
of the subjects: class A (age < 45) and class B (age > 45).

» Do stable ranks ranky(X;) associated to a
Wassertein-contour metric d = d»,c provide a good
classification?

» How to learn p and the parameters associated to C?

Persistent homology analysis of brain artery trees. Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch,
and Sean Skwerer. The annals of applied statistics, 10(1):198, 2016.



Metric Learning

We used a metric learning objective function, designed to yield
small intra-class distances and large inter-class distances:

Yijea D2(X, X)) Yijes D2(Xi, X))
Yieaje D?(Xi, X)) Liepjer D?(Xi X;)

obj =

where D(X;, X;) denotes the interleaving distance between the
stable ranks of X; and X;.

The objective function is parametrized by p and by the
parameters of the density

f(x) = N (xlp1, 01) + AN (x|pz, 02)

that defines the contour.

Topology-based metric learning. Oliver Gavfert. Poster 2018.

Algebraic Wasserstein distances and stable homological invariants of data, J. Agergerg, A. Guidolin, |. Ren, M.
Scolamiero arXiv:2301.06484.



Qualitative understanding of optimization

Results for one example run of the metric learning optimization
over 25000 iterations.

rrrrrrrrrrrrrrrrrr

Figure: Progression of the loss, Wasserstein p parameter, mean p;,
standard deviation o; and A over the iterations. Density at different
iterations.



Understanding the learnt density

Sample barcode from class ‘young’ Sample barcode from class ‘old" Sample brain artery tree

2000 = 2000
1500 1500
1000 1000

500 500

[ 0 @ @ ® 100 [ 2 © @ ® 100

Figure: Left and Middle: Sample barcodes from the two classes with
superposed density. Bars are colored according to the density. Right:
Sample brain artery tree with superposed density.

The optimized stable rank is used as a classifier with a KNN
method yielding a classification error of 24%. Before
optimization, the classification error varied between 28.9% and
55%. Standard stable rank yields classification error of 38.1%.



In Summary

» Stable ranks are well suited for statistics and machine
learning, are used in real world applications.
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learning, are used in real world applications.

» Varying the metric defining a stable rank, offers multiple
perspectives on the data.



In Summary

» Stable ranks are well suited for statistics and machine
learning, are used in real world applications.

» Varying the metric defining a stable rank, offers multiple
perspectives on the data.

» Stable ranks provide stable features with respect to
several metrics including p-Wasserstein distances on
barcodes.



Thank you for your attention!



