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Plan

I Stable ranks: stable topological feature maps for (noisy)
data.
J. Agerberg, W. Chachólski, R. Ramanujam, based on work of O. Gävfert and H. Riihimaki.

I Microglia MorphOMICs detects microglia morphological
signatures across conditions.
G. Colombo, R. Cubero, L. Kanari, A. Venturino, R. Shulz, M. Scolamiero, J. Agerberg, H. Mathys, L.Tsai, W.

Chachólski, K. Hess, S. Siegert.

I Paramterized families of stable ranks.
A. Guidolin, J. Agerberg, I. Ren.



Persistence Pipeline
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Figure 2. A fixed set of points [upper left] can be completed to
a a Čech complex Cϵ [lower left] or to a Rips complex Rϵ [lower
right] based on a proximity parameter ϵ [upper right]. This Čech
complex has the homotopy type of the ϵ/2 cover (S1 ∨ S1 ∨ S1),
while the Rips complex has a wholly different homotopy type (S1∨
S2).

needed for a Čech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of En

nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which ϵ? Converting a point cloud data set into a global complex (whether
Rips, Čech, or other) requires a choice of parameter ϵ. For ϵ sufficiently small,
the complex is a discrete set; for ϵ sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for ϵ which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of ϵ, if it exists, is rare: by the time ϵ is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. Algebraic topology for data

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of

V : V0 ! V1 ! . . . ! Vn



Persistence Modules
Let K be a field. A persistence module is a functor

F : R −→ VectK
v 7→ F(v)

v ≤ w 7→ F(v)→ F(w).

A morphism of persistence modules φ : F → G is given by a
linear maps φ(v) : F(v)→ G(v) s.t if v ≤ w the following
diagram commutes

F(v) F(W)

G(v) G(w)

F(v ≤ w)

φ(v)

G(v ≤ w)

φ(w)

T is the category of tame (i.e finitely generated) persistence
modules and morphisms between them.
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Multi-Persistence Modules
More generally we can consider persistence modules as
functors of the form

F : Rr −→ VectK
v 7→ F(v)

v ≤ w 7→ F(v)→ F(w).

and assume they are tame
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Rank

I Tame persistence modules have finite projective
dimension;

I Multigraded Betti numbers can be computed {βi ,v }v∈Ii .

We focus on the rank of a tame functor F : Rr → VectK

rankF :=
∑
v∈I0

β0,v



Stable Rank

Let d be a distance on T and rank : T →N associating to a
persistence module its rank.

The stable rank along d is the function:
r̂ankd : T → Fun([0,∞), [0,∞)) with values:

r̂ankd (F)(t) :=

rank(F) if t = 0

inf {rank(G) |d(F ,G) ≤ t} if t > 0

The idea of hierarchical stabilization is similar to the one of
persistence signatures (Bauer et al.)

Persistence Barcodes Versus Kolmogorov Signatures: Detecting Modes of One-Dimensional Signals, U.Bauer,
A. Munk, H. Sieling, M. Wardetzky, Foundations of Computational Mathematics (2017).



Stability
Two functions f ,g : [0,∞)→ [0,∞) are ε-interleaved if:

f(v) ≥ g(v + ε) and g(v) ≥ f(v + ε), ∀v ∈ [0,∞)

The interleaving distance between two functions is:

dI (f ,g) := inf{ε | f ,g are ε − interleaved}



Stability

The function r̂ankd : (T ,d)→ (Fun([0,∞), [0,∞)),dI ) is
1-Lipschitz:

∀F ,G ∈ (T ,d), dI (r̂ankd (F), r̂ankd (G)) ≤ d(F ,G)



Noise systems
For ε ∈ [0,∞), noise of size ε is a set Sε of persistence modules

The collection {Sε}ε∈[0,∞) should satisfy the conditions:

I the module 0 belongs to Sε for any ε;

I if 0 ≤ τ ≤ ε, then Sτ ⊆ Sε;

I if 0→ F → G → H → 0 is an exact sequence, then
I if G is in Sε, then so are F and H ;
I if F is in Sε and H is in Sτ , then G is in Sε+τ .

Multidimensional Persistence and Noise M. Scolamiero,W. Chacholski, R. Ramanujam, A. Lundman, S. Oberg.

Found Comput Math (2017).
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Standard noise in the direction of a cone V ⊆R
r

Vε :=

{
F tame | for any x in F(v), there is w in Cone(V ) s.t.

||w ||∞ = ε and x is in ker(F(v)→ F(v +w))

}

Given the cone V generated by (1,1) ∈R2, the following
1-tame functor is in V1

k 0 0

k 0 0

k k k
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• Volume noise system

Given a tame functor F , consider dom(F ) := {v ∈Rr | F(v) , 0}

Vε := {F ∈ T | vol(dom(F )) ≤ ε}.

• Hilbert noise system

Hε := {F ∈ T |
∫

dom(F)
dimKF(v) ≤ ε}.

Master thesis of Daniel Lundin.
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• r=1 p-norms

For p ∈ [1,∞] consider the p-norm of a persistence module
F '

⊕k
i=1[bi ,di ) defined as:

||F ||p :=

(
∑k

i=1 |di − bi |p)
1
p if p ,∞

maxki=1|di − bi | if p =∞

I The sets Spε := {F ∈ T | ||F ||p ≤ ε} form a noise system.

Wasserstein Stability for Persistence Diagrams P. Skraba, K. Turner arXiv:2006.16824v3.

Algebraic Wasserstein distances and stable homological invariants of data, J. Agergerg, A. Guidolin, I. Ren, M.
Scolamiero arXiv:2301.06484.



• r=1 contours
A contour is a function C : [0,∞]× [0,∞)→ [0,∞] s.t:

I C(a ,0) = a

I C(C(a ,ε), τ) = C(a ,ε+ τ)

I C(a ,ε) ≤ C(b , τ) if a ≤ b , ε ≤ τ

Each contour defines a noise system with components:

Cε :=
{
F tame | for any v , F(v)→ F(C(v ,ε)) is the zero map

}

Metrics and Stabilization in One Parameter Persistence, W.Chacholski, H. Riihimaki SIAM J. ApplL. Algebra
Geometry 2020



• r=1 contours
A contour is a function C : [0,∞]× [0,∞)→ [0,∞] s.t:

I C(a ,0) = a

I C(C(a ,ε), τ) = C(a ,ε+ τ)

I C(a ,ε) ≤ C(b , τ) if a ≤ b , ε ≤ τ

Each contour defines a noise system with components:

Cε :=
{
F tame | for any v , F(v)→ F(C(v ,ε)) is the zero map

}

Metrics and Stabilization in One Parameter Persistence, W.Chacholski, H. Riihimaki SIAM J. ApplL. Algebra
Geometry 2020



Contours

A regular contour is a function C : [0,∞]× [0,∞)→ [0,∞] s.t:

I C(a ,0) = a

I C(C(a ,ε), τ) = C(a ,ε+ τ)

I C(a ,ε) ≤ C(b , τ) if a ≤ b , ε ≤ τ

I C(−,ε) : [0,∞]→ [0,∞] is a monomorphism ∀ε ∈ [0,∞)

I C(a ,−) : [0,∞)→ [0,∞] is a monomorphism whose image
is [a ,∞], for every a ∈ [0,∞).

Metrics and Stabilization in One Parameter Persistence, W.Chacholski, H. Riihimaki SIAM J. ApplL. Algebra
Geometry 2020



Densities
Each measurable function f : [0,∞)→ (0,∞) defines a contour:

Df : [0,∞)× [0,∞) −→ [0,∞)

(a ,ε) 7→ Df (a ,ε) s .t
∫ Df (a ,ε)

a
f(x)dx = ε

If f is constant with value 1, then Df (a ,ε) = a + ε.



Lifespan

For a regular contour C : [0,∞]× [0,∞)→ [0,∞] the lifespan of
a bar [b ,d) is the unique non-negative real number ` such that
C(b , `) = d

If C(a ,ε) := a + ε, the lifespan of [b ,d) is its length d − b .

With density type contours Df , we can differently weigh parts of
the parameter space.
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p,C-norms

For p ∈ [1,∞] and C a regular contour, the (p ,C)-norm of a
persistence module F '

⊕k
i=1[bi ,di ) is defined as:

||F ||p ,C :=

(
∑k

i=1 `
p
i )

1
p if p ,∞

max{`i }ki=1 if p =∞

where `i denotes the lifespan of [bi ,di ) with respect to C .

I The sets Sp ,Cε := {F ∈ T | ||F ||p ,C ≤ ε} form a noise system.
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A noise system {Sε}ε∈Q is closed under direct sums if:

for everyX ,Y ∈ Sε⇒ X ⊕Y ∈ Sε

I Contour noise systems are closed under direct sums while
p-norm and volume noise systems are not.
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Examples of noise systems



Pesudo-Metrics

A Noise System S := {Sε}ε∈[0,∞) induces a pseudo-metric on T .

F,G : R→ VectK are ε-close w.r.t S if and only if :

H
φ

��

ψ

��
F G

kerφ ∈ Sε1
, cokerφ ∈ Sε2

, kerψ ∈ Sε3
, cokerψ ∈ Sε4

and
ε1 + ε2 + ε3 + ε4 ≤ ε.

dS(F ,G) := inf{ε |F ,G areε − close}



p-Wasserstein distance

Consider || ||p , the p-norm in R
4.

F,G : R→ VectK are ε-close w.r.t S if and only if :

H
φ

��

ψ

��
F G

kerφ ∈ Sε1
, cokerφ ∈ Sε2

, kerψ ∈ Sε3
, cokerψ ∈ Sε4

and
||ε1,ε2,ε3,ε4||p ≤ ε.

dp
S (F ,G) := inf{ε |F ,G areε − close}

dp
Sp coincides with the algebraic p-Wasserstein distance



Examples of Pseudometrics



Stable Rank Kernel
For X and Y in T the stable rank kernel w.r.t d is:

Kd (X ,Y) :=

∫ ∞
0

r̂ankd (X)r̂ankd (Y)dx

For contour noise systems, stable rank is a bar count: for
F '

⊕n
i=1[bi ,di ):

̂rankS(F)(t) := |{i |`i > t}|

Supervised learning using homology based stable rank kernels J.Agerberg, R.Ramanujam W. Chacholski,
M.Scolamiero. Frontiers Appl. Math Stats 2021.
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Topological Morphology Descriptor

Input: a rooted tree T = (N ,E) and a function f : N →R.
Output: barcode or persistence diagram.

Kanari et al. A topological representation of branching neuronal morphologies, Neuroinform, (2017)



Neuronal Morphologies from different species
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Stability of TMD

The TMD algorithm is stable with respect to: error in measuring
the exact position of a node and omission or addition of a
small branch.

One has to also account for intrinsic variability in the data!



Microglia Morphologies

S. Siegert’s lab at IST has been collecting and analysing almost
40,000 reconstructed microglia morphologies from mouse.

Microglial MorphOMICs unravel region- and sex-dependent morphological signatures from murine postnatal
development to degeneration, G. Colombo, R. Cubero, L.Kanari . . . , W. Chacholski, K. Hess, S. Siegert.(Accepted:
Nature Neuroscience)



Microglia MorphOmics

The first step in Morphomics is to compute the TMD of
microglia trees.

Because of intrinsic variability within the data, average
persistence images or average stable ranks do not clearly
exhibit regional signatures.

Microglial MorphOMICs unravel region- and sex-dependent morphological signatures from murine postnatal
development to degeneration, G. Colombo, R. Cubero, L.Kanari . . . , W. Chacholski, K. Hess, S. Siegert. Nature
Neuroscience 2022.
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Bootstrap samples

The second step in Morphomics is to compute bootstrap
samples of the data.



Dimensionality reduction

Bootstrap samples are then visualized through dimensionality
reduction.

Boostrap samples of persistence images allow to identify
spacial heterogeneity among adult microglia.



Classification with stable rank kernels
Standard stable ranks yield a similar visualization.

To be compared to accuracy in classification per brain region
with stable rank kernel.



Computation of the p ,C -Wasserstein stable rank

I r̂ankp ,C (F)(t) is the minimal rank among all G that fit in a
mono-epi span F ←↩ H � G of bar to bar morphisms s.t
d(F ,G) ≤ t .

I For each monomorphims φ : F ↪→ H there exists a
bar-to-bar monomorphism φ̄ : F ↪→ H s.t
||cokerφ̄||p ,C ≤ ||cokerφ||p ,C . Dually for epimorphisms
morphisms can be assumed to be bar-to-bar.
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The p ,C -Wasserstein stable rank
I Consider a barcode decomposition of F =

⊕N
i=1[bi ,di ) s.t

`1 ≤ `2 ≤ . . . `N where C(bi , `i ) = di .

I The points 0 = t0 < t1 < . . . tN of discontinuity of r̂ankp(F)

are ti = 2
1−p
p

(∑i
j=1 `

p
j

) 1
p

I r̂ankp(F)(ti ) = N − i

Algebraic Wasserstein distances and stable homological invariants of data, J. Agergerg, A. Guidolin, I. Ren, M.
Scolamiero arXiv:2301.06484.



Signal vs Noise-artificial example I

High intensity pixels in images from class A are uniformly
distributed between 245 and 255, in images from class B
between 200 and 210. Low intensity pixels follow the same
distribution in both classes.



Signal vs Noise-artificial example I

Hierarchical clustering on p-Wasserstein stable ranks:
p = 1(left), p =∞ (right).

p =∞ is more appropriate in distinguishing different
distributions of high intensity pixels.



Signal vs Noise-artificial example II

The number of low intensity pixels in images from class A is
uniformly distributed between 20 and 30, in images from class
B between 120 and 130. High intensity pixels follow the same
distribution in both classes.



Signal vs Noise-artificial example II

Hierarchical clustering on p-Wasserstein stable ranks:
p = 1(left), p =∞ (right).

p = 1 is more appropriate in distinguishing different
distributions of the number of low intensity pixels.



Signal vs Noise-artificial example II

Hierarchical clustering on p-Wasserstein stable ranks:
p = 1(left), p =∞ (right).

p = 1 is more appropriate in distinguishing different
distributions of the number of low intensity pixels.



Dataset of brain artery trees

The dataset consists in 3D reconstructions of brain artery
trees of 98 individuals of age 18−72. The structure of brain
arteries was found to significantly correlate with age.

Classification task:
I We partitioned the indexing set I of the data, based on age

of the subjects: class A (age < 45) and class B (age ≥ 45).

I Do stable ranks r̂ankd (Xi ) associated to a
Wassertein-contour metric d = dp ,C provide a good
classification?

I How to learn p and the parameters associated to C?

Persistent homology analysis of brain artery trees. Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch,
and Sean Skwerer. The annals of applied statistics, 10(1):198, 2016.
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Metric Learning

We used a metric learning objective function, designed to yield
small intra-class distances and large inter-class distances:

obj =

∑
i ,j∈A D

2(Xi ,Xj )∑
i∈A ,j∈I D2(Xi ,Xj )

+

∑
i ,j∈B D

2(Xi ,Xj )∑
i∈B ,j∈I D2(Xi ,Xj )

,

where D(Xi ,Xj ) denotes the interleaving distance between the
stable ranks of Xi and Xj .

The objective function is parametrized by p and by the
parameters of the density

f(x) =N (x |µ1,σ1) +λN (x |µ2,σ2)

that defines the contour.

Topology-based metric learning. Oliver Gävfert. Poster 2018.

Algebraic Wasserstein distances and stable homological invariants of data, J. Agergerg, A. Guidolin, I. Ren, M.
Scolamiero arXiv:2301.06484.



Qualitative understanding of optimization

Results for one example run of the metric learning optimization
over 25000 iterations.

Figure: Progression of the loss, Wasserstein p parameter, mean µi ,
standard deviation σi and λ over the iterations. Density at different
iterations.



Understanding the learnt density

Figure: Left and Middle: Sample barcodes from the two classes with
superposed density. Bars are colored according to the density. Right:
Sample brain artery tree with superposed density.

The optimized stable rank is used as a classifier with a KNN
method yielding a classification error of 24%. Before
optimization, the classification error varied between 28.9% and
55%. Standard stable rank yields classification error of 38.1%.



In Summary

I Stable ranks are well suited for statistics and machine
learning, are used in real world applications.

I Varying the metric defining a stable rank, offers multiple
perspectives on the data.

I Stable ranks provide stable features with respect to
several metrics including p-Wasserstein distances on
barcodes.
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Thank you for your attention!


