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Overview

Part I - Theorem

We study the derived category of coherent sheaves Db(X ) on a toric
variety X . The derived category has semi-orthogonal decompositions
coming from wall-crossing to other birational models.

Theorem: these decompositions obey the Jordan-Hölder property.

Part II - Motivation and Conjecture

For a Calabi-Yau toric variety wall-crossing gives us many autoequivalences
of Db(X ). Physics/mirror symmetry predicts that these together form an
action of the fundamental group of the FI parameter space - the
complement of the discriminant in the dual toric variety.

Conjecture: the multiplicities in our decompositions agree with intersection
multiplicities in the discriminant.



Semi-orthogonal decompositions

Definition

A semi-orthogonal decomposition of Db(X ) is a sequence of full
triangulated subcategories C1, ..., Cr ⊂ Db(X ) such that:

(i) together they generate Db(X ), and

(ii) there are no morphisms from Ci to Cj if i > j .

Like a semi-direct product of groups.

Gives some control over Db(X ) in terms of the smaller pieces,
e.g. K-theory and homology split.

We write
Db(X ) =

〈
C1, ..., Cr

〉
If Ci ∼= Db(Yi ) I will write

Db(X ) =
〈
Y1, ...,Yr

〉



Semi-orthogonal decompositions

Example

Let Y be a 3-fold and X be the blow-up of Y at a smooth point.
Exceptional divisor is E ∼= P2.

The sky-scraper sheaf OE is an exceptional object in Db(X ):

EndDb(X )(OE ) = C

=⇒ The subcategory generated by OE is equivalent to Db(pt).

Have
Db(X ) =

〈
Y , pt, pt

〉
where the second and third subcategories are generated by OE (2E ) and
OE (E ).



Semi-orthogonal decompositions

Theorem (Orlov)

Let X be the blow-up of Y in a smooth subvariety Z . Then

Db(X ) =
〈
Y ,Z , ...,Z

〉
where the number of copies of Z is codim(Z )− 1.

So semi-orthogonal decompositions appear when we do blow-ups.

What about other birational transformations?



Abelian VGIT

Example

Let C∗ act on C4 with weights (1, 1, 1,−1).
The two GIT quotients are:

X+
∼= O(−1)P2

X− ∼= A3

We know
Db(X+) =

〈
X−, pt, pt

〉
by blow-up formula.

The pt here is really the fixed point (the origin) in C4.

The number of copies of pt equals the sum of the weights.



Abelian VGIT

Example

Let C∗ act on C6 with weights (1,1,1,1,-1,-1).
The two GIT quotients are:

X+
∼= O(−1)P2

X− ∼= A3

We know
Db(X+) =

〈
X−, pt, pt

〉
by blow-up formula.

The pt here is really the fixed point (the origin) in C4.

The number of copies of pt equals the sum of the weights.



Abelian VGIT

Example

Let C∗ act on C6 with weights (1,1,1,1,-1,-1).
The two GIT quotients are:

X+
∼= O(−1)⊕2P3

X− ∼= O(−1)⊕4P1

Still true that
Db(X+) =

〈
X−, pt, pt

〉
The pt here is really the fixed point (the origin) in C4.

The number of copies of pt equals the sum of the weights.



Abelian VGIT

Theorem (Kawamata, Ballard–Favero–Katzarkov, Halpern-Leistner)

Let C∗ act on U. Assume Z = UC∗
connected and

κ = weight(det(NZ/U)) ≥ 0.

Then the two GIT quotients X± obey

Db(X+) =
〈
X−, Z , ..., Z

〉
where κ copies of Db(Z ) appear.

Implies Orlov’s blow-up formula.

Could have X− = ∅, e.g.

Db(Pn) =
〈
pt, ..., pt

〉
where κ = n + 1 (Beilinson’s theorem).

If κ = 0 we have a flop and derived categories are equivalent.



Toric varieties

Let (C∗)r act on a vector space V .

There are many GIT quotients (“phases”). Each phase Xi is a toric
variety.

The space of characters has a wall-and-chamber structure, the
secondary fan.

A single wall crossing Xi  Xj is a VGIT construction U/C∗ where
U ⊂ V is the semi-stable locus for a character on the wall.

We can decompose Db(Xi ) by wall-crossing repeatedly and applying
theorem from previous slide.

If Xi is compact then Db(Xi ) decomposes into copies of Db(pt), if
not there will be bigger pieces.



Toric varieties

(1)

A4

(2)

O(−1)P3

(3)

O(−1)P1 × A2

(4)

X = O(−1)P

Example

Let (C∗)2 act on C6 with weights:(
1 1 −1 0 0 0
0 0 1 1 1 −1

)
Here P = P(O⊕2 ⊕O(−1))P1 .



Toric varieties

(1)

A4

(2)

O(−1)P3

(3)

O(−1)P1 × A2

(4)

X = O(−1)P

Example

(1) (2). Blows up the origin in A4.

Db(O(−1)P3) =
〈
A4, pt, pt, pt

〉
(2) (4). Blows up O(−1)P1 .

Db(X ) =
〈
O(−1)P3 , O(−1)P1

〉
=

〈
A4, pt, pt, pt, O(−1)P1

〉



Toric varieties

(1)

A4

(2)

O(−1)P3

(3)

O(−1)P1 × A2

(4)

X = O(−1)P

Example

Now go a different way. (1) (3) blows up A2.

Db(O(−1)1P × A2) =
〈
A4, A2

〉
(3) (4) blows up P1.

Db(X ) =
〈
O(−1)1P × A2, P1, P1

〉
=

〈
A4, A2, P1, P1

〉



Toric varieties

(1)

A4

(2)

O(−1)P3

(3)

O(−1)P1 × A2

(4)

X = O(−1)P

Example

(1) (2) (4) gives Db(X ) =
〈
A4, pt, pt, pt, O(−1)P1

〉
.

(1) (3) (4) gives Db(X ) =
〈
A4, A2, P1, P1

〉
.

But O(−1)P1 and P1 are toric varieties and their derived categories can
also be decomposed.



Toric varieties

(1)

A4

(2)

O(−1)P3

(3)

O(−1)P1 × A2

(4)

X = O(−1)P

Example

(1) (2) (4) gives Db(X ) =
〈
A4, pt, pt, pt, A2, pt

〉
.

(1) (3) (4) gives Db(X ) =
〈
A4, A2, pt, pt, pt, pt

〉
.

But O(−1)P1 and P1 are toric varieties and their derived categories can
also be decomposed.



Toric varieties

Theorem (Kite-S.)

These semi-orthogonal decompositions of the derived categories of toric
varieties satisfy the Jordan-Hölder property: the ‘irreducible components’
and their multiplicities are independent of choices.

In the example we quotiented by (C∗)2 and the decomposition took 2
steps. For rank r it will take r steps.

Proof not very hard.

Jordan-Hölder property fails in general for semi-orthogonal
decompositions [Kalck, Bondal, Böhning-Graf von Bothmer-Sosna].



Calabi-Yau toric varieties

Suppose C∗ acts on U and Z = UC∗
is connected and κ = 0. Then recall

Db(X+) ∼= Db(X−). In fact the theory gives Z-many equivalences:

Φk : Db(X+)
∼−→ Db(X−)

Theorem (Halpern-Leistner–Shipman)

The autoequivalence Φ−11 Φ0 is the twist around a spherical functor:

F : Db(Z ) −→ Db(X+)

If Db(Z ) has a semi-orthogonal decomposition then F has a corresponding
factorization.



Calabi-Yau toric varieties

Let (C∗)r act on a vector space V through SL(V ).

All phases are Calabi-Yau.

All phases are derived equivalent.

Wall-crossing gives many autoequivalences of each phase.

Physics/mirror symmetry predicts:

π1(Fayet-Iliopoulos parameter space) y Db(Xi )

The FI parameter space is the base of the Hori-Vafa mirror
≈ stringy Kähler moduli space of Xi .



FI parameter space

Take the dual toric variety X∨ defined by the secondary fan. Observe:

Phases ←→ toric fixed points in X∨.

Wall ←→ toric rational curve Ci ,j connecting two fixed points.

The FI parameter space is the open set in X∨ obtained by deleting:

1 The toric boundary.

2 The GKZ discriminant locus, a non-toric hypersurface

∆ = ∆0 ∪∆1 ∪ ... ∪∆r ⊂ X∨

which may have several irreducible components.



FI parameter space

Loop from X1 to X2 and back again  the wall-crossing autoequivalence
of Db(X1).

It should factor according to (i) the components of ∆, (ii) their
intersection multiplicities with C1,2.



FI parameter space

Recall that the wall-crossing autoequivalence is the twist around a
spherical functor Db(Z )→ Db(X1). Here Z is itself toric variety (probably
not Calabi-Yau). So Db(Z ) has a semi-orthogonal decomposition =⇒
the autoequivalence factors.

Fact: the ‘irreducible components’ Db(Yi ) that could occur in Db(Z )
biject with the components of ∆.

Conjecture (Aspinwall-Plesser-Wang, Kite-S.)

The multiplicity of a component Db(Yi ) ⊂ Db(Z ) agrees with the
intersection multiplicity of ∆i with C1,2.

Theorem (Kite-S.)

This is true in the rank 2 case.

THE END.


