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Introduction

A tropically planar graph is a metric graph, G which is dual to a
regular unimodular triangulation ∆ of some lattice polygon P .
Here we are concerned with the question: Which graphs G occur in
this way? We refer to graphs which do occur in this way as
realizable graphs (also called troplanar graphs).



Duality

Tropical curve C ←→ Regular subdivision of Newton polygon P

Smooth tropical curve←→ Unimodular triangulation
Genus = # of cycles in C ←→ # of interior lattice points in P

Each curve C contains a underlying metric graph of genus g which
is called the skeleton of C , and it is a planar graph with g
distinguished cycles.



In 2015 Brodsky et al. studied the moduli space of tropical plane
curves of genus g, for g = 3, 4 and 5, by analyzing the associated
moduli space of metric graphs.

Figure 1: Unimodular triangulation, tropical quartic curve, and the
skeleton



Moving out edges of a polygon

Figure 2: Moving out edges of a polygon

Theorem (Koelmann 1991)
Let ∆ ⊂ R2 be a two dimensional polygon, such that ∆(1) is again
two-dimensional. Then ∆(1)(−1) is a lattice polygon containing ∆.

We call a lattice polygon ∆ maximal if ∆ = ∆(1)(−1).



g = 3

T4 has 1278 regular triangulations.
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Figure 3: The five trivalent graphs of genus 3



g = 4
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g = 4
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Figure 4: The 17 trivalent graphs of genus 4



Troplanarity is not minor closed

Troplanar
Not Troplanar

(Sprawling)

Figure 5: Genus four graph is realizable but genus three minor is sprawling



Prior Known Criteria

Figure 6: Graph with a sprawling node (left), a crowded graph (center),
and a TIE-fighter graph (right).



Splits

A split is a subdivision with exactly two maximal cells; it is
necessarily regular.
Cut edges in the skeleton correspond to splits in the unimodular
triangulation.
Two splits are compatible if their split lines do not meet in the
interior of P .

Lemma
Splits corresponding to distinct cut edges are compatible.



Heavy Cycle
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Figure 7: Graph with the heavy cycle C

P ′ is the subpolygon which realizes G3 ∪ C .

Lemma (Joswig,T ’20)
Suppose that G has a heavy cycle with cut edges e1 and e2 as in
Figure 7. Then the triangles T1 and T2 in ∆ share an edge [z ,w ],
where z is the interior lattice point dual to C , and the split lines S1
and S2 intersect in w , which is a vertex of P ′, and which lies in the
boundary of P .
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Figure 8: Two possibilities for S1 and S2, which are ruled out a posteriori
in the proof. Left: S1 and S2 are parallel. Right: S1 and S2 intersect at a
point.



Sprawling Triangle
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Figure 9: A graph with a sprawling triangle

Theorem (Joswig,T ’20)
If G has a sprawling triangle then g = 4, and, up to unimodular
equivalence, we have

P = conv((−2, 0), (0,−2), (2, 2)) and
∆ = anti-honeycomb triangulation of genus four.



Heavy Cycle with Two Loops
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Figure 10: Heavy cycle with two loops

Theorem (Joswig,T ’20)
Suppose G is a graph with a heavy cycle C and two loops with cut
edges, e1 and e2, as in Figure 10. Then the heavy component P ′

can have at most three interior lattice points, and these lie on the
line spanned by the edge [z ,w ] ∈ ∆, where z is the interior lattice
point dual to C , and w is the intersection point of the split edges
s1 and s2. In particular, P ′ is hyperelliptic and g ≤ 5.
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Figure 11: This illustrates the previous theorem: general sketch (left) and
the case when g(P ′) ≥ 4 (right), which is impossible



Theorem (Joswig,T ’20)
A trivalent planar graph of genus g ≤ 5 is not tropically planar if
one of the following holds:
▶ it contains a sprawling node, or
▶ it contains a sprawling triangle and g ≥ 5, or
▶ it is crowded, or
▶ it is a TIE-fighter, or
▶ it has a heavy cycle with two loops such that the interior lattice

points of the heavy component do not align with the intersection
of the two split lines.

a b c d

Figure 12: The four genus 5 graphs that are ruled out uniquely by our
criteria
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Figure 13: The eight trivalent planar graphs of genus 6, which are not
tropically planar, and not ruled by any known criteria up till 2020.



Heavy cycle with one loop
Theorem (T’ 22)
Suppose G is a tropically planar graph with a heavy cycle with one
loop as shown in Figure 14, then the heavy component P3 is
hyperelliptic and can have at most three interior lattice points.
Also, P2 can have at most three interior lattice points. In the case
when genus g = 6 and g(P2) = 2, P2 is hyperelliptic and the
triangulation restricted to P2, i.e, ∆2 cannot have a nontrivial split.
In particular, genus of G can be at most seven.
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Figure 14: Heavy cycle with one loop



Figure 15: A unimodular triangulation of genus six with g(P2) = 2 (left),
corresponding skeleton with a heavy cycle with one loop with G2 that
does not have a cut edge (right)



Double Heavy cycle
Lemma (T’ 22)
Suppose that G has double heavy cycles C1 and C2 with cut edges
e1 and e2 as in Figure 7. Then the triangles T and T1 in ∆ share
an edge [z1,w ], the triangles T and T2 in ∆ share an edge [z2,w ]
where z1 is the interior lattice point dual to C1 and z2 is the interior
lattice point dual to C2. The split lines S1 and S2 intersect in w ,
which is a shared vertex between T1 and T2.
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Figure 16: Graph with double heavy cycles C1 and C2



Double Heavy Cycle with two loops

Theorem (T ’ 22)
Suppose G is a graph with double heavy cycles C1 and C2 with two
loops with cut edges, e1 and e2, as in Figure 17. If g(P) = 6, then
the interior lattice polygon of the heavy component, i.e., int(P3) is
a unit parallelogram.
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Figure 17: Double heavy cycle with two loops



Theorem (T ’22)
Obstructions to a troplanar graph G ̸= enve − loop (g ≥ 6),
▶ G contains a sprawling node, or G contains a sprawling triangle

and g ≥ 5, or
▶ G is crowded, or G is a TIE-fighter, or
▶ G has a heavy cycle with two loops such that the interior lattice

points of the heavy component do not align with the intersection
of the two split lines, or

▶ the components of G after bridge reduction are not tropically
planar, or

▶ G has a heavy cycle with one loop such that either the interior
lattice points of the heavy component do not align with the
intersection of the two split lines or the connected component
with genus greater than one has a cut edge, or

▶ G has a double heavy cycle with two loops such that either the
interior lattice points of the heavy component do not form a
unit ||gm or no three cycles in the heavy component share a
vertex.



Anti-Honeycomb

Lk = {y=2x+k} , Mℓ = {y=x/2−ℓ/2} , Nm = {y=−x+m} ,

A(0,k;0,k;0,k) = conv{(−k ,−k), (0, k), (k , 0)}

g(A(0,k;0,k;0,k)) =
3k2 − 3k + 2

2
.

Figure 18: Anti-honeycomb triangulation of genus 19 on the left, and the
corresponding skeleton on the right



Panoptigons

Definition
A convex lattice polygon P is a panoptigon if P contains a lattice
point p such that all other lattice points in P are visible from p.
We call p a panoptigon point for P .

Figure 19: Three panoptigons, with a panoptigon point circled and lines
of sight illustrated.



Panoptigons with lw(P) ≥ 3
Theorem (Morrison,T ’20)
Let P be a panoptigon with lattice width lw(P) ≥ 3. Then
|P ∩ Z2| ≤ 13.
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Figure 20: Possible lattice points in P.



Figure 21: Nonhyperelliptic panoptigons with lattice diameter at least 3



Panoptigons with l(P) ≤ 2

Proposition
Let P be a nonhyperelliptic panoptigon of lattice diameter at most
2. Then up to lattice equivalence P is either the triangle
conv((0, 1), (0, 3), (4, 0)), the quadrilateral
conv((1, 0), (2, 0), (3, 1), (0, 3)), or the quadrilateral
conv((0, 1), (0, 2), (2, 3), (3, 0)).

Figure 22: The three nonhyperelliptic panoptigons with l(P) ≤ 2.

Corollary
Up to lattice equivalence, there are 72 nonhyperelliptic panoptigons.



Big face Graphs

Definition
A trivalent planar graph G is said to be a big face graph if for any
planar embedding of G , there exists a bounded face that shares an
edge with every other bounded face.

Figure 23: The loop of loops Lg for 3 ≤ g ≤ 6

Hence, Pint for a realizable big face graph needs to be a panoptigon.



Theorem (Morrison,T)
Let G be a big face graph of genus g ≥ 14. The graph G is not
tropically planar.
This bound can be made even better by checking the list of
panoptigons.

Figure 24: All nonhyperelliptic panoptigons with 12 or 13 lattice points,
along with their relaxed polygons



Future problems
▶ Panoptitopes (with Gennadiy Averkov and Ralph Morrison)

If P is a panoptitope and L is a half integral polytope, such
that 2L = P , then
▶ if the panoptigon point is on the boundary, then L is

hollow.
▶ if the panoptigon point is in the interior, then L has a

unique interior point.

Figure 25: Examples of maximal panoptitopes



Chessboards and Lattice Visibility

▶ Line of attack in chess is the same as a line of visibility, i.e an
attack piece should see the attacked piece in via a straight line
(except the knight).

▶ What is the maximum number of pieces which could be
attacked in a single move, if all lines of sight are allowed as
lines of attack on a convex lattice chessboard?



▶ Generalization of moving out for polytopes in three
dimensions, and connection to realizability of tropical surfaces.

▶ Understand locus of tropical plane curves in Mg by using
forbidden criteria analysis.

▶ Extending the computation of skeletons for non-smooth
tropical curves.
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