Let (Y,B) be a "log Fano pair" such that the "positivity" to take under considerations to define "D-log K-stability". The "Donaldson-Futaki" invariant is defined as $DF(\omega;D)$ and it vanishes if and only if $\omega\in\mathcal{M}(X)$.

We do not change cohomology class, and this allows us to better study analytically and algebraically the properties of the function $\text{Div}(X)\cdot D$.

Main Advantages:

1.4 Natural questions?

Rmk:

Recall:

From now on we assume $L=-K$.

2 D-log K-stability

In general:

The J-functional is a "measures" on the triviality of test configuration.

Then $D=D_{\log}$ is a divisor on $Y\times X$ such that $L:=\omega-D$ is nef and big. Then (Y,B) is a (weak) test configuration for (X,L).

For simplicity let assume that D is Cartier.

Proposition:

1.2 Kähler-Einstein metrics

"Idea behind CDS '15" (from K-stability to KE metrics): a variant of classical continuity methods where ω is a smooth volume form attached to (X,ω), while ω_{\log}.

We do not change cohomology class, and this allows us to better study analytically and algebraically the properties of the function $\text{Div}(X)\cdot D$.

Main advantage of considering: $L=-K, D_{\log}\text{ Div}(X)$ (i.e. $D\cdot mK$).

Def:

Let $D_{\log}\text{ Div}(X)$. We define $N(X,\omega)$ as the class of the following b-divisor. Moreover ω_{\log}-KE metric ω is the Zariski closure of ω with respect to the open embedding $Y\rightarrow X$.

Theorem

1-2-2-3-4-5:

Definition

\[\begin{align*}
\lambda &= \lambda(D) \\
\nu &= \nu(D) \\
\mu &= \mu(D) \\
\eta &= \eta(D) \\
\sigma &= \sigma(D)
\end{align*}\]

More specifically $\lambda(D)$ is the log K-stability index, $\nu(D)$ is the log delta-invariant, $\mu(D)$ is the log K-energy, $\eta(D)$ is the log Ding stability index, and $\sigma(D)$ is the log Ding stability index.

Now we introduce a new log K-stability index $\lambda(D)$, which is the log K-stability index of (X,L) with respect to the log Fano pair (Y,B). We define $\lambda(D)$ as the log K-stability index of (X,L) with respect to the log Fano pair (Y,B).

Theorem

\[\begin{align*}
\lambda(D) &= \lambda(D) \\
\nu(D) &= \nu(D) \\
\mu(D) &= \mu(D) \\
\eta(D) &= \eta(D) \\
\sigma(D) &= \sigma(D)
\end{align*}\]

Moreover, if D is Cartier, then $\lambda(D)=\lambda(D)$.

Def:

Let $D\cdot 0K\text{ Div}(X)$. We define $N(X,\omega)$ as the class of the following b-divisor.

Moreover ω_{\log}-KE metric ω is the Zariski closure of ω with respect to the open embedding $Y\rightarrow X$.

Theorem

1-2-2-3-4-5:

Definition

\[\begin{align*}
\lambda &= \lambda(D) \\
\nu &= \nu(D) \\
\mu &= \mu(D) \\
\eta &= \eta(D) \\
\sigma &= \sigma(D)
\end{align*}\]

More specifically $\lambda(D)$ is the log K-stability index, $\nu(D)$ is the log delta-invariant, $\mu(D)$ is the log K-energy, $\eta(D)$ is the log Ding stability index, and $\sigma(D)$ is the log Ding stability index.

Now we introduce a new log K-stability index $\lambda(D)$, which is the log K-stability index of (X,L) with respect to the log Fano pair (Y,B). We define $\lambda(D)$ as the log K-stability index of (X,L) with respect to the log Fano pair (Y,B).

Theorem

\[\begin{align*}
\lambda(D) &= \lambda(D) \\
\nu(D) &= \nu(D) \\
\mu(D) &= \mu(D) \\
\eta(D) &= \eta(D) \\
\sigma(D) &= \sigma(D)
\end{align*}\]

Moreover, if D is Cartier, then $\lambda(D)=\lambda(D)$.