Seshadri constants on toric surfaces

Luca Ugaglia
Universita degli Studi di Palermo

13th October 2022

Joint work with A. Laface



Seshadri Constants

Let X be a projective surface, H a nef line bundle.

@ The Seshadri constant of H at a smooth point z € X is

S0, ) o= {H—C} .

mult, (C)
@ The multiple Seshadri constant of H at general z1,...,x, € X is
H-C
X,Hn):=inf{ =————— 7.
<t =t { =




Seshadri Constants

Proposition

If 7: X — X is the blowing up at z and E exceptional divisor, then

e(X,H,z) =sup{t | n*H — tE is nef}.

H nef, z € X smooth point.
o ¢(X,H,z) < VH2

2
e (X, H,n) < \/HT.

Proof. 7*H —eE nef = (7*H —cE)? >0 = H?>-¢2>0



Seshadri constant

o Ife < vVH? = 3C submaximal such that ¢ = —mﬁfc € Q.

@ No irrational Seshadri are known.

o Knowing Nef(X) we can compute the Seshadri constant.




Seshadri constant

One point in P?

Example. If X :=P? H = O(1).
o Ef(X)= (n"H — E,E) = Nef(X)=(r*H — E,m*H).
o ¢(P? Hz)=1=VH?2

*H

TI'*H_E‘<
E



Seshadri constant

n points in P2

Example. If X := P2, X = BL,(P?), H = O(1).
o If n < 8, Eff(X) polyhedral, known = Nef(X) known.
o c(P2 Hyn)=1,L 11223 6 forpn=1,..,8.

o Casen =2:

7 H — Eg

\— E1 — E2

"N *H — E, — Es

T*H — Eq



Seshadri constant

Nagata Conjecture

Conjecture (Nagata)
Foranyn>9 = &(P?,0(1),n) = \/Lﬁ

True if n = k?, with k € N.
e Fix C with deg(C) =k and p1,...,p2 € C.
o C=r"kH — S E; is nef on the blowing up of P? at the p;.
e By semicontinuity it is also nef on the blowing up at k? general points.
° W*H—%EEZ‘ nef = &> %




Seshadri constant

Weighted projective planes

Example. If X :=P(a,b,c), m: X — X blow-up at a general point ¢ € X.

o CI(X) = (H), with H> = L = CI(X)= (z*H,E).

abc

o In general Eff(X) is unknown.

ape . . % 1
o Positive light cone Q with rays Ry = 7n*H + \/@E.

e By Riemann-Roch Eff(X) D Q.



Seshadri constant

Weighted projective planes

There are two possibilities.
(i) Eff(X) bounded by the R-divisor R < &= —

abc

A

(i) Eff(X) bounded by a negative class C & e < \/ﬁ

(#4)




Seshadri constant
Weighted projective planes

e For many gradings (a,b,c) it is known the existence of the negative
curve C bounding the effective cone (e.g. [GK-16] and [Hau&al-18]).

@ It is conjectured that for some gradings, i.e. (9,10,13), there does
not exist the negative curve.
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Seshadri constant
Weighted projective planes and Nagata

Remark ([CK-11])
If e(P(a,b,c), H,e) ¢ Q, then Nagata Conjecture holds for n = abc.

Proof.
o f:P?2 = P(a,b,c) defined by (z,v, 2) — (2,1, 2°).
@ Y = blowing-up of P? at the n := abc points of f~(e).
e R _isnef = f*R_=1L-— ﬁ S EiisnefonY.

@ By semicontinuity it is nef on the blowing-up in n general points. [

11/35



Toric surfaces

From lattice polygons

e A C Q2 lattice polygon, N := |A N Z2|,

@: (C*? — PN-1
(5,t) = (s%°:(a,b) € ANZ3).

XA = ¢((C*)2) C PN~! projective toric surface associated to A.
ANZ? & sections of LA := |HA|, Ha ample.

The image of (1,1) is the general point ¢ € ¢((C*)?) C Xa.

m € Zsg = La(m):={C € L | mult,(C)>m} C La.
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Toric surfaces

From lattice polygons

o A = = XA:PQ,EA:O(Q).

o A= = Xa C P3 singular.
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Toric surfaces

From lattice polygons

@ The triangle A gives XA =P(9,10,13), Hx =9-10-13- H

~]

~_
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Seshadri on toric surfaces
Lattice width

A C Q7 lattice polygon, v € Z2.

o Lattice width of A with respect to v
lw,(A) (= . — mi cwl.
wy(A) 1= max{v - w} — min{v - w}
o Lattice width of A

lw(A) := 1IjleliZI%{lWU(A)}.

15/35



Seshadri on toric surfaces

Lattice width

Example.

o 1W(170)(A) = 3, 1W(1,1) (A) =2= IW(A)
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Seshadri on toric surfaces

@ x € XA fixed point or a point on a fixed curve

Nef(X) = Seshadri constant ([Bau&al-09], [Ito-14]).

e e € Xa general point = upper bound £ < lw(A),
lower bound ([lto-14]).

Example.

e(Xa, Ha,e) > min{2,3/2}.

17 /35



Seshadri constants

Bounds and rationality

Proposition ([LU-21])
A C Q? lattice polygon, (X, H) toric pair, € := (X, H,e). Then:

Q@ IfVol(A) >1w(A)? = £€Q.
@ I/f 3Im € N such that La(m) # () and Vol(A) < m?, then:

@ €€ Q,‘
o ¢ < Vol(A)/m;
o if La(m) contains an irreducible curve, then € = Vol(A)/m.

18/35



Seshadri constants

Bounds and rationality

Proof.
Q ¢ <lw(A) < y/Vol(A) =VH? = 3 submaximal curve.
Q@ C =1*H —mFE C X effective, C> = Vol(A) — m? < 0.

(7*H —€eE)-C > 0
(m*H—-—mE+ (m—¢e)E)-C > 0 <mQ—i-C’2
C?’+(m—-e)E-C > 0 - om

> 0

C?24+m?2—em
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Intrinsic curves

Definition

f € Clu*!,v*! irreducible, A Newton polygon, m multiplicity at (1,1).
The strict transform C' C X of the closure of V(f) C (C*)? is the
intrinsic curve defined by f, and it is:

e intrinsic negative (resp. non-positive) if C2 < 0 (resp. < 0);

e intrinsic (—n)-curve if C?2 = —n < 0 and p,(C) = 0;

o expected if [ANZ2| > ("7 1). )

20/35



Intrinsic curves

Definition

In the above setting:
o V(f) € La(m) = C?%=Vol(A) —m?2.
® po(C) = 5 (Vol(A) —m? + m — |0ANZ?|) + 1.

@ Intrinsic (—1)-curve

Vol(A)=m? -1, |DANZ*| =m+1.

o C expected = we expect La(m) # ().

21/35



Intrinsic curves

Example

o f:=u?v+uv?® — 3uv + 1, irreducible with m = 2.

@ Newton polygon

@ Vol(A)=3=m?—-1and |0)ANZ} =3=m+1.

@ f defines an intrinsic (—1)-curve.

22 /35



Intrinsic curves

Small m

Proposition ([LU-21])

Non-equivalent polygons for intrinsic non-positive curves, m < 7.
m | A
) | £
/
3 — T
/ / /
/ / / / /
4 L — L

23/35



Intrinsic curves
Expected

Proposition ([LU-21])

C' intrinsic expected non-positive with Newton A and multiplicity m.
Then one of the following holds:

Vol(A) | [DANZ2] | C? | pa(O)
i) m? m 0 1
i) | m? m+2 | 0| 0
iii) [ m2=1] m+1 |-1] 0
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Intrinsic curves

Seshadri constants

Corollary ([LU-21])

If C'is an intrinsic non-positive curve corresponding to a pair (A, m), and
e:=¢e(Xa, Hn,e) is the Seshadri constant of the corresponding toric

surface, then

Vol(A)
= .
m
Example.
—  Seshadri constant £ = Yol&) _ %

m
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Intrinsic curves

Infinite families

Proposition ([LU-21] Infinite families of non-positive intrinsic curves)

vertices of A lw(A) C? | ¢(0)
(i) (07 m] m>2 -11 0
(ii) (07T "t il m 24 -1 0
(i) | [07m "t mimiam=s] | m=2k28|-2| 0
(iv) [0™a T "n' mii] m >4 0| 0

26 /35



Intrinsic curves

Infinite families

Proof. Given homogeneous fi,..., fi € C[s,t]:
@ it is possible to describe the Newton polygon of ¥ (P!) ([DS-10])

P: Pl -5 (C*)?
(s,t) = (4.%)

Q if (f1, fo) = (f3, fu) =1 and fi + f3 = fo + fa, then ¢(P!) has
multiplicity at least m at (1,1).
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Intrinsic curves

Infinite families

Example. Consider g := s ! +¢s™ 2 ... 4 ¢t™ 1 and

fi==s", fao=t-g, f3=t", fi=-s5-9.

@ The vanishing order of ¢ = (;f”;, ;f;) is (0,0) unless
ordgy = (m,—1)
ord 0 = (=1,m)
ord,, = (—1,-1)
where q1, ..., qmn—1 are the roots of g.
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Intrinsic curves

Infinite families

@ The rays of the normal fan of A are (m,—1), (—1,m), (—1,—1).

@ The integer lengths of the corresponding edges are given by the
number of zeroes 1,1, m — 1.

@ Then A'is

29/35



Intrinsic curves

P(9, 10, 13)

Let X :=1(9,10,13), ¢ := (X, H, e).
0e=1/v9-10-13 & d,n*H —m,FE, s.t. d,/my, — v9-10-13.

o [t is possible to compute a minimal generating set of the Cox ring of
X, consisting of homogeneous elements of given bounded multiplicity
at e (see [Hau&al-16]).

v
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Intrinsic curves

P(9, 10, 13)

e For m < 30, we found the following 52 generators.

@ There are many intrinsic (—1)-curves which are positive in X.

c? d m | C?

m Pa Pa Pa

36 1 0 0 313 9 -1 0 721 21 -1 0

39 1 0 0 378 11 -1 0 755 22 -1 0

40 1 0 0 379 11 -1 0 789 23 0 1

83 2 -1 0 380 11 -1 0 790 23 1 2
109 3 -1 0 413 12 -1 0 823 24 -1 0
110 3 -1 0 481 14 -1 0 824 24 -1 0
113 3 -1 0 482 14 -1 0 858 25 -1 0
139 4 -1 0 483 14 -1 0 891 26 -1 0
140 4 -1 0 516 15 0 1 892 26 -1 0
143 4 -1 0 549 16 -1 0 893 26 0 1
208 6 -1 0 550 16 -1 0 893 26 3 3
209 6 -1 0 551 16 -1 0 926 27 -1 0
210 6 -1 0 585 17 -1 0 959 28 0 1
213 6 -2 0 652 19 -1 0 960 28 0 1
243 7 0 1 653 19 -1 0 994 29 -1 0
309 9 -1 0 686 20 0 1 1028 30 0 1
310 9 -1 0 720 21 1 2 1029 30 -1 0
312 9 -1 0

31/35



Intrinsic curves
P(9, 10, 13)

Best approximation of /9 - 10 - 13 = 34.20526 ... given by an intrinsic
(—1)-curve, 891/26 = 34.26923. ..

/

/

~

L]

32/35



Intrinsic curves
P(9, 10, 13)

Is it possible to construct an infinite family of intrinsic (—1)-curves
appearing as positive curves in X, and whose slopes approach /9 - 10 - 137
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