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A C Z\ {0} a finite set
@ Length(conv A) > 3;
o A affinely generates Z.
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What is the Morse discriminant?

A C Z\ {0} a finite set
e Length(conv A) > 3;
o A affinely generates Z.

CA, the space of all Laurent polynomials with support A.



What is the Morse discriminant?

A C Z\ {0} a finite set
e Length(conv A) > 3;
o A affinely generates Z.

CA, the space of all Laurent polynomials with support A.

EXAMPLE
A={1,23,4} C Z;
CA = {blx ¢ b2X2 T b3X3 + b4X4 | b,‘ € C},




We are interested in the following codimension 1 strata in C* :
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What is the Morse discriminant?

We are interested in the following codimension 1 strata in CA :

f(x)

[Maxwell stratum|

f(x)

[caustic]

The map f: (C\0) — C has a
pair of coinciding critical values
taken at distinct points.

The map f: (C\0) — C has a
degenerate critical point.



What is the Morse discriminant?

f(x) f(x)
[caustic] [Maxwell stratum]
DEFINITION

A polynomial f € CA is Morse, if it does not belong to either
the caustic or the Maxwell stratum.




Example: A=1{1,2,3,4}

f(x) f(x)
[caustic] [Maxwell stratum|
{h. =0} Cc CA {h,=0}CCA

he = b3b3 — 4b;b3 — 4b3by + 18bybybsby — 27b3b;
hm = b3 + 8b1b] — 4bybsb,



Describe in terms of the set A the Newton polytope M 4 of
the Morse discriminant, i.e. of the polynomial h2 h..
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Statement of the problem

PROBLEM

Describe in terms of the set A the Newton polytope M4 of
the Morse discriminant, i.e. of the polynomial hfnhc.

EXAMPLE
For A= {1,2,3,4}, the polytope M, is a pentagon in R*.

(0,5,2,3)

(2,3,0,5)
(0,2,8,0)

(4,0,0,6) (1,0,9,0)
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P(y) = max7(x).

Let P C R” be a convex polytope. Its support function
P: (R")* — R is defined as follows:
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The support function (reminder)

DEFINITION
Let P C R"” be a convex polytope. Its support function

P: (R")* — R is defined as follows:

P(v) = maxy(x).

xeP

(0,0) (1,0)



The support function (reminder)

DEFINITION
Let P C R" be a convex polytope. Its support function

P: (R")* — R is defined as follows:

P(7) = maxy(x).

0-X+1-Y+0-Z
(0,1,0)

(0,0,0)

~

(1,0,0) 0
1-X40-Y+0-Z
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Tropical semiring (RU {—o0},®,®) :

O max(a, b), a # b;
[—o00,a], a=b.

a®b=a+b.
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Tropical polynomials (reminder)

Tropical semiring (R U {—o0}, @, ®) :
2 b max(a, b), a # b;
[-o0,a], a=b.
aOb=a+b.
A tropical Laurent polynomial F(X) with the support A:

F(X) =D ¢ © X = max(pX + c,).

pEA
pEA



Tropical polynomials (reminder)

Tropical semiring (R U {—o0}, @, ®) :

O max(a, b), a # b;
[-o0,a], a=b.

aGOb=a+b.
A tropical Laurent polynomial F(X) with the support A:

F(X) =D ¢ © X = max(pX + c,).

pEA
pEA

DEFINITION

A tropical root r of F(X) is the point where at least two
monomials of F(X) attain the maximal value ma}(pX + ¢p).
pe
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Let v € (RI4)* be a covector.
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Let v € (RI4)* be a covector.

Then v can be viewed as a function 7: A — R.
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Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then ~ can be viewed as a function y: A — R.
Y: A= R — @ (X) =P (a) © XD = meaZ((aX +(a)).

acA



Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then ~ can be viewed as a function y: A — R.
Y: A= R — @ (X) =P (a) © XD = meaZ((aX +(a)).
acA a
EXAMPLE
Take A= {-3,—-1,1,2,4} C Z. Then we have |A| = 5.




Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then ~ can be viewed as a function y: A — R.
Y: A= R — @ (X) =P (a) © XD = meaZ((aX +(a)).

acA

EXAMPLE
Take A= {-3,—-1,1,2,4} C Z. Then we have |A| = 5.

v=(3,5,2,5,1) € (R°)* +
©4(X) =max(=3X +3,-X +5, X+2, 2X +5, 4X +1).




Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then v can be viewed as a function v: A — R.
A= R — (X)) =P (a) © XD = meaZ((aX +v(a)).
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Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then v can be viewed as a function v: A — R.
A= R — (X)) =P (a) © XD = meaZ((aX +v(a)).
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Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then v can be viewed as a function v: A — R.
A= R — (X)) =P (a) © XD = meaZ((aX +v(a)).
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Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then v can be viewed as a function v: A — R.
A= R — (X)) =P (a) © XD = meaZ((aX +v(a)).
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Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then v can be viewed as a function v: A — R.
A= R — (X)) =P (a) © XD = meaZ((aX +v(a)).
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Covectors <+ tropical polynomials

Let v € (R)* be a covector.
Then v can be viewed as a function v: A — R.
A= R — (X)) =P (a) © XD = meaZ((aX +v(a)).

acA




Covectors <+ tropical polynomials
Let v € (R)* be a covector.

Then v can be viewed as a function v: A — R.
A= R — (X)) =P (a) © XD = meaZ((aX +v(a)).

acA
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Non-Morse tropical polynomials

[Tropical caustic] [Tropical Maxwell stratum]



Non-Morse tropical polynomials

[Tropical caustic] [Tropical Maxwell stratum]

DEFINITION

A tropical polynomial is non-Morse, if it belongs to either the
tropical caustic or the tropical Maxwell stratum.
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@ We want to describe the polytope M,;
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@ We want to describe the polytope M,;

@ same as to compute its support function
27 (R|A|)* - ]Ra
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Format of the answer

@ We want to describe the polytope Mx;

@ same as to compute its support function
pa: (RA) = R,

@ a generic covector v € (R)* on M attains its maximal
value at some vertex of M,



Format of the answer

@ We want to describe the polytope Mx;

@ same as to compute its support function
pa: (RA) = R,

@ a generic covector v € (R)* on M attains its maximal
value at some vertex of M,

@ in other words, belongs to some full-dimensional cone —
corresponding linearity domain of 4.



Format of the answer

@ We want to describe the polytope Mx;
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corresponding linearity domain of 4.

@ Which one? What are the coefficients of 4 there?
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@ We want to describe the polytope Mx;

@ same as to compute its support function
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Format of the answer

@ We want to describe the polytope Mx;
@ same as to compute its support function
pa: (RA) = R,
@ a generic covector v € (R)* on M attains its maximal
value at some vertex of M,
@ in other words, belongs to some full-dimensional cone —
corresponding linearity domain of 4.
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Format of the answer

@ We want to describe the polytope Mx;
@ same as to compute its support function
pa: (RA) = R,
@ a generic covector v € (R)* on M attains its maximal
value at some vertex of M,
@ in other words, belongs to some full-dimensional cone —
corresponding linearity domain of 4.
@ Which one? What are the coefficients of 4 there?
v € (RA)* <— a function y: A — R
Generic covector v: A — R| —

Morse Tropical Polynomial ¢, (X) = € v(a) ® X®?| —
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Format of the answer

@ We want to describe the polytope Mx;

@ same as to compute its support function
pa: (RA) = R,

@ a generic covector v € (R)* on M attains its maximal
value at some vertex of M,

@ in other words, belongs to some full-dimensional cone —
corresponding linearity domain of 4.

@ Which one? What are the coefficients of 4 there?
v € (RA)* <— a function y: A — R
Generic covector v: A — R| —

Morse Tropical Polynomial ¢, (X) = € v(a) ® X®?| —
acA

’Combinatorial data (W; Z: /\/Ij)‘ —
[Linearity domain of pa]—{Vertex of M|




Combinatorial data

©,(12)

©,(n)
kP'y("l)

A=1{-3,-1,1,2,4}
W ={-3-1,24}
Z=(1,0,2)
MO = (2,1,4)
M! = (-3,1,4)
M? = (1,-1,-3)




Main result

THEOREM (A.V.'21)

There is a surjection (given by a certain loooong and scary
formula) between the set of all possible combinatorial types of
Morse tropical polynomials with support set A and the vertices

of the polytope M 4.



Main result

THEOREM (A.V.'21) |
There is a surjection (given by a certain loooong and scary
formula) between the set of all possible combinatorial types of
Morse tropical polynomials with support set A and the vertices
of the polytope M 4.

v

This result allows to enumerate all the vertices of the sought
Newton polytope M, by all sorts of combinatorial types of
Morse tropical polynomials.



(07 5, 2, 3)

(2, 3, 0, 5)

(0) 2, 8’ O)
(4, 0’ Oa 6)

(1,0,9,0)
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Covectors <+ tropical polynomials

Let v € (R)* be a covector.
YA R — ¢ (X) = Pr(a) © X = meaz(aX +(a)).

acA




Covectors <+ tropical polynomials

It suffices to consider covectors with non-negative coordinates!



Covectors <+ polygons

v: A= Ryo«— N, CR?

N, = conv({(a,v(a)) | a € A} U{(a,0) [ a € A})




Non-Morse tropical Laurent polynomials revisited

DEFINITION
We say that a tropical Laurent polynomial F(X) belongs to
the tropical Maxwell stratum in the space of tropical
polynomials with the given support A, if there exists a pair
r, rp of tropical roots of F(X), such that F(r1) = F(r).

A




Non-Morse tropical Laurent polynomials revisited

DEFINITION

A tropical Laurent polynomial F(X) belongs to the tropical
caustic in the space of tropical polynomials with the given

support A, if for some tropical root r of F(X), there are at
least two pairs of monomials attaining the same values at r.




0¢ AC Z, a finite set.

o A affinely generates 7Z;

e Length(conv A) > 3;
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The support set A

0¢ ACZ, a finite set.

e A affinely generates Z;

e Length(conv A) > 3;

@ A generic polynomial f € C# which belongs to the Morse
discriminant has either exactly one pair of coinciding
critical values or exactly one degenerate critical point of
multiplicity 2.



The support set A

0¢ ACZ, a finite set.

e A affinely generates Z;

e Length(conv A) > 3;

@ A generic polynomial f € C# which belongs to the Morse
discriminant has either exactly one pair of coinciding
critical values or exactly one degenerate critical point of
multiplicity 2.

True for a wide range of sets A C Z. For instance:

@ sets A such that A = conv(A) NZ;

@ sets A containing 4 consecutive integers.



The support set A

0¢ ACZ, a finite set.

e A affinely generates Z;

e Length(conv A) > 3;

@ A generic polynomial f € C# which belongs to the Morse
discriminant has either exactly one pair of coinciding
critical values or exactly one degenerate critical point of
multiplicity 2.

True for a wide range of sets A C Z. For instance:

@ sets A such that A = conv(A) NZ;

@ sets A containing 4 consecutive integers.

CONJECTURE

Any set A satisfying the first two properties, also satisfies the
third one.

v

= =T — = =



© We start with a generic covector v € (RIA)*.
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© We start with a generic covector v € (RIA)*.
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© We start with a generic covector v € (RIA)*.
Or, actually, v € (Z';J, *

@ Consider a family of polynomials

() = 2 pealap + vpt " P))xP; gy, v, € C.
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The key ideas

© We start with a generic covector v € (R/A))*.
Or, actually, v € (Z';\O‘)*...

@ Consider a family of polynomials
f (x) = ZpeA(qP + thV(P))Xp; p, vp € C.

© The Morse discriminant is the hypersurface
{.FA = 0} c CA.



The key ideas

@ We start with a generic covector v € (R)*.
Or, actually, v € (Z';\O‘)*...
@ Consider a family of polynomials
f (x) = ZpeA(qP + thV(P))Xp; gp, vp € C.
© The Morse discriminant is the hypersurface

{Fa =0} C CA If we plug the coefficients of f; into Fa,
we get a polynomial in t of degree pa(7).



The key ideas

@ We start with a generic covector v € (R)*.
Or, actually, v € (Z';\O‘)*...
@ Consider a family of polynomials
f (x) = ZpGA(qP + Vpﬂ(p))xp; dp, vp € C.
© The Morse discriminant is the hypersurface
{Fa =0} C CA If we plug the coefficients of f; into Fa,
we get a polynomial in t of degree pa(7).
Thus, we can reformulate the initial problem as follows:

PROBLEM

For how many complex values of t is the polynomial £,”(x)
non-Morse?



The key ideas
=55y - WD 13 :D=(e)
firiendy

T(Q0) 2 (E\0)
(gt (4t
Jj £,00- 9 =0 has

o“e

u\’r ipli odg

yeus Wg /

£ (ﬁ\ Yo =0 \\O‘S ]
L\e, root of mulkiplicity 3




One more statement of the problem

M C RIAI — the Newton polytope of the Morse discriminant,
pa: (RAY* — R - its support function.

PROPOSITION |

For a generic covector vy with non-negative integer coefficients,
we have

pa(y)=2- 241 + Ao .
—— -

Maxwell stratum caustic

Thus, we reduced the initial problem to finding the number of
cusps and nodes of the curve D.



2 polytopes

v: A— Z-o — a covector;

ap ap aaz as as

Ny = N(#(x))



- ProposiTION
|Aa| = Area(N,) — v(a0) — v(31a-1)-

Follows from the description of the Newton polytope of the
classical discriminant by Gelfand, Kapranov, Zelevinsky.

0
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3 equations

PROPOSITION

|Ax| = Area(N,) — v(a0) — V(4-1)-

Proof. |

Follows from the description of the Newton polytope of the
classical discriminant by Gelfand, Kapranov, Zelevinsky. O

PROPOSITION |

X(Ay) + 2|24, | + 2| Ay| = — Area(N,)

Proof. |

Bernstein—Kouchnirenko—Khovanskii theorem + additivity of
Euler characteristic. ]

= = = =



3 equations

The first two equations do not suffice. We need the third one!

3 -’
> \ X(D) = x(Ar) + [2A1] + [ Ao



3 equations

D A\ (AL 4 [2A1| + | Az| — [2.A4;] —
D¢ el 1240414l (-1) -

N (/ 7 ) — 1A,
(3> \/ \\ >Iéglth)e BP|<K|theorem,

x(Y) = — Area(N(D))

Thus, we have
X(A1) — |Az| = — Area(N(D))
N~

known



3 equations

>

Thus We have
— Az = — Area(N

known



3 equations

\V/
PROPOSITION
X(A1) — |A2| =

— Area(N(D)) — > x((C\ 0)*> N Milnor fiber of s)

seFPS




Singularities at infinity: example

C = {f(x,y,t) =g(x,y,t) =0} C (C\ 0)% and D = 7(C)
fN,g generic with support
A = {(07 0’ 0)7 (47 07 0)7 (27 1’ 0)7 (17 27 0)7 (07 47 0)7 (0? 07 1)}

(4,0,0)




Singularities at infinity: example

(4,0,0)




Singularities at infinity: example

(4,0,0)

(0,0,1)



Singularities at infinity: example

(4,0,0)




Singularities at infinity: example

(4,0,0)




Singularities at infinity: example

(4,0,0)

i=(4,2,1,..) 4-4(3+2)=-16

X(Milnor fiber of s) =i; — Zil(in -1)
=1

n



How it works in our case:

v: A — Zso — a covector; m: (x,y,t) — (y,t).

A, =N(f(x) —y)
A, = supp(£(x) — y)



How it works in our case:

(Take A= {-3,-1,1,2,4} and v = (3,5,2,5,1))

W = {wo, w1, wp, w3} =
={-3,-1,2,4};

Wo W W w3



How it works in our case:

(Take A= {-3,-1,1,2,4} and v = (3,5,2,5,1))

0.7 W:{WO>W17W27W3}:
4

={-3,-1,2,4};

Z=(1,0,2);




How it works in our case:

(Take A= {-3,-1,1,2,4} and v = (3,5,2,5,1))

W — {W07 Wy, Wa, W3} -

={-3,-1,2,4};
Z=(1,0,2);
M° = (2,1,4);
M' = (3,1, 4);

M? = (1,—1,-3).




3 equations

The sought number |2.4;| can be extracted from the following
3 equations:

| As| = Area(N,) — y(a0) — 7(3|A\_1)

X(Al) + 2|2A1| + 2|A2| = — Area(Nv)

X(A1) — [Az| =
— Area(N(D)) = > x((C\ 0)*> N Milnor fiber of s)
~—— S ~

A seFPS

tricky, but we know how to compute it



Example revisited: A={1,2,3,4}

(4,0,0,06)




Thank you!!!

arXiv:2104.05123 [math.AG]




