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Plan of Talk

1. Jacobi algebras, and the Main Problem.

2. Geometric Interlude: flops and div-to-curve contractions.

3. Results in ‘Type A’, and ‘Type D’.

4. Geometric Consequences.
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Algebraic Setup

Consider the free algebra C〈x , y〉. Elements are finite sums like

f = λ1 + λ2x + λ3y + λ4x
2 + λ5xy + λ6yx + λ7y

2.

...and the completed version C〈〈x , y〉〉. Basically the same, except
now allow infinite sums

f = λ1 + λ2x + λ3y + λ4x
2 + λ5xy + λ6yx + λ7y

2 + . . .

Both these rings are not noetherian, and have exponential growth
(GKdim ∞)
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Differentiation
Given any f ∈ C〈〈x , y〉〉, we can differentiate it with respect to
both x and y , to give elements δx f and δy f .

This is just a simple
rule, which on monomials is defined as follows.

Consider e.g. x3y . First, cyclically permute it

xxxy + xxyx + xyxx + yxxx

then score off: δx(x3y) = xxy + xyx + yxx , and δy (x3y) = xxx .

Definition
Given any f ∈ C〈〈x , y〉〉, the Jacobi algebra is

Jac(f ) =
C〈〈x , y〉〉

((δx f , δy f ))
.

e.g. Jac(x4 + xy2) =
C〈〈x , y〉〉

((4x3 + y2, xy + yx))
.
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Main Algebraic Question

...classify all possible Jacobi algebras, up to isomorphism.

Problem
For every n ≥ 0, produce a set of potentials Sn from which we can
realise every Jacobi algebra of Gelfand–Kirillov (GK) dimension n,
up to isomorphism.

We insist that the elements of Sn should be a normal form,
meaning that if f , g ∈ Sn with f 6= g , then the resulting Jacobi
algebras are not isomorphic.

Notation: write f ∼= g to mean Jac(f ) ∼= Jac(g).
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The Proposal

...for small n we propose that such a classification is desirable, and:

1. ...a classification is in fact possible! (c.f. Arnold)

2. ...there are no moduli. Just very few countable families.

3. ...the classification is ADE.

4. ...this algebraic classification is (and implies) the classification
of flops, and of crepant divisorial contractions to curves.
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Back up: where to find Jacobi algebras?

Contraction algebras arise in the birational geometry.

Today: focus on crepant contractions of two types:

X

SpecR

À

or

Á

Assumptions: X is smooth, and only one curve above the origin.

To this data we associate the contraction algebra Acon as follows...
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Contraction Algebras

The contraction algebra Acon is defined using (noncommutative)
deformation theory of the reduced fibre above the origin.

Details are unimportant, the only facts we need today are:

1. Since only one curve, Acon is a factor of C〈〈x , y〉〉.
2. Since X is smooth, there exists f such that Acon

∼= Jac(f ).

Theorem (Donovan–W)

Situation À (flopping) ⇐⇒ GKdimAcon = 0.

Situation Á (div→curve) ⇐⇒ GKdimAcon = 1.

...motivates studying f such that GKdim Jac(f ) ≤ 1.
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Two Conjectures

Classification Conjecture (Donovan–W)

Contraction algebras classify.

If X1 → SpecR1 and X2 → SpecR2

be 3-fold irreducible crepant contractions, with one-dimensional
fibres, where Xi are smooth, and Ri are complete local. Denote
their corresponding contraction algebras by Acon and Bcon. Then

R1
∼= R2 ⇐⇒ Acon

∼= Bcon.

Realisation Conjecture (Brown–W)

Contraction algebras=Jacobi algebras. If f ∈ C〈〈x , y〉〉 satisfies
GKdim Jac(f ) ≤ 1, then Jac(f ) ∼= Acon for either a flopping
contraction (GK zero), or div→curve contraction (GK 1).
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...so, blind to any geometry, off we go to classify all Jac(f )!

We will classify first, using only algebra, then at the end relate this
to geometry.

Rules
Since scalars differentiate to zero, and linear terms differentiate to
units, to classify f , we can assume f contains only quadratic terms
and higher. Write this as f ∈ C〈〈x , y〉〉≥2.
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‘Type A’

...the case f contains a quadratic term, e.g. f = λxy + µyx + . . .

Warm-Up Result

Suppose f ∈ C〈〈x , y〉〉≥2 with f2 6= 0. Then either

f ∼=

{
x2

x2 + yn for some n ≥ 2.

In all cases, GKdim Jac(f ) ≤ 1, Jac(f ) is commutative, as either

Jac(f ) ∼= C[[y ]] or C[[y ]]/yn−1.

Notes:

I f2 6= 0 in fact equivalent to Jac(f ) being commutative.

I Generic behaviour is Jac(f ) ∼= C.
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Compare Reid’s Pagoda

For Type A contractions, either:

uv = s2

or

uv = s2 + t2n

Acon C[[y ]] C[[y ]]/yn
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To continue classification, can that assume f2 = 0, and so
f ∈ C〈〈x , y〉〉≥3.

For GKdim Jac(f ) ≤ 1, necessarily f3 6= 0. Almost there!?

So assume f2 = 0 and f3 6= 0.
By commuting variables, view f3 as a commutative polynomial.
...it is cubic, so has either 1, 2 or 3 distinct factors.

Having 2 or 3 factors → ‘Type D’.
Having only 1 factor → the exceptional, or ‘Type E ’ case.
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‘Type D’

Theorem (Brown–W)

Consider f ∈ C〈〈x , y〉〉≥3 with f3 6= 0 such that f ab3 has two or
three distinct factors. Then either

f ∼=



xy2

.
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All are geometric!

f ∼=



xy2 [Donovan–W] div→curve
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...in all cases, in the corresponding geometric contraction, the
elephant has type D singularities.

Corollary
The Realisation Conjecture is true, except possibly the only
remaining case f = x3 + higher.
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Is Type D now finished?

Theorem* (Brown–W)

Suppose that f : X→ SpecR is any smooth type D flop, or
div→curve contraction, one curve above the origin. Then

Acon
∼= Jac(f )

for some f on the previous slide.

...all possible contraction algebras in Type D are now classified!

...the conjectures suggest, but don’t yet prove, that these are all
Type D flops, and div→curve, extending Reid from 80s. Even if
you don’t believe conjectures, there are still geometric corollaries!
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GV invariants

To every flop is an associated tuple of numbers (n1, . . . , n6) called
the Gopakumar–Vafa (GV) invariants.

..basically deform your flopping curve C into a disjoint union of
(−1,−1) curves, and count those. It is a bit more refined than
this: nj equals the number of such curves with curve class j [C ].

I Type A (Pagoda flops) have GV invariants (n, 0, 0, 0, 0, 0).
The data of n is enough to distinguish elements in this family.
All possible n arise.

I Type D flops have GV invariants (a, b, 0, 0, 0, 0) for some
a, b ∈ N. Different flops can have the same GV invariants.

Question. What possible (a, b) can arise?
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Gaps in GV

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
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The obstruction to e.g. (5, 2) existing is noncommutative.
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Towards Type E

The final case f = x3 + higher is work in progress.

We have already found the first infinite family of type E flops, plus
some div→curve contractions.

...looks like a full analytic classification of single-curve flops, and at
the same time div→curve contractions, may indeed be possible.
Here is the beginning:

A x2 + y t t ∈ N ∪ {∞}
D xy2 + εx2n + εx2m−1 n,m ∈ N≥2 ∪ {∞}
E x3+?
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