| Residual categories of quadric surface bundles<br>arxiV 2203-01031                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| Def, Tyriangulated cat                                                                                                                         |
| $T = \langle A_1, \dots, A_n \rangle$ is a <u>semiorthogonal decomposition</u> (by full triang subcat $A_i$ ) if                               |
| (1) Hom <sub>T</sub> (Aj, Ai) = 0 ∀j>i                                                                                                         |
| (2) $\forall t \in ObjT \ni filtroution 0 = t_n \rightarrow t_{n-1} \rightarrow \cdots \rightarrow t_n = t$                                    |
| S.t. cone $(t_i \rightarrow t_{i-1}) \in A_i$ .                                                                                                |
| Convention: $X$ scheme $D^b(X) := D^b(CohX)$<br>$R$ alg $D^b(R) := D^b(mod-R)$<br>finitely gen right mod                                       |
| For a flat family of Fano varieties p: X-)S  (can be singular)                                                                                 |
| with $W_{x/s} = O_{x/s}(n)$<br>$\exists sod D^b(x) = \langle R_x, p^* D^b(s) \otimes O_{x/s}(l), \dots, p^* D^b(s) \otimes O_{x/s}(n) \rangle$ |
| where                                                                                                                                          |
| $R_{X} = \{ t \in D^{b}(X) \mid Hom_{D^{b}(X)} p^{*}D^{b}(S) \otimes O_{H_{S}}(i), t \} = 0$                                                   |
| Def: Rx is called the <u>residual cat</u> (or Knanetson                                                                                        |
| Component) of X.                                                                                                                               |
|                                                                                                                                                |

# I. Quadric hypersurfaces R field k= k chark=o a = an quadric of dim n over k. O (Kapranov) a smooth $Ra \cong \{ \langle T_1, T_2 \rangle \cong D^b(k \times k) \quad n \text{ even}$ $\{ \langle T \rangle \cong D^b(k) \quad n \text{ odd}$ Where Ti, Tz, T are spinor bundles on Q. eg. n=2 Q== IP'xIP', {T1, T2 }= {O(1,0), O(0,1)} coromk 1 = Q is a cone over smooth quadric (i.e. vertex is nodal) $R_{\mathcal{U}} \cong \begin{cases} \langle s_{pinor} sheaf \rangle \geq D^{b}(\frac{k_{\mathcal{L}}}{\varepsilon^{2}}) & n \text{ even} \\ D^{b}_{\mathcal{U}_{\mathcal{U}}}(\frac{k_{\mathcal{L}}}{\varepsilon^{2}}) \geq D^{b}(R) & n \text{ odd} \end{cases}$ where R is a quaternion alg. (3 [Kuz][ABB] In general, Ra = Db(Cliff)

Where Cliffo is the even Clifford alg of Q.

| P <sup>2</sup>                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Xie) $n=2$ coromk & i.e $G \cong \mathbb{P}^2 \cup \mathbb{P}^2$                                                                                                                                          |
| $R_{\alpha} \cong D^{b}(Y)$ where                                                                                                                                                                          |
|                                                                                                                                                                                                            |
| $(Y, O_Y)$ is a dg scheme                                                                                                                                                                                  |
| · Dy concentrated in deg -1, o                                                                                                                                                                             |
|                                                                                                                                                                                                            |
| · underlying scheme $\pi_0 Y \cong \mathbb{P}^2$ .                                                                                                                                                         |
|                                                                                                                                                                                                            |
| Il Anadric surface bundles                                                                                                                                                                                 |
| 1 Cot up on a mais months                                                                                                                                                                                  |
| 1. Set up and main results                                                                                                                                                                                 |
| k field chark = 2                                                                                                                                                                                          |
| S = integral noetherian scheme over k                                                                                                                                                                      |
| Sine The The The The The The The The The Th                                                                                                                                                                |
| E vb, I lb on S                                                                                                                                                                                            |
| Def: 9: 2->1 is a (line bundle valued) quadratic form                                                                                                                                                      |
| on S if q is Os-homo of deg 2 s.t.                                                                                                                                                                         |
|                                                                                                                                                                                                            |
| bq: $\mathcal{E} \times \mathcal{E} \to \mathcal{L}$ defined by $Sym^2 \mathcal{E} \to \mathcal{L}$                                                                                                        |
| bq(v,w) = q(v+w) - q(v) - q(w) is symmetric bilinear.                                                                                                                                                      |
|                                                                                                                                                                                                            |
| $q: \mathcal{E} \to \mathcal{L}$ corr to dual $q \in \Gamma(P_{S}(\mathcal{E}), \mathcal{O}_{S}(\mathcal{E})) \cong \Gamma(S, Sym^{2}(\mathcal{E}') \otimes \mathcal{L})$ $\pi: (P_{S}(\mathcal{E}) \to S$ |
| 16 [(D(G) 0 1) m = * [) ~ [(C G. 2 (6 V) m [)                                                                                                                                                              |
| 1 - ( (15(C), () (α) ω ( λ) = 1 ( ), sym (C) ω L)                                                                                                                                                          |
| π: (Ps(E) -) S                                                                                                                                                                                             |
|                                                                                                                                                                                                            |

| Def. Assume $q \neq 0$ . Let $Q = \{q=0\} \subset P_s(E)$ .       |
|-------------------------------------------------------------------|
| $f: \mathcal{Q} \to S$ is called a quadric bundle.                |
| Def. 9: E-> L is called primitive if V s & S                      |
| $2s := 2 \otimes k(s) \neq 0$                                     |
| Then p: Q->5 is flat (=) q: E-) I is primitive.                   |
| Denote by Se = { seS   corank 9 > 23 LEW                          |
| $S = S_0 \supset S_1 \supset S_2 \cdots$ Tooks of singular fibers |
| chow=0 any char                                                   |
| Theorem (Kuz, ABB) even Clifford alg of p.                        |
| p: Q→S flat => Rq ≃ D'(S, Cliffo)                                 |
| bounded derived cat of coh sheaves on S with right                |
| Cliffo-mod structures,                                            |
| In general, Ra is noncommutative                                  |
| Goal; When is Ra geometric?                                       |
| That is, $R_{a} \cong D^{b}(z,A)$ where                           |
| · Z scheme over S                                                 |
| · A Azumaya alg on z                                              |
|                                                                   |

### Known (Kuz, ABB)

If p: Q-> 5 has simple degeneration ( each fiber has

corank <1) and relative dim is even, then  $R_{A} \cong D^{b}(\hat{S}, A)$  where

3-> S is the double cover ramified along S1.

## My expectation:

When relative dim of p. 12-> S is even and S₂ ⊊ S, S3= P, RQ is geometric.

## Now we focus on f: Q -> 5 flat quadric surf bundle

## Main Results.

p: A-> S flat quadric surf bundle

Ra is geometric when

1) S2 & S and p has a smooth section (consists of smooth points of fibers). In this case, twist is trivial.

@ k=k, chark=0, a smooth, s smooth surf

#### Remarks;

- (1) In both cases  $S_3 = \emptyset$ , i.e., fibers have corank  $\leq 2$
- (a) For any flat quadric surf bundle p: Q -> S with  $S_3 = \phi$ , étale locally p has a smooth section.
- => It's possible to generalise (1) to any

P: Q->5 with Sz & S and Sz = \$

(3) Proof of (2) is geometric but can't be generalised.

Main Ideas: make use of

- · hyperbolic reduction  $q = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 7 & 0 \end{pmatrix} \begin{pmatrix} 0 & I_m \\ I_m & 0 \end{pmatrix}$
- · relative Hilbert Scheme of lines

Let P: Q-) S be a flat quadric surface bundle.

Theorem 1 (-)

S2 \ S , P. Q→S has a smooth section

=> Ra≥ D'(Q) where Q is the hyperbolic reduction wrt the smooth Section.

Theorem 2 (-)

 $k = \overline{R}$ , char k = 0,  $\alpha$  smooth,  $\beta$  smooth surf

 $\Rightarrow$  Ra  $\cong$  D<sup>b</sup>(s<sup>+</sup>, A<sup>+</sup>) where

S+ = Bl 3 = resolution of the double cover 3 over Sramified along S1 (S is nodal along S2CS) and A+ is Azumaya on St Moreover, [At] +Br(St) is trivial (=) p: B->S has a rational section. Example: Q={xy+t>w=0} C p3 x 141 my (0) 0 t 0  $\rho: Q \to A^1$   $Q_0:=$  fiber over  $0 \in A^1$  has corank 2. Smooth Section = { y= == w=0} (or {x= == w=0}) Hyperbolic reduction Q = { t = w=0} C 1P1 × 1A1 Theorem 1 => Residual category RQ = Db(Q) non-flat Base change  $\Rightarrow$  Ra  $\Rightarrow$  D'( $\bar{a} \times \{0\}$ )  $Y := \bar{a} \times \{0\}$  $(\{0\}, \mathcal{O}_{\{0\}}) \cong (A^1 \mathcal{O}_{A^1} \xrightarrow{t} \mathcal{O}_{A^1})$  $Y \cong \overline{Q} \times (A', O_{A'} \xrightarrow{t} O_{A'}) \cong (\overline{Q}, O_{\overline{Q}} \xrightarrow{t} O_{\overline{Q}})$  $\mathcal{H}(O_{\bar{n}} \xrightarrow{t} O_{\bar{q}}) \cong O_{\mathbb{P}^1} \quad \mathcal{H}^{-1}(O_{\bar{q}} \xrightarrow{t} O_{\bar{q}}) \neq 0$ 

| 2. Ideas for the proofs of Theorem 1                                                              |
|---------------------------------------------------------------------------------------------------|
| Two proofs; one easy, one harder                                                                  |
| harder proof describes the embedding functor                                                      |
| Ra > D(12) explicitly.                                                                            |
| 9: E→ L p: Q→ S                                                                                   |
| Def: W⊆ E subbundle                                                                               |
| · W is isotropic if e(w=o (<=>) Ps(w) ca)                                                         |
| · W is regular isotropic if more over Y s 6 5                                                     |
| PSIW) () Qs (:= (2 x k(s)) is contained in the smooth                                             |
| locus of Qs.                                                                                      |
| (smooth section (-) regular isotropic (b)                                                         |
| W regular isotropic                                                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                              |
| $\ell _{W}=0 \Rightarrow W C W^{\perp}$ W regular                                                 |
| $b_{\ell}(W, W^{\perp}) = 0 \Rightarrow 2 _{W^{\perp}} : W^{\perp} \rightarrow L \text{ induces}$ |
| a new quadrostic form $\overline{q}: W/W \rightarrow L$                                           |
|                                                                                                   |

| S = Spec k                                                                     | Def: Denote $\overline{\varepsilon} = W / W$                                                                                                             |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Rightarrow bq$                                                               | $\overline{q}: \overline{\epsilon} \to \Gamma \left( \overline{a} = \{\overline{q} = 0\} \subseteq P_{s}(\overline{\epsilon}) \right)$ is the hyperbolic |
| $=\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 0 & b\bar{q} \end{pmatrix}$ | reduction of $q: \mathcal{E} \to \mathcal{L} (\mathcal{U} = \{q=0\} \subseteq \mathbb{P}_{\mathcal{S}}(\mathcal{E}))$                                    |
|                                                                                | wrt regular isotropic W.                                                                                                                                 |
|                                                                                | $f/Q'^{\cong}BL_{P_S(w)}Q$ $P_S(w) C Q \cdots \cdots P_S(2/w) \supset \overline{Q} = \{\overline{q} = 0\}$                                               |
|                                                                                | where g has fiber $P^r$ over $Q$ $(r=rank W)$                                                                                                            |
|                                                                                | IPr-1 over its complement.                                                                                                                               |
|                                                                                | If $rom R W = 1$ , $Q' \cong B(_{\overline{Q}} P_{S}(E/W))$ i.e.,                                                                                        |
|                                                                                | $Q' \cong BL_{\mathbb{R}_{S}(W)}Q \cong BL_{\overline{Q}} \mathbb{P}(\frac{\varepsilon}{W})$ $f \neq g$ $\mathbb{P}_{S}(W) C Q \cdots$                   |
|                                                                                |                                                                                                                                                          |
|                                                                                |                                                                                                                                                          |
|                                                                                |                                                                                                                                                          |
|                                                                                |                                                                                                                                                          |

Proofs of Theorem 1:

P: Q -> S flat quadric surface bundle

 $S_2 \nsubseteq S$  ,  $\rho$  has a smooth section  $P_S(w)$ 

Proof 1 (easy):

[Jiang 21] Blow-up formula

In the setting of Theorem 1 (S= \$ S + Smooth Section)

=)  $D^b(Q') = \langle D^b(Q), D^b(S) \otimes Q \rangle \in \mathcal{E} \times \mathcal{C}$  locus of f.

 $= \langle D^b(\bar{a}), D^b(P_S(\mathcal{V}_{\omega})) \rangle$ 

Mutations => RQ = Db(Q)

Note p. Q -> S is not flat!

 $\cdot \bar{p}^{-1}(S \setminus S_2) \rightarrow S \setminus S_2$  double over ramifield along  $S_1 \setminus S_2$ 

·  $\bar{\varrho} |_{S_2} = 0 \Rightarrow \bar{\varrho}^{-1}(S_2) = P_{S_2}(\bar{\varrho}|_{S_2})$  is a P-bundle.

| III. Examples (Applications of Main Theorems)                                         |
|---------------------------------------------------------------------------------------|
| Example 1 (Xie)                                                                       |
| X quintic del Petto 3-folds (terminal Gorenstein Fano 3-folds                         |
| of index 2 and degree 5)                                                              |
| × nodal and number of nodes ≤3                                                        |
| Let a e X be a node.                                                                  |
| $X \subset \mathbb{P}^6$ embedded projective tangent space $T_a X \cong \mathbb{P}^4$ |
| Consider linear projection $X> P^1$ from $TaX$                                        |
| $f: Y \cong BL_{TaX \cap X} \times \longrightarrow X$ resolution at a                 |
| exceptional locus E = P1                                                              |
| $g: Y \rightarrow \mathbb{P}^1$ flat quadric surface bundle with a smooth section $E$ |
|                                                                                       |
| $\times$ has 1 or 2 nodes =) $Y \rightarrow P^1$ has fibers of corank $\leq 1$        |
| $X$ has 3 nodes $\Rightarrow$ $Y \rightarrow P^1$ has a fiber of wrank 2              |
| Theorem 1 =) residual cat Ry ~ P (hyperbolic reduction)                               |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |

| Example 2 (Moschetti + Kuznetsov)                                            |
|------------------------------------------------------------------------------|
|                                                                              |
| Smooth $X \subset \mathbb{R}^5$ subject 4-fold containing a plane $I = IP^2$ |
|                                                                              |
| $\neq Y = Bl = X$                                                            |
| 2 \ 9                                                                        |
| f Y= Bl Σ X<br>Σ C X> P <sup>2</sup>                                         |
|                                                                              |
| projection from I                                                            |
| g is a flat quadric surf bundle with possibly a finite                       |
| 1 0 1 0 0 1 0                                                                |
| number of coronk a fibers.                                                   |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                      |
| $R_{x} \simeq R_{Y} \simeq D^{b}(\text{smooth K3 surf}, A)$<br>Theorema      |
| Theorema                                                                     |
|                                                                              |
|                                                                              |
| Example 3                                                                    |
| ,                                                                            |
| $X = Q_1 \cap Q_2 \cap Q_3$ smooth $c. i.$                                   |
|                                                                              |
| where $Q_i \subseteq \mathbb{P}^{2m+3}$ quadrics (=) dim $X = 2m$ )          |
|                                                                              |
| net of quadrics =>                                                           |
| $P: Q \rightarrow P^2$ flot quadric bundle of relative dim 2m+2              |
|                                                                              |
| Homological Projective Duality                                               |
|                                                                              |
| =) Residual categories RX & Ra                                               |
| x = 1 60                                                                     |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |
|                                                                              |

| Prop: Assume m ≤ 5.                                                           |
|-------------------------------------------------------------------------------|
| $R_{\times} \simeq D^{b}(S^{2m}, A^{2m})$                                     |
| where $S^{2m} \rightarrow \mathbb{P}^2$ is the resolution of the double cover |
| over P2 ramified along a nodal curve of deg 2m+4.                             |
| Moveover, if m>3, then X is rational                                          |
| if m=2 and 0=[A4] & Br(s4), then X is rational.                               |
| Idea:                                                                         |
| X=Q1 n Q2 net of quadrics =)                                                  |
| $P: Q \rightarrow P^2$ flot quadric bundle of relative dim 2m+2               |
| For $m \leq 5$ , $\exists \sum_{m} = \mathbb{I}^{m-1} \subset X$              |
| =) Im×iP² ( Q corr to regular isotropic subbundle                             |
| hyperbolic reduction                                                          |
| => P: R-) P2 flat quadric surf bundle                                         |
| with a smooth                                                                 |
|                                                                               |
|                                                                               |
|                                                                               |
|                                                                               |