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The Cremona group of rank n over a field K is the group
Crn(K) = Bir(Pn

K) of birational automorphisms of the projec-
tive n-space over K.
In algebraic language, Bir(Pn

K)' AutKK(x1, . . . ,xn).

The most famous example: the Cremona involution of P2 :

σ : P2 99K P2
[x : y : z ] 799K [yz : xz : xy ].

•
[0 : 0 : 1]

•
[0 : 1 : 0]

•
[1 : 0 : 0]

P2

σ

•
[0 : 0 : 1]

•
[0 : 1 : 0]

•
[1 : 0 : 0]

P2

Note that Ind(σ) = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}.



Examples of birational maps of P2
C

• Aut(P2C)' PGL3(C)⊂ is a subgroup of Cr2(C).

• The Cremona involution σ0 : [x : y : z ] 7→ [yz : xz : xy ].
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C

• Aut(P2C)' PGL3(C)⊂ is a subgroup of Cr2(C).

• The Cremona involution σ0 : [x : y : z ] 7→ [yz : xz : xy ].

In fact, there is a remarkable

Theorem (Noether-Castelnuovo, 1871) One has

Cr2(C) = 〈PGL3(C),σ : [x : y : z ] 99K [yz : xz : xy ]〉

Corollary: Cr2(C) is generated by involutions.
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Let us vary the base field K. Say, K= R.

Is Cr2(R) generated by Aut(P2R) and σ0?

Observation: If ϕ ∈ 〈PGL3(R),σ0〉 then Ind(ϕ)⊂ P2R(R).

Now look at the birational map

σ1 : [x : y : z ] 7→ [y2 + z2 : xy : xz ].

Then Ind(ψ) is not real, as ψ is not defined e.g. in [0 : 1 :±i ].
Therefore, Cr2(R) cannot be generated only by PGL3(R) and σ0.



Examples of birational maps of P2

σ0 : [x : y : z ] 7→ [yz : xz : xy ], σ1 : [x : y : z ] 7→ [y2 + z2 : xy : xz ].

• Let p1, p1, p2, p2, p3, p3 be three pairs of imaginary points of
P2R, not lying on the same conic. Denote by f : X → P2R the
blow-up of the six points. Note that X is isomorphic to a
smooth cubic of P3R.

The set of strict transforms of the conics passing through five
of the six points corresponds to three pairs of imaginary lines,
and the six curves are disjoint. The contraction of the six
curves gives a birational morphism g : X → P2R. The map
g ◦ f −1 is called a standard quintic transformation of P2R.



Examples of birational maps of P2

σ0 : [x : y : z ] 7→ [yz : xz : xy ], σ1 : [x : y : z ] 7→ [y2 + z2 : xy : xz ].

• Let p1, p1, p2, p2, p3, p3 be three pairs of imaginary points of
P2R, not lying on the same conic. Denote by f : X → P2R the
blow-up of the six points. Note that X is isomorphic to a
smooth cubic of P3R.

The set of strict transforms of the conics passing through five
of the six points corresponds to three pairs of imaginary lines,
and the six curves are disjoint. The contraction of the six
curves gives a birational morphism g : X → P2R. The map
g ◦ f −1 is called a standard quintic transformation of P2R.

Theorem (J. Blanc – F. Mangolte, 2012) The group Cr2(R)
is generated by PGL3(R), σ0, σ1 and standard quintic invo-
lutions.



With a bit of more work, one can deduce from this theorem the
following

Corollary (S. Zimmermann): Cr2(R) is generated by involutions.

Theorem (S. Lamy – J. Schneider, 2021) The Cremona group
Cr2(K) is generated by involutions for every perfect field K.



More examples

• Let p1, . . . ,p7 ∈ P2C be seven points in general position, and L
be the linear system of cubics passing through pi . Then
dimL = 2.

Let p ∈ P2C be a general point and Lp = {L ∈L : p ∈ L} be a
pencil of cubics passing through p. Recall that it has 9 base
points. Define a map

p 7→ γ(p) := 9th base point.

One can show that this is a birational involution of P2C. It is
called the Geiser involution.



More examples

• Similarly, let p1, . . . ,p8 ∈ P2C be eight points in general
position, and C be the pencil of cubics passing through pi .
Let p9 be the 9th base point of this pencil.

Let p ∈ P2C be a general point. There is a unique cubic
Cp ∈ C passing through p. Define a map

p 7→ β (p) :=−p,

where − is taken with respect to the group law on Cp with
p9 = 0. One can show that this is a birational involution of
P2C. It is called the Bertini involution.



Finally, we are able to state

Theorem (L. Bayle – A. Beauville, 2000) Every involution in
Cr2(C) is conjugate to one of the following:
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Finally, we are able to state

Theorem (L. Bayle – A. Beauville, 2000) Every involution in
Cr2(C) is conjugate to one of the following:
• Linear involution of P2C.
• Geiser involution.
• Bertini involution.
• de Jonquières involution: locally it is given by

(x ,y) 7→
(

x , P(x)
y

)
,

where P(x) is a polynomial of degree 2g +1 with no
multiple roots.



Remark: Geiser, Bertini and de Jonquières involutions have moduli
(these are 3 families of involutions in fact). We will see this later.

So, there are two things to explain:

• First, why every involution is conjugate in Cr2(C) to one
of these four?

• Second, why these four types are actually different (i.e.
pairwise non-conjugate)?

Let me start with the first question.



G-surfaces



Let me briefly recall a general strategy of classification of finite
subgroups in Cr2(K). It is based on the following observations:

• For any finite subgroup G ⊂ Cr2(K) there exists a K-rational
smooth projective surface X , an injective homomorphism
ι : G → AutK(X ) and a birational G-equivariant K-map
ψ : X 99K P2K, such that

G = ψ ◦ ι(G)◦ψ
−1

This process of passing from a birational action of G on P2K to
a regular action on X is usually called the regularization of the
G-action. On the other hand, for a K-rational G-surface X a
birational map ψ : X 99K P2K yields an injective homomorphism

iψ : G → Cr2(K), g 7→ ψ ◦g ◦ψ
−1.



Moreover, two subgroups of Cr2(K) are conjugate if and only if the
corresponding G-surfaces are G-birationally equivalent.

So, there is a natural bijection

Conjugacy classes
of finite subgroups
G ⊂ Cr2(K)

←→
birational isomorphism
classes of smooth K-
rational G-surfaces (X ,G).



Moreover, two subgroups of Cr2(K) are conjugate if and only if the
corresponding G-surfaces are G-birationally equivalent.

So, there is a natural bijection

Conjugacy classes
of finite subgroups
G ⊂ Cr2(K)

←→
birational isomorphism
classes of smooth K-
rational minimal (X ,G).

Of course, using G-MMP, we can choose a minimal representative
in each birational class.



Good news: geometrically rational minimal G-surfaces are
completely classified!

Theorem (V. Iskovskikh) Let K be a perfect field, X be a
G-minimal surface which is rational over K. Then one of the
following holds:
1) X admits a conic bundle structure with Pic(X )G ∼= Z2;
2) X is a del Pezzo surface with Pic(X )G ∼= Z.



Good news: geometrically rational minimal G-surfaces are
completely classified!

Theorem (V. Iskovskikh) Let K be a perfect field, X be a
G-minimal surface which is rational over K. Then one of the
following holds:
1) X admits a conic bundle structure with Pic(X )G ∼= Z2;
2) X is a del Pezzo surface with Pic(X )G ∼= Z.

Moral: classification of finite subgroups G ⊂ Cr2(K) up to
conjugacy is equivalent to birational classification of the pairs

(X ,G), where X is as in Iskovskikh’s theorem,
and moreover X is K-rational.



Over K= C, the application of this program leads to the proof of
the Bayle-Beauville’s theorem.

Let G = 〈τ〉 be a group of order 2. Then it is not difficult to show
that the only G-minimal complex del Pezzo surfaces are:
• a del Pezzo surface S of degree 2 with τ ∈ Aut(S) being the
Geiser involution. Recall that S is the double cover

ϕ|−KS | : S → P2C,

branched over a smooth quartic B ⊂ P2C. The Geiser
involution is the Galois involution of this double cover.



Over K= C, the application of this program leads to the proof of
the Bayle-Beauville’s theorem.

Let G = 〈τ〉 be a group of order 2. Then it is not difficult to show
that the only G-minimal complex del Pezzo surfaces are:
• a del Pezzo surface S of degree 2 with τ ∈ Aut(S) being the
Geiser involution. Recall that S is the double cover

ϕ|−KS | : S → P2C,

branched over a smooth quartic B ⊂ P2C. The Geiser
involution is the Galois involution of this double cover.

• a del Pezzo surface S of degree 1 with τ ∈ Aut(S) being the
Bertini involution. Recall that S is the double cover

ϕ|−2KS | : S → Q,

where Q ⊂ P3 is the quadratic cone (branched along a sextic
curve). The Bertini involution is exactly the Galois involution
of this double cover.



Now let me pass to the second question: how to prove that all
these involutions (linear, Geiser, Bertini, de Jonquières) are not
conjugate in Cr2(C)?



Now let me pass to the second question: how to prove that all
these involutions (linear, Geiser, Bertini, de Jonquières) are not
conjugate in Cr2(C)?

Let τ ∈ Bir(S) and τ ′ ∈ Bir(S ′) be two involutions, and assume
there is a conjugating map birational map ϕ : S 99K S ′:

S τ //

ϕ
��

S
ϕ
��

S ′ τ ′ // S ′

If τ fixes a curve C then τ ′ = ϕ ◦ τ ◦ϕ−1 fixes ϕ(C)' C .

Therefore,
F (τ) =

⋃
C�P1 is fixed by τ

C ,

is an invariant of the equivalence class of τ!



Now:
• If τ is linear, then F (τ)' P1.
• If τ is the Geiser involution, then F (τ) is a non-hyperelliptic
genus 3 curve (plane quartic).

• If τ is the Bertini involution, then F (τ) is a genus 4 curve of
degree 6.

• If τ is the de Jonquières involution

(x ,y) 7→
(

x , P(x)
y

)
,

then F (τ) is the hyperelliptic curve {y2 = P(x)}.
We conclude, that our 4 types of involutions are indeed pairwise
non-conjugate.



In fact, this correspondence:

conjugacy class of an involution 7→ isom. class of the fixed curve

is bijective. So, there is a one-to-one correspondence between
• conjugacy classes of Geiser involutions and isomorphism
classes of non-hyperelliptic curves of genus 3;

• conjugacy classes of Bertini involutions and isomorphism
classes of non-hyperelliptic curves of genus 4 whose canonical
model lies on a singular quadric.

• de Jonquières involutions of degree d and hyperelliptic curves
of genus d−2.



This was the story over C. What if we want to classify involutions
in Cr2(K) for other fields K?

In the remaining part of the talk, I will report on the joint work (in
progress) with I. Cheltsov, F. Mangolte and S. Zimmermann.

We classify involutions in Cr2(R).



Cr2(R)



Some remarks

• All finite subgroups of Cr2(C) were classified in 2006 by J.
Blanc (abelian case), I. Dolgachev and V. Iskovskikh.

• I classified groups of odd order in Cr2(R) and groups which
are regularized on real del Pezzo surfaces (2016, 2019).

• However, the case of involutions in Cr2(R) is very subtle.

Our first guess was that classification should look similar to
the Bayle-Beauville’s classification.

However, this is totally false!
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However, this is totally false!



Some remarks

• The classification of involutions in Cr2(R) is much longer
(than over C) and there are more «types».

• One of the most important issues is that

the isomorphism type of the fixed curve does not deter-
mine the conjugacy class on an involution!

Let me illustrate this phenomena on a very interesting (new)
class of involutions in Cr2(R).



Kowalevski involutions



Let S be a complex del Pezzo surface of degree 2 over a field K
(say, of characteristic zero). Recall that S is the double cover

π : S → P2K,

ramified along the smooth quartic curve B ⊂ P2K. The Galois
involution of this double cover is the Geiser involution.

Now let G ⊂ Aut(S) be a group of order 2, generated by an
involution τ.
• Assume K= C. It is not difficult to see that the condition

Pic(S)G ' Z implies that τ is the Geiser involution.

• However, if K= R, there are other involutions which satisfy
the condition Pic(S)G = Pic(SC)Γ×G ' Z.
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ramified along the smooth quartic curve B ⊂ P2K. The Galois
involution of this double cover is the Geiser involution.

Now let G ⊂ Aut(S) be a group of order 2, generated by an
involution τ.
• Assume K= C. It is not difficult to see that the condition

Pic(S)G ' Z implies that τ is the Geiser involution.
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the condition Pic(S)G = Pic(SC)Γ×G ' Z.



Some historical background

In her PhD thesis, Sophie Kowalevski proved the following

Theorem (S. Kowalevski, 1884): Let B be a smooth quartic
curve in P2. Then four bitangents of the curve B meet at
one point q if and only if there exists a biregular involution
κ ∈Aut(P2) which leaves B invariant and has the point q /∈B
as an isolated fixed point.

«Twenty-eight Double Tangent Lines of a Plane Quartic Curve with an
Involution and the Mordell-Weil Lattices» by M. Kuwata



Let me call such a pair (B,κ) the Kowalevski pair. We can assume
that our κ acts by [x : y : z ] 7→ [x :−y : z ]. Then the equation
f4(x ,y ,z) = 0 of B takes a special form and we are able to prove

Theorem [CMYZ]: Suppose Pic(S)G ' Z, the involution τ

is not the Geiser involution, and F (τ) 6= ∅. Then one can
choose coordinates on P2R and PR(2,1,1,1) ⊃ S = {w2 =
f4(x ,y ,z)} such that the involution τ is given by

[x : y : z : w ] 7→ [x :−y : z : w ],

i.e. it is a positive lift of κ. Moreover, B(R) consists of
either one oval, or two nested ovals in P2R(R). In the first
case, one has S(R) ≈ S2 and in the second case one has
S(R)≈ S1×S1.

In both cases, F (τ) is an elliptic curve.



Concluding remarks

• We called these two types of involutions spherical Kowalevski
involutions and toroidal Kowalevski involutions.

• As I mentioned, they both fix an elliptic curve.

• However, using the Sarkisov theory, one can easily show that
these involutions are not conjugate to each other.



Thank you!


