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Abstract
We first study the nearly Gorensteinness of Ehrhart rings arising from lattice

polytopes. We give necessary conditions and sufficient conditions on lattice poly-
topes for their Ehrhart rings to be nearly Gorenstein. Using this, we give an efficient
method for constructing nearly Gorenstein polytopes. Moreover, we determine the
structure of nearly Gorenstein 0/1-polytopes.

Next, we introduce a new constant associated to a Fano polygon, called the PCR
index, and prove that it is invariant under mutation. We obtain a convenient formula
for the PCR index in terms of the lengths and heights of the edges of the polygon
and apply this to show that two given Fano polygons with the same singularity
content are not mutation-equivalent. Finally, we give an alternative way to classify
the minimal Fano triangles which have empty basket of singularities; we accomplish
this using Markov-like Diophantine equations.

Then, we study a subclass of Kähler-Einstein Fano polygons and how they behave
under mutation. The polygons of interest are Kähler-Einstein Fano triangles and
symmetric Fano polygons, which were recently conjectured to constitute all Kähler-
Einstein Fano polygons. We show that all polygons in this subclass are minimal and
that each mutation-equivalence class has at most one Fano polygon belonging to this
subclass. Finally, we provide counterexamples to the aforementioned conjecture and
discuss several of their properties.

Finally, we study generalised flatness constants of lattice polytopes. Let 𝐴 ∈
{ℤ,ℝ} and 𝑋 ⊂ ℝ𝑑 be a bounded set. Affine transformations given by an auto-
morphism of ℤ𝑑 and a translation in 𝐴𝑑 are called (affine) 𝐴-unimodular transfor-
mations. The image of 𝑋 under such a transformation is called an 𝐴-unimodular
copy of 𝑋. It was shown in [7] that every convex body whose width is “big enough”
contains an 𝐴-unimodular copy of 𝑋. The threshold when this happens is called
the generalised flatness constant Flt𝐴𝑑 (𝑋). It resembles the classical flatness constant
if 𝐴 = ℤ and 𝑋 is a lattice point. We introduce a general framework for the explicit
computation of these numerical constants. The approach relies on the study of 𝐴-
𝑋-free convex bodies generalising lattice-free (also known as hollow) convex bodies.
We then focus on the case that 𝑋 = 𝑃 is a full-dimensional polytope and show
that inclusion-maximal 𝐴-𝑃-free convex bodies are polytopes. The study of those
inclusion-maximal polytopes provide us with the means to explicitly determine gen-
eralised flatness constants. We apply our approach to the case 𝑋 = Δ2 the standard
simplex in ℝ2 of normalised volume 1 and compute Fltℝ2 (Δ2) = 2 and Fltℤ2 (Δ2) = 10

3 .





v

Acknowledgements
I would first like to thank my wonderful supervisors, Alexander Kasprzyk and
Johannes Hofscheier, for their generosity of time and ideas. I am grateful for their
enthusiasm and guidance throughout my PhD, and for pushing me to achieve my
best. I would also like to thank Akihiro Higashitani for being an accommodating
and keen host during my research visit to Osaka.

I’d like to thank all the friends I’ve met along the way, for adding meaning to
the journey and providing an escape when I needed it. I’d finally like to thank my
family for their loving support and belief in me while I undertook this challenge.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Convex geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Lattices, cones, and polytopes . . . . . . . . . . . . . . . . . . . 1
1.1.2 Lattice polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Toric geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Toruses and toric varieties . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 The fan of a toric variety . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 The toric variety of a fan . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Toric divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.5 Toric Fano varieties . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Mirror symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.2 Combinatorial mutation . . . . . . . . . . . . . . . . . . . . . . 20
1.3.3 Mutation invariants . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Nearly Gorenstein Polytopes 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Preliminaries and auxiliary lemmas . . . . . . . . . . . . . . . . . . . 25

2.2.1 Nearly Gorenstein ℂ-algebras . . . . . . . . . . . . . . . . . . . 25
2.2.2 Lattice polytopes and Ehrhart rings . . . . . . . . . . . . . . . 27

2.3 Nearly Gorensteinness of lattice polytopes . . . . . . . . . . . . . . . . 28
2.3.1 Necessary conditions . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 A sufficient condition . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Decompositions of nearly Gorenstein polytopes . . . . . . . . 33

2.4 Nearly Gorenstein 0/1-polytopes . . . . . . . . . . . . . . . . . . . . . 37
2.4.1 The characterisation of nearly Gorenstein 0/1-polytopes . . . 37
2.4.2 Nearly Gorenstein edge polytopes . . . . . . . . . . . . . . . . 39
2.4.3 Nearly Gorenstein graphic matroid polytopes . . . . . . . . . 40

3 A New Mutation Invariant of Fano Polygons 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 The Partial Crepant Resolution Index . . . . . . . . . . . . . . . . . . . 44

3.2.1 A natural definition of the PCR index . . . . . . . . . . . . . . 44



viii

3.2.2 A formula for the PCR index . . . . . . . . . . . . . . . . . . . 45
3.2.3 Mutation-invariance of the PCR index . . . . . . . . . . . . . . 46
3.2.4 Applying the PCR index . . . . . . . . . . . . . . . . . . . . . . 47

3.3 The Existence of Fano Triangles in a Mutation-Equivalence Class . . . 48
3.3.1 Markov-like Diophantine equations . . . . . . . . . . . . . . . 48
3.3.2 Method to produce all equations and their solutions . . . . . 50
3.3.3 Realisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 On the Uniqueness of Kähler-Einstein Polygons up to Mutation 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 The Hermite normal form of a cone . . . . . . . . . . . . . . . 59
4.2.2 The directed singularity content of a polygon . . . . . . . . . . 60
4.2.3 Symmetric and Kähler–Einstein polygons . . . . . . . . . . . . 62

4.3 At most one symmetric . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Observation of both behaviours . . . . . . . . . . . . . . . . . . 64
4.3.2 Constraints on centrally symmetric Fano polygons . . . . . . . 65
4.3.3 Constraints on 3-symmetric Fano polygons . . . . . . . . . . . 69
4.3.4 The proof for symmetric Fano polygons . . . . . . . . . . . . . 71

4.4 The behaviour of other Kähler–Einstein polygons under mutation . . 79
4.5 Discussion of Kähler–Einstein polygons . . . . . . . . . . . . . . . . . 81

4.5.1 A Kähler–Einstein Fano quadrilateral . . . . . . . . . . . . . . 82
4.5.2 The weight systems of quadrilaterals with barycentre as the

origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.3 Non-symmetric Kähler–Einstein polygons coming from sym-

metric polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Generalised Flatness Constants 89
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 A general strategy to compute generalised flatness constants . . . . . 92

5.2.1 𝐴-𝑋-free convex bodies . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Inclusion-maximal ℝ-𝑋-free convex bodies . . . . . . . . . . . 98
5.2.3 Intersection of convex bodies . . . . . . . . . . . . . . . . . . . 102

5.3 Preliminary observations in dimensions 1 and 2 . . . . . . . . . . . . 106
5.4 The ℤ-flatness constant of Δ2 . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.2 Quadrilateral circumscribed around a rectangle . . . . . . . . 118
5.4.3 Quadrilateral circumscribed around a cross-polygon . . . . . 120

5.5 The ℝ-flatness constant of Δ2 . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.1 Inclusion-maximal ℝ-Δ2-free convex bodies in dimension 2 . 128

Bibliography 135



1

Chapter 1

Introduction

1.1 Convex geometry
The main objects of study in this thesis are (convex) lattice polytopes. They crop
up in many different areas of mathematics, such as algebra, geometry, optimisation,
and physics. In this section, we recall the definitions of several important notions in
convex geometry and the geometry of numbers, which include lattices, polytopes,
and cones. We also give several of their fundamental properties, which will be useful
in the main chapters.

1.1.1 Lattices, cones, and polytopes
Definition 1.1.1. A 𝑑-dimensional lattice is a free, finitely-generated ℤ-module of
rank 𝑑.

So really, a lattice is just isomorphic to the ℤ-module ℤ𝑑. The 𝑖-th standard basis
vector of the lattice ℤ𝑑 is denoted as 𝒆𝑖 , for 𝑖 = 1, 2, . . . , 𝑑. We also typically denote
the lattice point 𝑎1𝒆1 + 𝑎2𝒆2 + · · · + 𝑎𝑑𝒆𝑑 ∈ ℤ𝑑 as the column vector (𝑎1, 𝑎2, . . . , 𝑎𝑑).

We now recall the notion of duality for lattices. For a lattice 𝐿, its dual is defined
as 𝐿∗ B Hom(𝐿,ℤ), and is isomorphic to 𝐿 itself. The 𝑖-th standard basis vector
of (ℤ𝑑)∗ is denoted as 𝑒∗

𝑖
. We typically denote the lattice point 𝑢1𝑒

∗
1+𝑢2𝑒

∗
2+· · ·+𝑢𝑑𝑒∗𝑑 ∈

(ℤ𝑑)∗ as the row vector (𝑢1, 𝑢2, . . . , 𝑢𝑑)𝑡 . Further, we identify the lattice (𝐿∗)∗ with 𝐿.
A subtle point to make is that matrices act on points in 𝐿 from the left whereas

they act on points in the dual space 𝐿∗ from the right.
Now, just as the latticeℤ𝑑 lives inside the vector spaceℚ𝑑 (and alsoℝ𝑑), we would

also like to have a ℚ-or ℝ-vector space for any lattice to live inside. This is because
we need a space where our cones and polytopes will live.

Definition 1.1.2. Let 𝐿 be a lattice and 𝑘 ∈ {ℚ,ℝ}. Then its 𝑘-extension is the 𝑘-vector
space 𝐿𝑘 B 𝐿 ⊗ℤ 𝑘. By abuse of notation, we say that 𝐿 ⊂ 𝐿ℚ ⊂ 𝐿ℝ.

We may similarly extend the dual lattice to a vector space: 𝐿∗
𝑘
, which is isomorphic

to 𝑘𝑑.

Remark 1.1.3. If 𝐿 has dimension 𝑑, then 𝐿𝑘 also has dimension 𝑑, i.e. 𝐿𝑘 � 𝑘𝑑.
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Now that we have defined the ambient spaces where our objects will live, let us
recall what a cone is. For the rest of this subsection, fix a lattice 𝐿 and an ordered
field 𝑘 ∈ {ℚ,ℝ}. We define 𝑘≥0 B {𝑥 ∈ 𝑘 : 𝑥 ≥ 0}. For a subset 𝑆 ⊂ 𝐿𝑘 , we
denote by 𝜕𝑆, int(𝑆), and rel(𝑆) as the boundary of 𝑆, the (strict) interior of 𝑆, and
the relative interior of 𝑆, respectively, all with respect to the standard Euclidean
topology on 𝐿𝑘 � 𝑘𝑑.
Definition 1.1.4. For some subset 𝑆 ⊆ 𝐿𝑘 , the cone over 𝑆 is defined as

cone(𝑆) B
{

𝑛∑
𝑖=0

𝑞𝑖𝒙𝑖 : 𝑞𝑖 ∈ 𝑘≥0, 𝒙𝑖 ∈ 𝑆, 𝑛 ∈ ℤ≥0

}
⊆ 𝐿𝑘 ,

i.e. it is the set of all finite 𝑘≥0-linear combinations of points in 𝑆. The set 𝜎 ⊆ 𝐿𝑘 is
called a cone if there exists some subset 𝑆 ⊆ 𝐿𝑘 such that 𝜎 = cone(𝑆). In this case, 𝑆
is said to generate 𝜎. If a set 𝑆 of generators of a cone 𝜎 is minimal with respect to
inclusion, then it is called a set of ray generators of 𝜎.

In this thesis, unless stated otherwise, we only consider cones having certain nice
properties, which we now define.
Definition 1.1.5. Let 𝜎 ⊆ 𝐿𝑘 be a cone. Then 𝜎 is called pointed (or strongly convex)
if there is no line contained in it, i.e. 𝜎 ∩ −𝜎 = {0}. It is called polyhedral (or finitely
generated) if there exists some finite set 𝑆 = {𝒙0, 𝒙1, . . . , 𝒙𝑚} such that 𝜎 = cone(𝑆). In
this case, we may write 𝜎 = cone {𝒙0, 𝒙1, . . . , 𝒙𝑚}. Finally, 𝜎 is called rational if it is
generated by a subset of 𝐿.
Example 1.1.6. Consider the cone 𝜎 generated by the lattice points (1, 2), (1, 1),
and (4,−3). It is clearly polyhedral and rational, since it is generated by a finite
number of lattice points. As can be seen from Figure 1.1, it is also pointed. A set
of ray generators for the cone 𝜎 is {(1, 2), (4,−3)}; the point (1, 1) is redundant as a
generator of 𝜎. Finally, we remark that all cones of dimension less than three are
polyhedral; the exact notion of dimension for cones is given later on (Definition 1.1.8).
Further, in these dimensions, the only non-pointed cones are half-spaces.

From now on, we assume that all cones are pointed, polyhedral and rational. We
can now recall what a face of a cone is.
Definition 1.1.7. Let 𝜎, 𝜏 ⊂ 𝐿𝑘 be cones. Then 𝜏 is a face of 𝜎 if there exists some𝑚 ∈ 𝐿∗

𝑘
such that 𝜏 = 𝜎 ∩ 𝜕𝐻𝑚 and 𝜎 ⊂ 𝐻𝑚 , where 𝐻𝑚 = {𝒙 ∈ 𝐿𝑘 : 𝑚(𝒙) ≥ 0}. Further, if
𝜏 ≠ 𝜎, then 𝜏 is called a proper face of 𝜎. Note that 𝜎 is always a face of itself, via𝑚 = 0.

It now makes sense to introduce the notion of dimension for cones.
Definition 1.1.8. Let 𝜎 ⊂ 𝐿𝑘 be a cone. Then its dimension is equal to the dimension
of the subspace of 𝐿𝑘 linearly spanned by the points of 𝜎.

We note that the only zero-dimensional face of a cone is {0}. The one-dimensional
faces (i.e. the rays) of a cone are simply the cones over the ray generators of 𝜎.

Now, just as there is a notion of duality for lattices, there is also one for cones.
While we have defined cones in terms of its rays, we may also define them in terms
of their facets, i.e. their maximal dimensional faces.
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Figure 1.1: The cone 𝜎 from Example 1.1.6 and one collection of gener-
ators for it are in blue. The cone −𝜎 is in grey. It is clear that 𝜎 and −𝜎

intersect only at the origin; thus, 𝜎 is pointed.

Definition 1.1.9. Let 𝜎 ⊂ 𝐿𝑘 be a cone. Then its dual cone is defined as

𝜎∨ B
{
𝑢 ∈ 𝐿∗𝑘 : 𝑢(𝒙) ≥ 0, ∀𝒙 ∈ 𝜎

}
⊂ 𝐿∗𝑘 .

It can be shown that if 𝜎 is full-dimensional, i.e. its dimension coincides with
the ambient dimension, the dimension 𝑑 of 𝐿𝑘 , then 𝜎∨ is a cone, i.e. a pointed,
rational, polyhedral cone. Otherwise, if the dimension of 𝜎 is less than 𝑑, then the
dual cone 𝜎∨ will not be pointed.

Now, there exists a finite collection of lattice points 𝑢1, 𝑢2, . . . , 𝑢𝑚 ∈ 𝐿∗ such
that 𝜎∨ = cone {𝑢1, 𝑢2, . . . , 𝑢𝑚}. Assuming that 𝜎 is full-dimensional, if this collection
of lattice points is minimal with respect to inclusion, then each 𝑢𝑖 is normal to a facet
of 𝜎. Further, each ray generator of 𝜎 corresponds to a facet of 𝜎∨. In fact, the duality
is even stronger: each 𝑖-dimensional face of 𝜎 corresponds to a (𝑑 − 𝑖)-dimensional
face of 𝜎∨ in a way which we now make precise.

Definition 1.1.10. Let 𝜎 ⊂ 𝐿𝑘 be a cone and 𝒙 be a point of 𝜎. Then the (inner) normal
cone of 𝜎 at 𝒙 is defined as

𝑁𝜎(𝒙) B
{
𝑢 ∈ 𝜎∨ : 𝑢(𝒙) = 0

}
⊂ 𝐿∗𝑘 .

Let 𝜏 be a face of 𝜎. Then the (inner) normal cone of 𝜎 at 𝜏 is defined as

𝑁𝜎(𝜏) B
⋂
𝒙∈𝜏

𝑁𝜎(𝒙).

Example 1.1.11. Consider the cone 𝜎 ⊂ ℝ3 with ray generators (2,−1, 0), (0, 1, 0),
and (0, 0, 1). Let 𝜌0, 𝜌1, and 𝜌2 be the respective rays of 𝜎. Let 𝜏 be the facet of 𝜎
spanned by 𝜌0 and 𝜌1; we aim to compute the normal cone of 𝜎 at 𝜏. In order to do
so, we must first compute 𝑁𝜎(𝜌0) and 𝑁𝜎(𝜌1).

We note that𝑁𝜎(𝜌0) = 𝑁𝜎((2,−1, 0)) and𝑁𝜎(𝜌1) = 𝑁𝜎((0, 1, 0)). This follows from
the fact that 𝜎 is invariant under scaling by elements of 𝑘≥0. We show in some detail
how to compute 𝑁𝜎((2,−1, 0)). First, we must find 𝑢 ∈ 𝐿∗

𝑘
satisfying 𝑢(2,−1, 0) = 0.
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We obtain that 𝑢 = (𝑎, 2𝑎, 𝑐)𝑡 , for some 𝑎, 𝑐 ∈ ℤ. Finally, we must determine when 𝑢
belongs to the dual cone 𝜎∨. We require that 𝑢 evaluated on the generators of 𝜎 are
non-negative. On (2,−1, 0), it always evaluates to 0. Next, we have 𝑢(0, 1, 0) = 2𝑎
and 𝑢(0, 0, 1) = 𝑐. These must be non-negative; thus, it follows that 𝑁𝜎(𝜌0) =

cone
{
(1, 2, 0)𝑡 , (0, 0, 1)𝑡

}
.

Similarly, we find that 𝑁𝜎(𝜌1) = cone
{
(1, 0, 0)𝑡 , (0, 0, 1)𝑡

}
. Thus, we may now

compute that 𝑁𝜎(𝜏) is the ray generated (0, 0, 1)𝑡 .

Proposition 1.1.12 (cf. [107, Theorem 1.3]). Let 𝜎 ⊂ 𝐿𝑘 be a full-dimensional cone,
i.e. dim(𝜎) = dim(𝐿𝑘) = 𝑑. Then there is a one-to-one correspondence between the 𝑖-
dimensional faces of 𝜎 and the (𝑑 − 𝑖)-dimensional faces of its dual 𝜎∨. This is given
by 𝜏 ↦→ 𝑁𝜎(𝜏). Further, this correspondence is inclusion-reversing.

Finally, we recall what it means for two cones to be isomorphic.

Definition 1.1.13. Let 𝜎1, 𝜎2 ⊂ 𝐿𝑘 be cones. Then 𝜎1 is isomorphic to 𝜎2 if there exists
some unimodular matrix𝑈 ∈ GL𝑑(ℤ) such that𝑈𝜎1 = 𝜎2.

We will soon recall the notion of a polytope. As with cones, there are two dual
ways of defining a polytope: either in terms of its vertices (i.e. its zero-dimensional
faces) or in terms of its facets (i.e. its codimension one faces). We first define
polytopes in terms of their vertices.

Definition 1.1.14 ([107, Definition 0.1]). For some subset 𝑆 ⊆ 𝐿𝑘 , the convex hull of 𝑆
is defined as

conv(𝑆) B
{

𝑛∑
𝑖=0

𝑞𝑖𝒙𝑖 :
𝑛∑
𝑖=0

𝑞𝑖 = 1, 𝑞𝑖 ∈ 𝑘≥0, 𝑥𝑖 ∈ 𝑆, 𝑛 ∈ ℤ≥0

}
⊆ 𝐿𝑘 ,

The (convex) set 𝑃 ⊆ 𝐿𝑘 is said to be a polytope if there exists some finite set 𝑆 ⊂ 𝐿𝑘
such that 𝑃 = conv(𝑆). In this case, if 𝑆 is the minimal such set with respect to
inclusion, then the vertices of 𝑃 are 𝒱(𝑃) = 𝑆.

The second description of polytopes involves their facets.

Proposition 1.1.15 (cf. [107, Theorem 1.1]). Let 𝑃 ⊂ 𝐿𝑘 be a polytope. Then there exists a
finite collection of points 𝑢1, 𝑢2, . . . , 𝑢𝑚 ∈ 𝐿∗

𝑘
and corresponding numbers ℎ1, ℎ2, . . . , ℎ𝑚 ∈

𝑘 such that
𝑃 = {𝒙 ∈ 𝐿𝑘 : 𝑢𝑖(𝒙) ≥ −ℎ𝑖 , ∀𝑖} .

If the collection of points 𝑢1, 𝑢2, . . . , 𝑢𝑚 isn’t redundant, then the facets of 𝑃 is the
set ℱ (𝑃) consisting of all the intersections 𝑃 ∩ 𝜕𝐻𝑖 , where

𝐻𝑖 B {𝒙 ∈ 𝐿𝑘 : 𝑢𝑖(𝒙) ≥ −ℎ𝑖} .

In order to talk more about the faces of 𝑃, their dimensions, and duality, we find
it convenient to first introduce the notion of the cone over a polytope. Here, we will
associate to a polytope a cone, and the analogous properties of polytopes can then
be defined in terms of their associated cones.
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Definition 1.1.16. Let 𝑃 ⊂ 𝐿𝑘 be a polytope. The cone of 𝑃 is defined as

𝐶𝑃 B cone {(1, 𝒙) : 𝒙 ∈ 𝑃} ⊂ 𝑘 × 𝐿𝑘 � 𝑘𝑑+1.

In other words, we embed 𝑃 in one dimension higher, placing it at height one.
Then, we take the cone over it. Note that the original polytope can be recovered by
intersecting the cone with the hyperplane at height one and then projecting onto the
last 𝑑 coordinates.

Definition 1.1.17. Let 𝐹, 𝑃 ⊂ 𝐿𝑘 be polytopes. Then 𝐹 is a (proper) face of 𝑃 if 𝐶𝐹 is a
(proper) face of 𝐶𝑃 . The dimension of 𝑃 is defined as dim(𝑃) B dim(𝐶𝑃) − 1.

Next, we define duality for polytopes.

Definition 1.1.18. Let 𝑃 ⊂ 𝐿𝑘 be a polytope and assume that 0 is in the strict interior
of 𝑃. Then, the dual of 𝑃 is defined as

𝑃∗ B
{
𝑢 ∈ 𝐿∗𝑘 : 𝑢(𝒙) ≥ −1, ∀𝒙 ∈ 𝑃

}
⊂ 𝐿∗𝑘 .

Remark 1.1.19. Alternatively, duality of polytopes can be defined in terms of duality
of the cones over them. As such, a precise duality between the (𝑖 − 1)-dimensional
faces of 𝑃 and the (𝑛 − 𝑖)-dimensional faces of 𝑃∗ can be established via Proposi-
tion 1.1.12

Finally, we recall a linear notion of equivalence for polytopes.

Definition 1.1.20. Let 𝑃1, 𝑃2 ⊂ 𝐿𝑘 be polytopes. Then 𝑃1 is isomorphic to 𝑃2 if there
exists some unimodular matrix𝑈 ∈ GL𝑑(ℤ) such that𝑈𝑃1 = 𝑃2.

1.1.2 Lattice polytopes
So far, lattices haven’t been so prevalent in our story, only cropping up in our notation
for the vector spaces 𝐿ℚ and 𝐿ℝ and in the definition of rational cones. So, it is now
time to introduce the main combinatorial object of this thesis.

Definition 1.1.21. Let 𝐿 be a lattice and 𝑃 ⊂ 𝐿𝑘 be a polytope. Then 𝑃 is called a
lattice polytope with respect to 𝐿 if its vertices are contained in 𝐿, i.e. 𝒱(𝑃) ⊂ 𝐿.

One nice feature of lattice polytopes is that the complexity can be shifted from
the polytope to the lattice, and vice versa. In order to more precisely explain this
point, we must first introduce the notion of isomorphism for lattice polytopes.

Definition 1.1.22. Let 𝐿, 𝐿′ be lattices and 𝑃, 𝑃′ be lattice polytopes with respect to 𝐿
and 𝐿′, respectively. Then the pair (𝑃, 𝐿) is isomorphic to (𝑃′, 𝐿′) if there exists a vector
space isomorphism 𝜃 : 𝐿ℚ → 𝐿′

ℚ
such that 𝜃(𝑃) = 𝑃′ and 𝜃(𝐿) = 𝐿′.

Example 1.1.23. In some sense, the simplest polygon is the standard triangle Δ2 =

conv {0, 𝒆1, 𝒆2} and the simplest two-dimensional lattice is ℤ2. We now consider
the following two objects: the lattice 𝐿 = ℤ2 + 1

5(1, 2)ℤ and the polygon 𝑃 =

conv {(0, 0), (5,−2), (0, 1)}. It can be shown that (Δ2, 𝐿) is isomorphic to (𝑃,ℤ2),
using the map 𝜃 =

( 5 0
−2 1

)
.
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So, we have demonstrated how the complexity of lattice polytopes can be shifted
between the polytope and the lattice. We will explore this further when we introduce
weights and weight systems of lattice polytopes, later in this subsection. Before that,
we will introduce a couple of important subclasses of lattice polytopes, which see
use in toric geometry and mirror symmetry.

Definition 1.1.24. Let 𝑃 ⊂ 𝐿𝑘 be a lattice polytope. Consider the following two
conditions.

1. The origin lies in the strict interior of 𝑃, i.e. 0 ∈ int(𝑃);

2. Every vertex 𝒗 = (𝑣1, 𝑣2, . . . , 𝑣𝑑) of 𝑃 is primitive, i.e. gcd(𝑣1, 𝑣2, . . . , 𝑣𝑑) = 1.

If 𝑃 satisfies condition (1), then it is called an IP polytope. If 𝑃 satisfies conditions (1)
and (2), then it is called a Fano polytope. Note that due to condition (1), all IP (and
hence Fano) polytopes must be full-dimensional.

Let us now introduce several lattices which can be associated to cones, Fano
polytopes, and their facets.

Definition 1.1.25. Fix a lattice 𝐿 and let 𝜎 ⊂ 𝐿𝑘 be a cone. Then the lattice associated
to 𝜎 is defined as the lattice Γ𝜎 spanned by the primitive ray generators of 𝜎. The
index of 𝜎 is defined as 𝑘𝜎 B [𝐿 : Γ𝜎].

This definition can be naturally extended to IP polytopes and their facets.

Definition 1.1.26. Fix a lattice 𝐿. Let 𝑃 ⊂ 𝐿ℚ be an IP polytope and 𝐹 be a facet of 𝑃.
Then, the lattice associated to 𝐹 is the lattice Γ𝐹 spanned by the vertices of 𝐹 and the
index of 𝐹 is 𝑘𝐹 B [𝐿 : Γ𝐹]. Similarly, the lattice associated to 𝑃 is the lattice Γ𝑃 spanned
by the vertices of 𝑃. The index of 𝑃 is 𝑘𝑃 B [𝐿 : Γ𝑃].

We are now ready to recall the notion of weights and weight matrices.

Definition 1.1.27. Let 𝑃 ⊂ 𝐿ℚ be an IP polytope and fix an ordering of its ver-
tices 𝒗1, 𝒗2, . . . , 𝒗𝑚 . Let 𝒒 ∈ ℤ𝑚 be an integer vector of length 𝑚. Then 𝒒 is a weight
of 𝑃 if

∑𝑚
𝑖=1 𝑞𝑖𝒗𝑖 = 0. Let 𝑊 ∈ ℤ(𝑚−𝑑)×𝑚 be an integer matrix of rank 𝑚 − 𝑑. Then 𝑊

is a weight matrix for 𝑃 if
∑𝑚
𝑖=1𝑊𝑗𝑖𝒗𝑖 = 0 for all 𝑗 = 1, 2, . . . , 𝑚 − 𝑑.

Remark 1.1.28. Since a polytope can have many different weight matrices, it is often
helpful to conflate 𝑊 with the space spanned by its length 𝑚 rows, i.e. the space
of all weights of the polytope. If we consider an IP polytope 𝑃 with respect to its
associated lattice Γ𝑃 then, up to isomorphism, this will determine and be determined
by the space of weights of 𝑃.

It will be important later, when considering mutations, to have the notion of
length and height of an edge of an IP polygon.

Definition 1.1.29. Let 𝐸 be an edge of an IP polygon and let 𝑢 ∈ 𝐿∗ be the unique
primitive inner normal vector to 𝐸. Then we say that 𝐸 has (lattice) length ℓ𝐸 B
|𝐸 ∩𝑁 | − 1 and height ℎ𝐸 B |𝑢(𝒗)|, where 𝒗 is a vertex of 𝐸. Note that the length and
the height will be strictly positive integers.
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The final notion of this subsection is that of the Minkowski sum of convex sets.

Definition 1.1.30. Let 𝑋,𝑌 ⊆ ℝ𝑑. Then the Minkowski sum of 𝑋 and 𝑌 is defined as

𝑋 + 𝑌 B {𝒙 + 𝒚 : 𝒙 ∈ 𝑋, 𝒚 ∈ 𝑌} .

Note that, 𝑋 + ∅ = ∅.

The Minkowski sum sees use in each chapter of this thesis. It is used in the
definition of combinatorial mutation, in the characterisation of nearly Gorenstein
polytopes, and to ease the computation of generalised flatness constants.

Example 1.1.31. Consider the following two lattice polytopes.

𝑃 = conv {(0, 0), (1, 0), (0, 2)} and 𝑄 = conv {(0, 0), (2, 1), (1, 2)} .

Their Minkowski sum 𝑃+𝑄 has the vertices (0, 0), (1, 0), (3, 1), (2, 3), (1, 4), (0, 2). Due
to the convexity of 𝑃, we can view 𝑃+𝑄 as the convex hull of three copies of𝑄, which
are the translations of 𝑄 by the three vertices of 𝑃. We can similarly view 𝑃 + 𝑄 as
the convex hull of three copies of 𝑃. This is shown in Figure 1.2.

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Figure 1.2: In blue is the Minkowski sum 𝑃 + 𝑄. On the left, the red
polygons are the translations of 𝑃 by the vertices of𝑄. On the right, the

red polygons are the translations of 𝑄 by the vertices of 𝑃.

1.1.3 Fans
Another combinatorial object is the fan. These objects find particular use in toric
geometry, which we detail in Section 1.2.2

Definition 1.1.32. A collection Σ of cones is called a fan if

• Every pair of cones in Σ intersects in a common face, i.e. if 𝜎, 𝜏 ∈ Σ, then 𝜎 ∩ 𝜏
is a face of 𝜎 and a face of 𝜏;

• Σ is closed under taking faces, i.e. if 𝜎 ∈ Σ and 𝜏 is a face of 𝜎, then 𝜏 ∈ Σ.
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We denote byΣ(𝑖) the set of 𝑖-dimensional cones inΣ. The support ofΣ is |Σ| = ⋃
𝜎∈Σ 𝜎.

If the support of Σ coincides with the entire ambient space, then Σ is called complete.

Note that the set of all faces of a cone is itself a fan. As such, we often conflate a
cone with its associated fan.

There are two complete fans which can be created from a polytope 𝑃.

Definition 1.1.33. Let 𝑃 ⊂ 𝐿ℚ be an IP polytope. Then the spanning fan (or face fan)
of 𝑃 is the fan Σ𝑃 consisting of the cones over each face of 𝑃.

The rays of Σ𝑃 are the cones over the vertices of 𝑃. The full-dimensional cones
of Σ𝑃 are the cones over the facets of 𝑃.

Definition 1.1.34. Let 𝑃 ⊂ 𝐿ℚ be a polytope and 𝐹 be a face of 𝑃. Then, the normal
cone of 𝑃 at 𝐹 is defined as

𝑁𝑃(𝐹) B
{
𝑢 ∈ 𝐿∗ℚ : face𝑢(𝑃) = 𝐹

}
,

where face𝑢(𝑃) B
{
𝒙 ∈ 𝑃 : 𝑢(𝒙) = min𝒚∈𝑃 𝑢(𝒚)

}
. The (inner) normal fan Σ(𝑃) of a

polytope 𝑃 is the fan consisting of the normal cones 𝑁𝑃(𝐹) at each face 𝐹 of 𝑃.

Note that translating 𝑃 has no effect on the normal fan; thus, the normal fan of 𝑃
is an affine property of 𝑃. Further, if 𝑃 is an IP polytope, then the normal fan of 𝑃
coincides with the spanning fan of 𝑃∗.

We conclude this section with a result concerning Minkowski sums and normal
fans. In order to give the statement, we need the following definition.

Definition 1.1.35. Let Σ,Σ′ be two fans lying in the same ambient space. Then the
common refinement of Σ and Σ′ is the fan

Σ ∩ Σ′ B {𝜎 ∩ 𝜎′ : 𝜎 ∈ Σ, 𝜎′ ∈ Σ′} .

It is straightforward to verify that the common refinement of two fans is indeed a
fan.

We can now conclude with this known result.

Proposition 1.1.36 ([107, Proposition 7.12]). Let 𝑃, 𝑄 ⊂ 𝐿ℚ be polytopes. Then the
normal fan Σ(𝑃 + 𝑄) of their Minkowski sum is equal to the common refinement of the
normal fans Σ(𝑃) and Σ(𝑄) of the Minkowski summands.

Observe that in Example 1.1.31, the normal fan of 𝑃+𝑄 is the common refinement
of the normal fans of 𝑃 and 𝑄, since the inner normals to the facets of 𝑃 + 𝑄 are
exactly the inner normals to the facets of 𝑃 and 𝑄.
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1.2 Toric geometry
In algebraic geometry, the central idea is a correspondence between geometric objects
(such as zero sets of polynomial equations, i.e. varieties) and algebraic objects (such
as reduced, finitely-generated ℂ-algebras). This allows geometric questions to be
studied using algebraic methods. Toric geometry sets up another dictionary of
correspondences between algebraic geometry and the combinatorics of polytopes,
cones, and fans. The price to pay for this beautiful correspondence is that the varieties
must obey a certain symmetry condition involving toruses, hence the name.

1.2.1 Toruses and toric varieties
Throughout this section on toric geometry, we fix the 𝑑-dimensional lattice 𝑁 and
refer to its dual lattice as 𝑀; we identify the former with ℤ𝑑 and the latter with (ℤ𝑑)∗.
All varieties are over ℂ. We follow the book [29]. We first recall the definition of an
algebraic torus.

Definition 1.2.1. A 𝑑-dimensional (algebraic) torus 𝑇 is an affine algebraic group,
isomorphic to (ℂ×)𝑑. We define 𝑇𝑁 B 𝑁 ⊗ℤ ℂ× � (ℂ×)𝑑 to be the torus of 𝑁 .

We can now recall what a toric variety is.

Definition 1.2.2 ([29, page 49]). Let 𝑋 be a variety. Then 𝑋 is a toric variety if it is
irreducible and contains a torus 𝑇 as a Zariski-open subset, whose action on itself
extends to an action on 𝑋.

Example 1.2.3. We provide a (non-exhaustive) list of examples and non-examples of
toric varieties.

1. The affine plane ℂ𝑛 and the torus (ℂ×)𝑛 itself are toric varieties.

2. Let𝑋 = ℙ𝑛 be the projective plane. It contains the torus𝑇 = ℙ𝑛\𝕍 (𝑥0 · · · 𝑥𝑛). An
element in 𝑇 looks like (1: 𝑡1 : · · · : 𝑡𝑛), and acts on 𝑋 by sending (𝑥0 : · · · : 𝑥𝑛)
to (𝑥0 : 𝑡1𝑥1 : · · · : 𝑡𝑛𝑥𝑛). Thus it is a toric variety.

3. Let 𝑋 = 𝕍 (𝑦2 − 𝑥3) be the cuspidal cubic. The torus 𝑇 =
{
(𝑡2, 𝑡3) : 𝑡 ∈ ℂ×} is

contained in𝑋, and it acts on𝑋 naturally by sending (𝑥, 𝑦) to (𝑡2𝑥, 𝑡3𝑦). Thus𝑋
is toric.

4. Let 𝑋 = 𝕍 (𝑦2 − 𝑥3 + 𝑥) be an elliptic curve. This is a non-toric variety.

1.2.2 The fan of a toric variety
In this part, we will show how to obtain a fan from a toric variety 𝑋. Suppose that𝑇𝑁
is the torus of 𝑋, i.e. it is a Zariski-open subset of 𝑋 whose action on itself extends to
an action on 𝑋. Associated to the torus 𝑇𝑁 is its group of characters Hom(𝑇𝑁 ,ℂ×) and
its group of one-parameter subgroups Hom(ℂ×, 𝑇𝑁 ). It turns out that all characters have
the form 𝜒𝑚 : (𝑡1, . . . , 𝑡𝑛) ↦→ 𝑡

𝑚1
1 · · · 𝑡𝑚𝑛

𝑛 , for 𝑚 ∈ 𝑀. Thus, the group of characters
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is isomorphic to the lattice 𝑀. Moreover, all one-parameter subgroups have the
form 𝜆𝒗 : 𝑡 ↦→ (𝑡𝑣1 , . . . , 𝑡𝑣𝑛 ), for 𝒗 ∈ 𝑁 . Thus, the group of one-parameter subgroups
is isomorphic to the lattice 𝑁 . Finally, notice that the characters and one-parameter
subgroups inherit the natural pairing from 𝑀 and 𝑁 , i.e. 𝜒𝑚 ◦ 𝜆𝒗 : 𝑡 ↦→ 𝑡𝑚(𝒗).

Consider 𝜆𝒗
0 B lim𝑡→0 𝜆𝒗(𝑡), for 𝒗 ∈ 𝑁 . If 𝜆𝒗

0 exists, then it will be a point of the
toric variety 𝑋. We can define an equivalence relation on

{
𝒗 ∈ 𝑁 : 𝜆𝒗

0 exists
}
, by

identifying all 𝒗 which have the same limit 𝜆𝒗
0 . This partitions 𝑁 into the origin 0,

the lattice points in the relative interiors of cones, and a (possibly empty) region
where 𝜆𝒗

0 is undefined. This partition corresponds bĳectively with a fan. Further,
each cone in the fan corresponds to an orbit of a point in 𝑋 under the group action
by 𝑇𝑁 .

Example 1.2.4. Let 𝑋 = ℂ2 be the affine plane, which is a toric variety with torus 𝑇 =

(ℂ×)2. For 𝒗 = (𝑎, 𝑏) ∈ 𝑁ℚ, we have

𝜆𝒗
0 = lim

𝑡→0
(𝑡𝑎 , 𝑡𝑏) =


(1, 1), for 𝑎 = 𝑏 = 0
(1, 0), for 𝑎 = 0, 𝑏 > 0
(0, 1), for 𝑎 > 0, 𝑏 = 0
(0, 0), for 𝑎, 𝑏 > 0
undefined, else


.

1 2 3

1

2

3

Figure 1.3: The fan of 𝑋 = ℂ2.

Thus the fan of 𝑋 consists of 𝜎 = cone {𝒆1, 𝒆2} and its lower dimensional faces.

Example 1.2.5. Let 𝑋 = 𝕍 (𝑥𝑦 − 𝑧2). This is the surface of a cone, and is an affine toric
variety. It has torus 𝑇 =

{
(𝑡1, 𝑡−1

1 𝑡22 , 𝑡2) : 𝑡1, 𝑡2 ∈ ℂ×}. Thus, for 𝒗 = (𝑎, 𝑏) ∈ 𝑁ℚ, we
have that

𝜆𝒗
0 = lim

𝑡→0
(𝑡𝑎 , 𝑡−𝑎+2𝑏 , 𝑡𝑏) =


(1, 1, 1), for 𝑎 = 𝑏 = 0
(1, 0, 0), for 𝑎 = 0, 𝑏 > 0
(0, 1, 0), for 𝑎 = 2𝑏 > 0
(0, 0, 0), for 0 < 𝑎 < 2𝑏
undefined, else


.

So, the fan of 𝑋 consists of 𝜎 = cone {𝒆2, (2, 1)} and its lower dimensional faces.

We will now look at a non-affine example.
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1 2 3

1
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3

Figure 1.4: The fan of 𝑋 = 𝕍 (𝑥𝑦 − 𝑧2).

Example 1.2.6. Let 𝑋 = ℙ2 be the projective plane. Recall that it contains the
torus 𝑇 = ℙ2 \ 𝕍 (𝑥0𝑥1𝑥2). Since 𝑋 is compact, 𝜆𝒗

0 always exists. We get that

𝜆𝒗
0 = lim

𝑡→0
(1: 𝑡𝑎 : 𝑡𝑏) =



(1: 1 : 1), for 𝑎 = 𝑏 = 0
(1: 1 : 0), for 𝑎 = 0, 𝑏 > 0
(1: 0 : 1), for 𝑎 > 0, 𝑏 = 0
(0: 1 : 1), for 𝑎 = 𝑏 < 0
(1: 0 : 0), for 𝑎, 𝑏 > 0
(0: 1 : 0), for 𝑎 < 0, 𝑎 < 𝑏

(0: 0 : 1), for 𝑎 > 𝑏, 𝑏 < 0


.

Note that the computation of these limits follows immediately from the fact that

(1: 𝑡𝑎 : 𝑡𝑏) = (𝑡−𝑎 : 1 : 𝑡𝑏−𝑎) = (𝑡−𝑏 : 𝑡𝑎−𝑏 : 1).

−2 −1 1 2

−2

−1

1

2

Figure 1.5: The fan of 𝑋 = ℙ2.

The fan of 𝑋 consists of 3 full-dimensional cones, 3 rays, and the origin. Notice
how one of the full-dimensional cones is the full-dimensional cone in the fan ofℂ2. In
fact, all of the full-dimensional cones in the fan ofℙ2 are isomorphic to the cone from
the fan ofℂ2. This makes sense, sinceℙ2 can be covered by three copies𝑈𝑖 = ℙ2\𝕍 (𝑥𝑖)
of ℂ2.
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Definition 1.2.7. Let 𝑋 be an irreducible affine variety. 𝑋 is normal if its coordinate
ring ℂ[𝑋] is integrally closed, i.e. if 𝑓 ∈ ℂ(𝑋) is a root of a monic polynomial
in ℂ[𝑋][𝑡], then 𝑓 ∈ ℂ[𝑋].

Example 1.2.8. Let𝑋 = 𝕍 (𝑦2−𝑥3)be the cuspidal cubic. It has coordinate ringℂ[𝑋] =
ℂ[𝑥] ⊕ 𝑦ℂ[𝑥]. Consider 𝑦

𝑥 ∈ ℂ(𝑋). This is a root of the monic polynomial 𝑡2 − 𝑥 ∈
ℂ[𝑋][𝑡]. But 𝑦

𝑥 ∉ ℂ[𝑋]. Thus, 𝑋 is not a normal variety. Now we will also compute
the fan of this non-normal toric variety𝑋. Recall that the torus𝑇 =

{
(𝑡2, 𝑡3) : 𝑡 ∈ ℂ×}

is contained in 𝑋. Then, for 𝑎 ∈ 𝑁ℚ, we have that

𝜆𝑎0 = lim
𝑡→0

(𝑡2𝑎 , 𝑡3𝑎) =


(1, 1), for 𝑎 = 0
(0, 0), for 𝑎 > 0
undefined, else

 .

−1 1 2 3
−1

1

Figure 1.6: The fan of 𝑋 = 𝕍 (𝑦2 − 𝑥3).

The fan of 𝑋 just consists of the ray 𝜌 = cone {𝒆1} and its lower-dimensional
face {0}. This fan is the same as the fan of ℂ1. It should be noted that 𝑋′ = ℂ1 is the
normalisation of 𝑋, i.e. the integral closure ℂ[𝑋]′ of the coordinate ring of 𝑋 is the
coordinate ring ℂ[ℂ1] of ℂ1.

Because of this, we restrict our attention to normal toric varieties. This way, the
correspondence between fans and such varieties will be one-to-one.

1.2.3 The toric variety of a fan
We start by looking at a special case of a fan – a cone. Take 𝜎 ⊂ 𝑁ℚ. Now, we
define 𝑆𝜎 B 𝜎∨ ∩ 𝑀 to be the semigroup of the lattice points of the dual of 𝜎.
We call the minimal set of generators of 𝑆𝜎 the Hilbert basis of 𝜎∨, and denote it
by Hilb(𝜎∨). Gordon’s Lemma [29, Proposition 1.2.17] tells us that 𝑆𝜎 is finitely
generated, i.e. Hilb(𝜎∨) is finite. We can construct a ℂ-algebra associated to the
semigroup 𝑆𝜎, defined as follows:

ℂ[𝑆𝜎] B
{

𝑘∑
𝑖=1

𝑎𝑖𝜒
𝑚𝑖 : 𝑎𝑖 ∈ ℂ, 𝑚𝑖 ∈ 𝑆𝜎

}
,

where addition is formal, and multiplication is inherited from the semigroup oper-
ation, i.e. 𝜒𝑚 · 𝜒𝑚′

B 𝜒𝑚+𝑚′.
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As a consequence of Gordon’s Lemma, this ℂ-algebra is finitely generated. Its
ring structure is also an integral domain. Thus, by Hilbert’s Nullstellensatz, it
corresponds to an irreducible affine variety𝑈𝜎 B Spec(ℂ[𝑆𝜎]).

Example 1.2.9. Consider 𝜎 = cone {𝒆1, 𝒆2} ⊂ 𝑁ℚ. Then we get the semigroup 𝑆𝜎 =

𝜎∨ ∩ 𝑀 = spanℤ≥0

{
𝑒∗1, 𝑒

∗
2
}
. Thus, we obtain the ℂ-algebra ℂ[𝑆𝜎] = ℂ[𝑥, 𝑦], and its

associated irreducible affine variety𝑈𝜎 = ℂ2.

1 2 3

1

2

3

(a) 𝜎 ⊂ 𝑁ℚ.

1 2 3

1

2

3

(b) 𝜎∨ ⊂ 𝑀ℚ and its Hilbert basis.

Figure 1.7: The two cones involved in constructing𝑈𝜎 = ℂ2.

Example 1.2.10. Let 𝜎 = cone {(2, 1), (0, 1)} ⊂ 𝑁ℚ. Then its dual cone is 𝜎∨ =

cone
{
(1, 0)𝑡 , (−1, 2)𝑡

}
⊂ 𝑀ℚ. We obtain that Hilb(𝜎∨) =

{
(1, 0)𝑡 , (0, 1)𝑡 , (−1, 2)𝑡

}
. The

variety𝑈𝜎 will have coordinate ring ℂ[𝑆𝜎] = ℂ[𝑥, 𝑥𝑦, 𝑥𝑦2]. Thus𝑈𝜎 = 𝕍 (𝑥𝑦 − 𝑧2) ⊂
ℂ3, after a change of variables. Notice that this is the same variety as in Example 1.2.5,
and the cone 𝜎 isomorphic to the cone featured there.

1 2 3

1

2

3

(a) 𝜎 ⊂ 𝑁ℚ.

−1 1 2

1

2

3

(b) 𝜎∨ ⊂ 𝑀ℚ and its Hilbert basis.

Figure 1.8: The cones involved in the construction of𝑈𝜎 = 𝕍 (𝑥𝑦 − 𝑧2).

Now that we have shown how to recover the variety in the case of a cone, we can
discuss it in the case of a fan in general.

LetΣbe a fan whose cones lie in the vector space𝑁ℚ. Each cone 𝜎 ∈ Σ corresponds
to an affine toric variety𝑈𝜎 with coordinate ringℂ[𝑆𝜎]. The variety𝑋Σ is constructed
by gluing these 𝑆𝜎 together in a way given by the fan.

Consider 𝜎1, 𝜎2 ∈ Σ with corresponding affine toric varieties 𝑈𝜎1 and 𝑈𝜎2 . We
glue𝑈𝜎1 and𝑈𝜎2 together along𝑈𝜏, where 𝜏 = 𝜎1 ∩ 𝜎2 is the common face of 𝜎1 and



14 Chapter 1. Introduction

𝜎2. We may write the common face 𝜏 in two different ways: 𝜏 = 𝜎1 ∩𝐻𝑚 = 𝜎2 ∩𝐻−𝑚 ,
for some 𝑚 ∈ −𝜎∨1 ∩ 𝜎∨2 , where 𝐻𝑚 = {𝒙 ∈ 𝑁ℚ : 𝑚(𝒙) ≥ 0} is a half-space at height 0.
Then, we get the semigroup 𝑆𝜏, which consequently can be written in the following
two ways: 𝑆𝜏 = 𝑆𝜎1 + (−𝑚)ℤ≥0 = 𝑆𝜎2 + 𝑚ℤ≥0. Thus, we can write its associated ℂ-
algebra in two ways: ℂ[𝑆𝜏] = ℂ[𝑆𝜎1]𝜒𝑚 = ℂ[𝑆𝜎2]𝜒−𝑚 . So, there exist embeddings 𝜄1
and 𝜄2 from 𝑈𝜏 into 𝑈𝜎1 and 𝑈𝜎2 , respectively. There is also an isomorphism 𝑔12
from 𝜄1(𝑈𝜏) to 𝜄2(𝑈𝜏). The variety 𝑋Σ is finally defined to be

𝑋Σ B

(⊔
𝜎∈Σ

𝑈𝜎

)
/∼,

where 𝑎 ∈ 𝑈𝜎1 and 𝑏 ∈ 𝑈𝜎2 are identified if, for the common face 𝜏 = 𝜎1 ∩ 𝜎2, we
have that 𝑎 ∈ 𝜄1(𝑈𝜏), 𝑏 ∈ 𝜄2(𝑈𝜏), and 𝑔12(𝑎) = 𝑏.

Note that 𝑋Σ is a toric variety, with torus 𝑇 = 𝑈{0} corresponding to the 0-
dimensional cone {0} ∈ Σ. Furthermore, this construction and the main construction
of §1.2.2 are inverse to each other, forming a bĳection between fans and normal toric
varieties.

Example 1.2.11. Let Σ be the fan determined by the full-dimensional cones 𝜎1 =

cone {𝒆1, 𝒆2} and 𝜎2 = cone {𝒆1,−𝒆2}. The two cones intersect in the face 𝜏 = ℚ≥0𝒆1 =

𝜎1 ∩ 𝐻−𝑒∗2 = 𝜎2 ∩ 𝐻𝑒∗2
.

−1 1 2 3

−2

−1

1

2

Figure 1.9: The fan Σ.

We get the followingℂ-algebras:ℂ[𝑆𝜎1] = ℂ[𝑥, 𝑦],ℂ[𝑆𝜎2] = ℂ[𝑥, 𝑦−1], andℂ[𝑆𝜏] =
ℂ[𝑥, 𝑦, 𝑦−1].

Thus 𝑈𝜎1 and 𝑈𝜎2 are two copies of ℂ2 glued together along 𝑈𝜏. If we give 𝑈𝜎𝑖
coordinates (𝑥𝑖 , 𝑦𝑖), then we can describe the gluing map as follows:

𝑔12 : 𝜄1(𝑈𝜏) −→ 𝜄2(𝑈𝜏)
(𝑥1, 𝑦1) ↦−→ (𝑥1, 𝑦

−1
1 ).

Thus, 𝑋Σ = (𝑈𝜎1 ⊔ 𝑈𝜎2)/∼ where, for (𝑥𝑖 , 𝑦𝑖) ∈ 𝑈𝜎𝑖 , we define the equiva-
lence (𝑥1, 𝑦1) ∼ (𝑥2, 𝑦2) if and only if 𝑦1, 𝑦2 ≠ 0 and 𝑔12(𝑥1, 𝑦1) = (𝑥2, 𝑦2).
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(a) The dual cones 𝜎∨
𝑖
⊂ 𝑀ℚ and their Hilbert

bases.

−1 1 2 3

−2

−1

1

2

(b) 𝜏∨ ⊂ 𝑀ℚ and one choice of ℤ≥0-
generators.

Figure 1.10: The cones involved in the construction of 𝑋Σ.

We now identify each patch like follows:

(𝑥1, 𝑦1) ∈ 𝑈𝜎1 ↦−→ (𝑥1, (1 : 𝑦1)), (𝑥2, 𝑦2) ∈ 𝑈𝜎2 ↦−→ (𝑥2, (𝑦2 : 1)),

where (𝑎 : 𝑏) is a point in ℙ1, expressed in homogeneous coordinates. Since these
maps agree on𝑈𝜏, we can identify the variety 𝑋Σ = ℂ1 × ℙ1.

Example 1.2.12. Let Σ be the fan determined by the full-dimensional cones 𝜎0 =

cone {𝒆1, 𝒆2}, 𝜎1 = cone {𝒆2, (−1,−1)}. and 𝜎3 = cone {(−1,−1), 𝒆1}.

−2 −1 1 2

−2

−1

1

2

(a) The fan Σ.

−2 −1 1 2

−2

−1

1

2

(b) The dual cones 𝜎∨
𝑖
⊂ 𝑀ℚ and their Hilbert

bases.

Figure 1.11: The cones involved in the construction of 𝑋Σ.

We get the following ℂ-algebras:

ℂ[𝑆𝜎0] = ℂ[𝑥1, 𝑥2], ℂ[𝑆𝜎1] = ℂ

[
1
𝑥1
,
𝑥2
𝑥1

]
, ℂ[𝑆𝜎2] = ℂ

[
1
𝑥2
,
𝑥1
𝑥2

]
.

Thus, the𝑈𝜎𝑖 are all copies of ℂ2.
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Letting 𝜏𝑖 𝑗 B 𝜎𝑖 ∩ 𝜎𝑗 , we get three faces. Their duals 𝜏∨
𝑖 𝑗

are half-spaces, so
their corresponding varieties 𝑈𝜏𝑖 𝑗 are copies of ℂ1 × ℂ×. For each face, we obtain
a gluing map. Let 𝜄𝑖 𝑗 embed 𝑈𝜏𝑖 𝑗 into 𝑈𝜎𝑖 , and define 𝑔𝑖 𝑗 identifying 𝜄𝑖 𝑗(𝑈𝜏𝑖 𝑗 ) ⊂ 𝑈𝜎𝑖
with 𝜄 𝑗𝑖(𝑈𝜏𝑖 𝑗 ) ⊂ 𝑈𝜎𝑗 , via

𝑔01 : (𝑠, 𝑡) ↦−→
(

1
𝑠
,
𝑡

𝑠

)
𝑔12 : (𝑠, 𝑡) ↦−→

(
𝑠

𝑡
,

1
𝑡

)
𝑔20 : (𝑠, 𝑡) ↦−→

(
𝑡

𝑠
,

1
𝑠

)
.

We can finally make the following identifications:

(𝑠, 𝑡) ∈ 𝑈𝜎0 ↦−→ (1 : 𝑠 : 𝑡), (𝑠, 𝑡) ∈ 𝑈𝜎1 ↦−→ (𝑠 : 1 : 𝑡), (𝑠, 𝑡) ∈ 𝑈𝜎2 ↦−→ (𝑠 : 𝑡 : 1),

where (𝑎 : 𝑏 : 𝑐) is a point in ℙ2 given by homogeneous coordinates. These agree on
each intersection, and therefore 𝑋Σ = ℙ2.

1.2.4 Toric divisors
Fix a normal projective toric variety 𝑋 with corresponding (complete) fanΣ over𝑁ℚ.
To each ray 𝜌 of Σ, there is a corresponding torus-invariant irreducible divisor 𝐷𝜌.
A T-Weil divisor 𝐷 of 𝑋 is a formal sum

∑
𝜌∈Σ(1) 𝑎𝜌𝐷𝜌, where the 𝑎𝜌 are integers. We

refer to the lattice of all T-Weil divisors of 𝑋 as Div𝑇(𝑋).
We now discuss several properties and types of T-Weil divisors. We begin with

Cartier divisors.

Proposition 1.2.13 (c.f. [29, Theorem 4.2.8]). Let 𝐷 =
∑

𝜌∈Σ(1) 𝑎𝜌𝐷𝜌 be a T-Weil divisor
on 𝑋. Then 𝐷 is Cartier if and only if for all maximal cones 𝜎 ∈ Σ(𝑑), there exists some
lattice point 𝑢𝜎 ∈ 𝑀 such that, for all rays 𝜌 ∈ 𝜎(1), we have that 𝑢𝜎(𝒗𝜌) = −𝑎𝜌, where 𝒗𝜌

is the primitive ray generator of 𝜌.

The collection {𝑢𝜎}𝜎∈Σ(𝑑) is called the Cartier data of𝐷. The lattice of all Cartier T-Weil
divisors of 𝑋 is referred to as CDiv𝑇(𝑋).

Let 𝜒𝑚 be a character of the torus 𝑇𝑁 , with 𝑚 ∈ 𝑀. Then we may associate to it a
T-Weil divisor defined as follows:

div(𝜒𝑚) B
∑

𝜌∈Σ(1)
𝑚(𝒗𝜌)𝐷𝜌 ,

where 𝒗𝜌 is the primitive ray generator of 𝜌. These are the principle T-Weil divisors
on 𝑋. Note that div(𝜒𝑚) is Cartier as its Cartier data is simply 𝑢𝜎 = −𝑚 for all 𝜎 ∈
Σ(𝑑). Thus, we obtain a surjection from 𝑀 into CDiv𝑇(𝑋).

Next, the divisor class group of 𝑋 is Cl(𝑋) B Div(𝑋)/Div0(𝑋) and the Picard
group of 𝑋 is Pic(𝑋) B CDiv(𝑋)/Div0(𝑋), where Div0(𝑋) is the set of principal
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divisors of 𝑋. In fact, by [29, Theorem 4.1.3], we obtain an exact sequence:

𝑀 → Div𝑇(𝑋) → Cl(𝑋) → 0.

The analogous statement holds for the torus-invariant Cartier divisors and the Picard
group.

Next, we may also associate to a T-Weil divisor a polytope.

Definition 1.2.14. Let 𝐷 =
∑

𝜌∈Σ(1) 𝑎𝜌𝐷𝜌 be a T-Weil divisor on 𝑋. Then the polytope
of sections of 𝐷 is the polytope in 𝑀ℚ defined as follows:

𝑃𝐷 B
{
𝑢 ∈ 𝑀ℚ : 𝑢(𝒗𝜌) ≥ −𝑎𝜌 , ∀𝜌 ∈ Σ(1)

}
,

where 𝒗𝜌 is the primitive ray generator of 𝜌.

We now discuss basepoint-free divisors and ample divisors, which can be char-
acterised in terms the polytope of sections.

Proposition 1.2.15. Let 𝐷 be a T-Weil divisor on 𝑋 that is Cartier. Then, the following
statements hold.

(i) [29, Theorem 6.1.10] 𝐷 is basepoint free if and only if the vertices of 𝑃𝐷 are the lattice
points 𝑢𝜎 forming the Cartier data of 𝐷.

(ii) [29, Proposition 6.1.4, Corollary 6.1.15] 𝐷 is ample if and only if 𝐷 is basepoint free
and the normal fan of 𝑃𝐷 is Σ.

Let 𝐷 be a T-Weil divisor on 𝑋. It is called ℚ-Cartier if some multiple of it is
Cartier. It can be seen that if 𝐷 is ℚ-Cartier, then it is ample if and only if the normal
fan of 𝑃𝐷 is Σ. Note that the vertices of such a 𝑃𝐷 are not necessarily lattices points.

This naturally brings us onto the definition of several important types of varieties,
Gorenstein varieties and Fano varieties, which we cover in the next subsection.

1.2.5 Toric Fano varieties
Fano varieties are an important class of varieties, which have been extensively studied
in algebraic geometry. In some sense, they are the building blocks of all other
varieties. It has been proven that, in each dimension, there are finitely many smooth
Fano varieties, up to deformation. In low dimensions (i.e. 𝑑 ≤ 3), these varieties have
been completely classified. We recall their general definition below.

Definition 1.2.16. Let 𝑋 be a normal projective variety. Then 𝑋 is called Fano if the
anticanonical divisor −𝐾𝑋 is ample.

Later, in §1.3, we discuss one recent approach to the classification of Fano varieties.
But for the rest of this subsection, we focus on toric Fano varieties. LetΣ be a complete
fan in𝑁ℚ and𝑋 = 𝑋Σ be the corresponding projective toric variety. The anticanonical
divisor on 𝑋 is simply the sum of the T-divisors of 𝑋, i.e. −𝐾𝑋 =

∑
𝜌∈Σ(1)𝐷𝜌. Let 𝑃 ⊂
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𝑁ℚ be the convex hull of the primitive ray generators of Σ. Then, the polytope of
sections of −𝐾𝑋 is simply the dual of 𝑃, i.e. 𝑃−𝐾𝑋 = 𝑃∗.

Now, for 𝑋 to be Fano, we need −𝐾𝑋 to be ample. It can be seen that −𝐾𝑋 is
ample if and only if the normal fan of 𝑃∗ coincides with Σ. But, this is equivalent
to the vertices of 𝑃 being exactly the primitive ray generators of Σ. Such fans Σ

are in one-to-one correspondence with Fano polytopes 𝑃. Thus, toric Fano varieties
(up to isomorphism) are in one-to-one correspondence with Fano polytopes (up
to GL2(ℤ)-equivalence).

We now introduce several classes of Fano polytopes. In many cases, it is con-
venient to define a property locally first, at the level of the maximal cones in the
corresponding fan.

Definition 1.2.17. Let 𝜎 ⊂ 𝑁ℚ be a cone. Then, 𝜎 is called ℚ-Gorenstein if all its
primitive ray generators lie on a common hyperplane. Furthermore, if 𝜎 is ℚ-
Gorenstein then its Gorenstein index is the height of the common hyperplane of its
primitive ray generators. Moreover, 𝜎 is called Gorenstein if it has Gorenstein index 1.

All Fano polytopes are ℚ-Gorenstein. A Fano polytope is Gorenstein if all its
maximal cones are Gorenstein. This is equivalent to 𝑃 being reflexive, i.e. the dual
polytope 𝑃∗ is a lattice polytope, i.e. each facet of 𝑃 is supported by a hyperplane of
height 1.

Definition 1.2.18. Let 𝜎 ⊂ 𝑁ℚ be a cone. Then, 𝜎 is called smooth if its primitive ray
generators extend to a basis of 𝑁 . It is called simplicial if the number of primitive ray
generators of 𝜎 is equal to its dimension. A Fano polytope is smooth (resp. simplicial)
if all its maximal cones are smooth (resp. simplicial).

Definition 1.2.19. Let 𝜎 ⊂ 𝑁ℚ be a ℚ-Gorenstein cone, with common hyperplane 𝐻.
Then, 𝜎 is called terminal if the only lattice points of 𝜎 on or below 𝐻 are exactly its
primitive ray generators and the origin. It is called canonical if the only lattice point
strictly below 𝐻 is the origin. A Fano polytope is terminal (resp. canonical) if all its
maximal cones are terminal (resp. canonical).

Remark 1.2.20. An equivalent condition for the Fano polytope 𝑃 being terminal is if
the only lattice points of 𝑃 are the origin and its vertices, i.e. 𝑃 ∩ 𝑁 = {0} ∪ 𝒱(𝑃).
An equivalent condition for the Fano polytope 𝑃 being canonical is if the only lattice
point in the interior of 𝑃 is the origin, i.e. int(𝑃) ∩ 𝑁 = {0}.

Finally, these properties form a nice chain of implications, as shown in Figure 1.12.
We remark that for dimension 𝑑 = 2, some of these properties coincide:

1. All two-dimensional cones are simplicial; thus, they are also all ℚ-Gorenstein.

2. All terminal cones are smooth.

3. All canonical cones are Gorenstein.

The first coincidence follows from the fact that all one-dimensional polytopes are
simplices (as they are line segments). The last two follow from the fact that there is
a unique empty lattice simplex, up to isomorphism.
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Figure 1.12: Chain of implications.

1.3 Mirror symmetry

1.3.1 Overview
A new approach to the classification of Fano manifolds was initiated by Coates–
Corti–Galkin–Golyshev–Kasprzyk [23], which has become known as the Fanosearch
programme. Following this programme, a Laurent polynomial 𝑓 is said to be mirror
dual to a Fano manifold 𝑋 if the classical period 𝜋 𝑓 of 𝑓 agrees with the regular-
ized quantum period 𝐺𝑋 of 𝑋; see [23] for details. This correspondence is not
unique: a Fano manifold can have (infinitely) many different mirror dual Laurent
polynomials, and these Laurent polynomials are expected to be related via a com-
binatorial process called mutation [2]. It is conjectured that Fano manifolds, up
to ℚ-Gorenstein-deformation, are in bĳective correspondence with certain Laurent
polynomials, up to mutation.

Crucial to this approach is the Newton polytope 𝑃 of the Laurent polynomial 𝑓 .
This polytope 𝑃 is Fano, i.e. it is a convex lattice polytope containing the origin in
its strict interior, and has primitive vertices [64]. We thus enter the world of toric
geometry. The polytope 𝑃 corresponds to a (possibly singular) toric Fano variety 𝑋𝑃 ,
which is expected to be a toric degeneration of the original Fano manifold 𝑋. The
notion of mutation can be extended from Laurent polynomials to Fano polytopes,
which we detail in §1.3.2. Ilten showed that if two Fano polytopes 𝑃 and𝑄 are related
by mutation, then the corresponding toric varieties 𝑋𝑃 and 𝑋𝑄 are deformation-
equivalent [56].

In [3], the Fanosearch programme was specialised to orbifold del Pezzo surfaces;
that is, del Pezzo surfaces with at worst cyclic quotient singularities. There are
infinitely many of these surfaces, even up to ℚ-Gorenstein-deformation; however,
bounding the possible basket of singularities results in a finite classification. For
example, an empty basket recovers the classical 10 smooth del Pezzo surfaces, up
to ℚ-Gorenstein-deformation.

Kasprzyk–Nill–Prince [66] introduced the notion of minimality for Fano poly-
gons. A Fano polygon is called minimal if, out of all polygons related to it by a
single mutation, its number of lattice points is minimal. That is, minimality is a
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local property, and there can be multiple minimal polygons in a single mutation-
equivalence class. Using this purely combinatorial definition, they found exactly 26
mutation-equivalence classes of Fano polygons whose baskets contain only 1

3(1, 1)
singularities; these agree with 26 of the del Pezzo surfaces with 1

3(1, 1) singularities
classified by Corti–Heuberger [28].

One of the main results of [66] is the following:

Theorem 1.3.1 ([66, Theorem 6.3]). There are finitely many minimal Fano polygons, up to
isomorphism, with a given basket of singularities.

As a consequence, the problem of classifying Fano polygons (up to mutation) with
a given basket can be reduced to classifying finitely many minimal Fano polygons;
this has been implemented algorithmically by Cavey–Kutas [17]. The final problem
in the classification is then to tease apart the minimal Fano polygons which are in
different mutation-equivalence classes.

1.3.2 Combinatorial mutation
In this subsection, we will introduce in more detail the notion of combinatorial mu-
tation. We follow [3] and give the simplified definition for dimension two. First, we
find it useful to distinguish between several types of edges when studying mutations
of polygons.

Definition 1.3.2. Let 𝐸 be an edge of an IP polygon. Denote by ℓ𝐸 the (lattice) length
of 𝐸 and by ℎ𝐸 the height of 𝐸. If ℓ𝐸 ≥ ℎ𝐸, then 𝐸 is called long; otherwise, we call 𝐸
short. Further, if the lattice length ℓ𝐸 divides the height ℎ𝐸, then 𝐸 is called pure.

As an operation, (combinatorial) mutation takes a polygon and some data, and
then outputs another polygon. We first recall what sort of compatible data can be
chosen for a given polygon.

Definition 1.3.3 ([3, page 2]). Let 𝑃 ⊂ 𝑁ℚ be an IP polygon. Let 𝑤 ∈ 𝑀 be a
primitive vector and 𝒅 ∈ 𝑁 be a non-zero lattice point. Suppose that the following
two conditions hold:

1. There is a long edge of 𝑃 with primitive inner normal vector 𝑤;

2. 𝑤(𝒅) = 0.

Then the tuple (𝑤, 𝒅) is mutation data for 𝑃.

We may now recall the definition of mutation for polygons.

Definition 1.3.4 ([3, pages 2-3]). Let 𝑃 ⊂ 𝑁ℚ be an IP polygon and let (𝑤, 𝒅) be some
mutation data for 𝑃. Let 𝒗1, 𝒗2, . . . be the vertices of 𝑃, labelled so that each pair of
adjacent vertices forms an edge of 𝑃 and so that 𝒗1 is maximal over 𝑃 with respect
to 𝑤. Let 1 < 𝑖 < 𝑚 + 1 be such that [𝒗𝑖 , 𝒗𝑖+1] is the long edge of 𝑃 with primitive
inner normal 𝑤. We may assume that 𝒗𝑖+1 − 𝒗𝑖 is a positive multiple of 𝒅; otherwise,
we reverse the order for labelling the vertices. We distinguish two cases:
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(i) 𝑃 has 𝑚 vertices and 𝒗1 is the unique maximiser for 𝑤 over 𝑃.

(ii) 𝑃 has 𝑚 + 1 vertices and 𝒗1 and 𝒗𝑚+1 are maximiser for 𝑤 over 𝑃.

In case (i), we set 𝒗𝑚+1 B 𝒗1. Then, in both cases, the mutation of 𝑃 with respect to
the mutation data (𝑤, 𝒅) is the polygon mut𝑤(𝑃, 𝒅) with vertices{

𝒗 𝑗 , 1 ≤ 𝑗 ≤ 𝑖

𝒗 𝑗 + 𝑤(𝒗 𝑗) · 𝒅, 𝑖 < 𝑗 ≤ 𝑚 + 1.
(1.1)

We now collect some relevant facts about mutations.

Lemma 1.3.5. Let 𝑃 ⊂ 𝑁ℚ be an IP polygon and (𝑤, 𝒅) be mutation data for 𝑃. Then the
following hold.

1. [2, Proposition 3.11] Being Fano is preserved under mutation, i.e. 𝑃 is Fano if and only
if mut𝑤(𝑃, 𝒅) is Fano;

2. [2, Lemma 3.6] Mutation is invertible; in particular, we have

mut𝑤(mut−𝑤(𝑃, 𝒅), 𝒅) = 𝑃;

3. [3] Mutations can be broken down into primitive mutations, i.e. if (𝑤, (𝑛 + 1)𝒅) is
mutation data for 𝑃, for some positive integer 𝑛, then

mut𝑤(𝑃, (𝑛 + 1)𝒅) = mut𝑤(mut𝑤(𝑃, 𝑛𝒅), 𝒅).

Definition 1.3.6. Let 𝑃, 𝑄 ⊂ 𝑁ℚ be Fano polygons. They are mutation-equivalent if
there exists a sequence of mutations connecting them, i.e. there exists 𝑃0, . . . , 𝑃𝑠
such that 𝑃0 = 𝑃, 𝑃𝑠 = 𝑄, and 𝑃𝑖+1 = mut𝑤𝑖 (𝑃𝑖 , 𝒅𝑖), where (𝑤𝑖 , 𝒅𝑖) is mutation data
for 𝑃𝑖 , for all 𝑖 = 0, . . . , 𝑠 − 1.

1.3.3 Mutation invariants
The first invariant of this subsection is the singularity content. We recall what a
cyclic quotient singularity is for surfaces.

Definition 1.3.7 ([88]). Let 𝑟 and 𝑎 be coprime integers. Consider the affine variety
𝑈 = ℂ2/ℤ𝑟 , where ℤ𝑟 is the cyclic group of order 𝑟 generated by the 𝑟-th roots of
unity in ℂ× and 𝜂 ∈ ℤ𝑟 acts on (𝑥, 𝑦) ∈ ℂ2 via

𝜂 · (𝑥, 𝑦) = (𝜂1𝑥, 𝜂𝑎𝑦).

Then the orbit of (0, 0) in𝑈 is a called a cyclic quotient singularity of type 1/𝑟(1, 𝑎).

Remark 1.3.8. The variety 𝑈 in the above definition is in fact toric. It corresponds,
up to isomorphism, to the cone generated by (1, 0) and (−𝑎, 𝑟).
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We now begin defining singularity content at the local level, i.e. at the level of
cones/edges.

Definition 1.3.9 ([62, Definition 2.4]). Let 𝜎 ⊂ 𝑁ℚ be a cone with singularity
type 1/𝑟(1, 𝑎). Set ℓ = gcd(𝑟, 𝑎 + 1). Thus, we can write 𝑟 = ℓ ℎ and 𝑎 = ℓ𝛼 − 1, for
some positive coprime integers ℎ and 𝛼. Now, by the division algorithm, ℓ = 𝑛𝜎ℎ+ ℓ̃ ,
for some unique integers 𝑛𝜎 ≥ 0 and 0 ≤ ℓ̃ < ℎ. The quantity 𝑛𝜎 is referred to as the
number of primitive T-singularities of 𝜎. The residue of 𝜎 is defined as

res(𝜎) B
{
∅, ℓ̃ = 0
1
ℓ̃ ℎ
(1, ℓ̃𝛼 − 1), ℓ̃ > 0.

The singularity content of 𝜎 is defined as SC(𝜎) B (𝑛𝜎 , res(𝜎)).

We can now define it at the global level, i.e. at the level of fans/polygons.

Definition 1.3.10 ([62, Definition 3.1]). Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon. The num-
ber 𝑛𝑃 of primitive T-singularities of 𝑃 is the sum over all edges 𝐸 of 𝑃 of the
number 𝑛𝜎𝐸 of primitive T-singularities of 𝜎𝐸. The basket of R-singularities ℬ𝑃 of 𝑃
is the cyclically ordered set of non-empty residues res(𝜎𝐸), running over all edges 𝐸
of 𝑃. The singularity content of 𝑃 is SC(𝑃) B (𝑛𝑃 ,ℬ𝑃).

Theorem 1.3.11 ([62, Proposition 3.6]). The singularity content of two mutation-equivalent
Fano polygons are identical.

The next invariant to consider is the Ehrhart series of the dual polygon.

Definition 1.3.12. Let 𝑃 ⊂ 𝑁ℚ be a polygon. The Ehrhart series Ehr𝑃(𝑡) of 𝑃 is defined
as the formal power series

Ehr𝑃(𝑡) B
∞∑
𝑘=0

|𝑘𝑃 ∩ 𝑁 | 𝑡𝑘 .

In [2], it was shown that if we apply a mutation to a Fano polytope 𝑃, its dual
polytope 𝑃∗ is transformed by a piecewise linear function. Thus, it follows that the
Ehrhart series of the dual polytope is invariant under mutation. It also follows that
the volume of 𝑃∗, i.e. the anticanonical degree of 𝑋𝑃 , is invariant under mutation.

Proposition 1.3.13 (cf. [2, Proposition 3.15]). Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon. Then the
Ehrhart series Ehr𝑃∗(𝑡) of its dual polygon 𝑃∗ is invariant under mutation of 𝑃.

In [62, Corollary 3.5], it was shown that the Ehrhart series Ehr𝑃∗(𝑡) is completely
determined by the singularity content of 𝑃.
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Chapter 2

Nearly Gorenstein Polytopes

This chapter is based on joint work with Max Kölbl, Koji Matsushita, and Sora
Miyashita, which appears in [38].

2.1 Introduction
Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope and 𝐶𝑃 ⊂ ℝ𝑑+1 be the cone of 𝑃. Then the Ehrhart
ring 𝐴(𝑃) of 𝑃 is defined by ℂ[𝐶𝑃 ∩ ℤ𝑑+1], where each lattice point (𝑥1, . . . , 𝑥𝑑 , 𝑘) ∈
ℤ𝑑+1 is identified with a Laurent monomial 𝑡𝑥1

1 · · · 𝑡𝑥𝑑
𝑑
𝑠𝑘 . This classical construction

allows for the study of ring theoretic notions via polytopes and combinatorics.
Cohen-Macaulay rings and Gorenstein rings play a central role in commutative

algebra. In the study of rings which are Cohen-Macaulay but not Gorenstein, it
has been useful to water down the strong property of being Gorenstein; in fact,
many generalised notions of Gorensteinness have been explored. There are nearly
Gorenstein rings, level rings, and almost Gorenstein rings, to name just a few examples.

In this chapter, we primarily focus on the nearly Gorenstein property, as intro-
duced in [42]. Let 𝑅 be a Cohen-Macaulay ring which is a finitely generated ℕ-
graded ℂ-algebra. The definition of nearly Gorenstein arises from studying the
non-Gorenstein locus of 𝑅, which is determined by the trace tr(𝜔𝑅) of the canonical
module 𝜔𝑅 of 𝑅 (see Definition 2.2.1). Explicitly, 𝑅 is Gorenstein if and only if this
trace coincides with the ring itself, i.e. tr(𝜔𝑅) = 𝑅. We call 𝑅 nearly Gorenstein if this
trace contains the (unique) maximal graded ideal 𝔪 of 𝑅, i.e. 𝔪 ⊆ tr(𝜔𝑅).

Recently, the nearly Gorenstein property has been studied for certain special
cases, such as Hibi rings [42, Theorem 5.4], edge rings associated to edge poly-
topes [46], numerical semigroup rings [41], and projective monomial curves [80].
Moreover, ℎ-vectors of nearly Gorenstein homogeneous affine semigroup rings are
also studied [79, Theorem 4.4].

It is a classical result that the lattice polytopes whose Ehrhart rings are Gorenstein
are those for which there exists an integer 𝑘 such that 𝑘𝑃 is reflexive [11], after an
appropriate translation. In this chapter, we study the nearly Gorensteinness of the
Ehrhart rings arising from general lattice polytopes.

In Section 2.3, we discuss some relations between nearly Gorensteinness of
Ehrhart rings and their polytopes. Before we discuss the main results of this section,
we must fix some notation and recall a few notions. We fix a lattice polytope 𝑃 and
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its facet presentation:

𝑃 =
{
𝑥 ∈ ℝ𝑑 : 𝑛𝐹(𝑥) ≥ −ℎ𝐹 for all 𝐹 ∈ ℱ (𝑃)

}
,

where each height ℎ𝐹 is an integer and each inner normal vector 𝑛𝐹 ∈ (ℤ𝑑)∗ is a
primitive lattice point. For a lattice polytope 𝑃 ⊂ ℝ𝑑, we define its floor polytope
as ⌊𝑃⌋ B conv(int(𝑃) ∩ ℤ𝑑). We also introduce the remainder polytope {𝑃} of 𝑃,
whose definition involves the pushing in and out of its facets in a particular way
(see Definition 2.3.3 for the explicit details). These polytopes are central to our
study of nearly Gorenstein polytopes. Also of importance is the codegree 𝑎𝑃 of a
lattice polytope 𝑃, which is defined as 𝑎𝑃 B min

{
𝑘 ∈ ℕ : int(𝑘𝑃) ∩ℤ𝑑 ≠ ∅

}
, i.e. the

minimum positive integer you have to dilate 𝑃 by until its interior contains lattice
points [10].

We now give the main results of Section 2.3. We say that a lattice polytope is nearly
Gorenstein if its Ehrhart ring is nearly Gorenstein. Our first theorem gives a necessary
condition and a sufficient condition for a lattice polytope to be nearly Gorenstein.

Theorem 2.1.1 (Proposition 2.3.5 and Theorem 2.3.8). Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope
with codegree 𝑎.

1. If 𝑃 is nearly Gorenstein, then it has the Minkowski decomposition 𝑃 = ⌊𝑎𝑃⌋ + {𝑃}.

2. Conversely, if𝑃 = ⌊𝑎𝑃⌋+{𝑃}, then there exists some𝐾 such that, for all integers 𝑘 ≥ 𝐾,
the polytope 𝑘𝑃 is nearly Gorenstein.

The next main theorem gives facet presentations for the floor and remainder
polytopes appearing in the Minkowski decomposition of a nearly Gorenstein poly-
tope.

Theorem 2.1.2 (Theorem 2.3.13). Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope with codegree 𝑎.
Suppose that 𝑃 = ⌊𝑎𝑃⌋ + {𝑃}. Then

⌊𝑎𝑃⌋ =
{
𝑥 ∈ ℝ𝑑 : 𝑛𝐹(𝑥) ≥ 1 − 𝑎ℎ𝐹 for all 𝐹 ∈ ℱ (𝑃)

}
and

{𝑃} =
{
𝑥 ∈ ℝ𝑑 : 𝑛𝐹(𝑥) ≥ (𝑎 − 1)ℎ𝐹 − 1 for all 𝐹 ∈ ℱ (𝑃)

}
.

Furthermore, if ⌊𝑃⌋ ≠ ∅, then {𝑃} is reflexive.

These results allow us to prove the final main theorem of Section 2.3. It reveals
that the primitive inner normal vectors of a nearly Gorenstein polytope come from
boundary points of reflexive polytopes.

Theorem 2.1.3. Let 𝑃 ⊂ ℝ𝑑 be a nearly Gorenstein polytope. Then there exists a reflexive
polytope 𝑄 ⊂ ℝ𝑑 such that

𝑃 =
{
𝑥 ∈ ℝ𝑑 : 𝑛(𝑥) ≥ −ℎ𝑛 for all 𝑛 ∈ 𝜕𝑄∗ ∩ (ℤ𝑑)∗

}
,

where ℎ𝑛 are integers. Moreover, the inequalities defined by 𝑛 ∈ 𝒱(𝑄∗) are irredundant.
Furthermore, the number of facets of a nearly Gorenstein polytope is bounded by a constant
depending on the dimension 𝑑.
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We then use Theorem 2.1.3 to derive an efficient method for constructing nearly
Gorenstein polytopes. Using this method, we find an example of a nearly Gorenstein
polytope which does not have a Minkowski decomposition into Gorenstein polytopes
(Example 2.3.19). We conclude the section by studying Minkowski indecomposable
nearly Gorenstein polytopes; in particular, we show that they are in fact Gorenstein.

In Section 2.4, we study nearly Gorenstein 0/1-polytopes. This family of poly-
topes includes many subfamilies of polytopes which arise in combinatorics, such
as order polytopes of posets and base polytopes from graphic matroids. Previous
work has studied nearly Gorensteinness of Hibi rings [42] and of Ehrhart rings of
stable set polytopes arising from perfect graphs [46, 81]. The main result of this
section generalises these previous results by characterising a large class of nearly
Gorenstein 0/1-polytopes:
Theorem 2.1.4 (Theorem 2.4.2). Let 𝑃 be a 0/1-polytope which has the integer decompo-
sition property. Then, 𝑃 is nearly Gorenstein if and only if 𝑃 = 𝑃1 × · · · × 𝑃𝑠 , for some
Gorenstein 0/1-polytopes 𝑃1, . . . , 𝑃𝑠 which satisfy |𝑎𝑃𝑖 − 𝑎𝑃𝑗 | ≤ 1, where 𝑎𝑃𝑖 and 𝑎𝑃𝑗 are the
respective codegrees of 𝑃𝑖 and 𝑃𝑗 , for 1 ≤ 𝑖 < 𝑗 ≤ 𝑠.

In Subsection 2.4.1, we go into more detail how Theorem 2.1.4 extends previous
results which appear in the literature. Subsequently, we obtain a number of our
own interesting corollaries from Theorem 2.1.4. For example, we show that every
nearly Gorenstein 0/1-polytope which has the integer decomposition property is
level (Corollary 2.4.4). Furthermore, we characterise nearly Gorenstein edge poly-
topes which have the integer decomposition property (Corollary 2.4.5) and nearly
Gorenstein base polytopes arising from graphic matroids (Corollary 2.4.11).

2.2 Preliminaries and auxiliary lemmas

2.2.1 Nearly Gorenstein ℂ-algebras
Let 𝑅 be a finitely generated ℕ-graded ℂ-algebra with unique graded maximal
ideal 𝔪. We will always assume that 𝑅 is Cohen-Macaulay and admits a canonical
module 𝜔𝑅. We call 𝑎(𝑅) the 𝑎-invariant of 𝑅, i.e.

𝑎(𝑅) = −min {𝑖 ∈ ℕ : (𝜔𝑅)𝑖 ≠ 0} ,

where (𝜔𝑅)𝑖 is the 𝑖-th graded piece of 𝜔𝑅.
Definition 2.2.1. For a graded 𝑅-module𝑀, let tr𝑅(𝑀) be the sum of the ideals 𝜙(𝑀)
over all 𝜙 ∈ Hom𝑅(𝑀, 𝑅), i.e.

tr𝑅(𝑀) =
∑

𝜙∈Hom𝑅(𝑀,𝑅)
𝜙(𝑀).

When there is no risk of confusion about the ring, we simply write tr(𝑀).
Definition 2.2.2 ([42, Definition 2.2]). We say that 𝑅 is nearly Gorenstein if tr(𝜔𝑅) ⊇ m.
In particular, 𝑅 is Gorenstein if and only if tr(𝜔𝑅) = 𝑅.
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Proposition 2.2.3 ([42, Lemma 1.1]). Let 𝑅 be a ring and 𝐼 an ideal of 𝑅 containing a
non-zero divisor of 𝑅. Let 𝑄(𝑅) be the total quotient ring of fractions of 𝑅 and set 𝐼−1 :=
{𝑥 ∈ 𝑄(𝑅) : 𝑥𝐼 ⊆ 𝑅} . Then

tr(𝐼) = 𝐼 · 𝐼−1.

Definition 2.2.4 ([95, Chapter III, Proposition 3.2]). We say that 𝑅 is level if all the
degrees of the minimal generators of 𝜔𝑅 are the same.

Let 𝑅 =
⊕

𝑛≥0 𝑅𝑛 and 𝑆 =
⊕

𝑛≥0 𝑆𝑛 be standardℂ-algebras and define their Segre
product 𝑅#𝑆 as the graded algebra:

𝑅#𝑆 = (𝑅0 ⊗ℂ 𝑆0) ⊕ (𝑅1 ⊗ℂ 𝑆1) ⊕ · · · ⊆ 𝑅 ⊗ℂ 𝑆.

We denote a homogeneous element 𝑥 ⊗ℂ 𝑦 ∈ 𝑅𝑖 ⊗ℂ 𝑆𝑖 by 𝑥#𝑦.

Proposition 2.2.5 ([43, Proposition 2.2 and Theorem 2.4]). Let 𝑅1, · · · , 𝑅𝑠 be standard
graded Cohen-Macaulay toric ℂ-algebras which have Krull dimension at least 2. Let 𝑅 =

𝑅1#𝑅2# · · · #𝑅𝑠 be the Segre product. Then the following is true.

𝜔𝑅 = 𝜔𝑅1#𝜔𝑅2# · · · #𝜔𝑅𝑠 and 𝜔−1
𝑅 = 𝜔−1

𝑅1
#𝜔−1

𝑅2
# · · · #𝜔−1

𝑅𝑠
.

Lemma 2.2.6. Let 𝑅1, . . . , 𝑅𝑠 be homogeneous normal affine semigroup rings over infinite
field ℂ which have Krull dimension at least 2. Let 𝑅 = 𝑅1# · · · #𝑅𝑠 be the Segre products.
Then the following are true:

(1) If 𝑅 is nearly Gorenstein, then 𝑅𝑖 is nearly Gorenstein for all 𝑖.

(2) If 𝑅𝑖 is level for all 𝑖, then 𝑅 is level.

Proof. It suffices to prove the case 𝑠 = 2. Let 𝒙1, . . . , 𝒙𝑛 beℂ-basis of (𝑅1)1 and 𝒚1, . . . , 𝒚𝑚
be a ℂ-basis of(𝑅2)1.

(1): In this case, by using Proposition 2.2.5, we get 𝜔𝑅 � 𝜔𝑅1#𝜔𝑅2 and 𝜔−1
𝑅
�

𝜔−1
𝑅1

#𝜔−1
𝑅2

. Then we may identify 𝜔𝑅 and 𝜔𝑅
−1 with 𝜔𝑅1#𝜔𝑅2 and 𝜔−1

𝑅1
#𝜔−1

𝑅2
, respec-

tively.
It is enough to show that 𝒙𝑖 ∈ tr(𝜔𝑅1) for any 1 ≤ 𝑖 ≤ 𝑛. Since 𝑅 is nearly Goren-

stein, there exist homogeneous elements 𝒗1#𝒗2 ∈ 𝜔𝑅1#𝜔𝑅2 and 𝒖1#𝒖2 ∈ 𝜔−1
𝑅1

#𝜔−1
𝑅2

such that 𝒙𝑖#𝒚1 = (𝒗1#𝒗2)(𝒖1#𝒖2) = (𝒗1𝒖1#𝒗2𝒖2), by [79, Proposition 4.2]. Thus, we
get 𝒙𝑖 = 𝒗1𝒖1 ∈ tr(𝜔𝑅1), so 𝑅1 is nearly Gorenstein. In the same way as above, we can
show that 𝑅2 is also nearly Gorenstein.

(2): First, 𝜔𝑅 = 𝜔𝑅1#𝜔𝑅2 by Proposition 2.2.5. Let 𝑎1 and 𝑎2 be the 𝑎-invariants
of 𝑅1 and 𝑅2, respectively, and assume that 𝑎1 ≤ 𝑎2. Since 𝑅1 and 𝑅2 are level,
𝜔𝑅1 � ⟨ 𝑓1, · · · , 𝑓𝑟⟩𝑅1 and 𝜔𝑅2 � ⟨𝑔1, · · · , 𝑔𝑙⟩𝑅2 where deg 𝑓𝑖 = −𝑎1 and deg 𝑔𝑗 = −𝑎2
for all 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑙. Thus, since 𝜔𝑅 = 𝜔𝑅1#𝜔𝑅2 , we may identify 𝜔𝑅

with ⟨ 𝑓1, · · · , 𝑓𝑟⟩𝑅1#⟨𝑔1, · · · , 𝑔𝑙⟩𝑅2. We set

𝑉 :=

{
𝒚𝒃𝑔𝑗 : 1 ≤ 𝑗 ≤ 𝑙 , 𝒂 ∈ ℕ𝑚 ,

𝑚∑
𝑖=1

𝑏𝑖 = 𝑎2 − 𝑎1

}
,
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where 𝒚𝒂 := 𝒚𝑎1
1 · · · 𝒚𝑎𝑚𝑚 . Then 𝜔𝑅 = ⟨ 𝑓𝑖#𝑣 : 1 ≤ 𝑖 ≤ 𝑟, 𝑣 ∈ 𝑉⟩𝑅. Therefore, 𝑅 is

level. □

2.2.2 Lattice polytopes and Ehrhart rings
Throughout this subsection, let 𝑃 ⊂ ℝ𝑑 be a lattice polytope, ℱ (𝑃) be the set of facets
of 𝑃, and 𝒱(𝑃) be the set of vertices of 𝑃. Moreover, recall that we always assume 𝑃
is full-dimensional and has the facet presentation

𝑃 =
{
𝑥 ∈ ℝ𝑑 : 𝑛𝐹(𝑥) ≥ −ℎ𝐹 for all 𝐹 ∈ ℱ (𝑃)

}
, (2.1)

where each height ℎ𝐹 is an integer and each inner normal vector 𝑛𝐹 ∈ (ℤ𝑑)∗ is a
primitive lattice point, i.e. a lattice point such that the greatest common divisor of its
coordinates is 1.

Let 𝐶𝑃 be the cone of 𝑃, that is,

𝐶𝑃 = ℝ≥0(𝑃 × {1}) =
{
(𝑥, 𝑘) ∈ ℝ𝑑+1 : 𝑛𝐹(𝑥) ≥ −𝑘ℎ𝐹 for all 𝐹 ∈ ℱ (𝑃)

}
.

We define the Ehrhart ring of 𝑃 as

𝐴(𝑃) = ℂ[𝐶𝑃 ∩ℤ𝑑+1] = ℂ[𝒕𝑥𝑠𝑘 : 𝑘 ∈ ℕ and 𝑥 ∈ 𝑘𝑃 ∩ℤ𝑑],

where 𝒕𝑥 = 𝑡𝑥1
1 · · · 𝑡𝑥𝑑

𝑑
and 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝑘𝑃∩ℤ𝑑. Note that the Ehrhart ring of 𝑃 is

a normal affine semigroup ring, and hence it is Cohen-Macaulay. Moreover, we can
regard 𝐴(𝑃) as an ℕ-graded ℂ-algebra by setting deg(𝒕𝑥𝑠𝑘) = 𝑘 for each 𝑥 ∈ 𝑘𝑃∩ℤ𝑑.

We also define another affine semigroup ring, the toric ring of 𝑃, as

ℂ[𝑃] = ℂ[𝒕𝑥𝑠 : 𝑥 ∈ 𝑃 ∩ℤ𝑑].

The toric ring of 𝑃 is a standard ℕ-graded ℂ-algebra.
It is known that ℂ[𝑃] = 𝐴(𝑃) if and only if 𝑃 has the integer decomposition

property. Here, we say that 𝑃 has the integer decomposition property (i.e. 𝑃 is IDP) if
for all positive integers 𝑘 and all 𝑥 ∈ 𝑘𝑃 ∩ ℤ𝑑, there exist 𝑦1, . . . , 𝑦𝑘 ∈ 𝑃 ∩ ℤ𝑑 such
that 𝑥 = 𝑦1 + · · · + 𝑦𝑘 .

In order to describe the canonical module and the anti-canonical module of 𝐴(𝑃)
in terms of 𝑃, we prepare some notation.

For a polytope or cone 𝐾, we denote the strict interior of 𝜎 by int(𝜎). Note that

int(𝐶𝑃) =
{
(𝑥, 𝑘) ∈ ℝ𝑑+1 : 𝑛𝐹(𝑥) > −𝑘ℎ𝐹 for all 𝐹 ∈ ℱ (𝑃)

}
.

Moreover, we define

ant(𝐶𝑃) :=
{
(𝑥, 𝑘) ∈ ℝ𝑑+1 : 𝑛𝐹(𝑥) ≥ −𝑘ℎ𝐹 − 1 for all 𝐹 ∈ ℱ (𝑃)

}
.

Then the following is true.
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Proposition 2.2.7 (see [43, Proposition 4.1 and Corollary 4.2]). The canonical module
of 𝐴(𝑃) and the anti-canonical module of 𝐴(𝑃) are given by the following, respectively:

𝜔𝐴(𝑃) =
〈
𝒕𝑥𝑠𝑘 : (𝑥, 𝑘) ∈ int(𝐶𝑃) ∩ℤ𝑑+1〉 and 𝜔−1

𝐴(𝑃) =
〈
𝒕𝑥𝑠𝑘 : (𝑥, 𝑘) ∈ ant(𝐶𝑃) ∩ℤ𝑑+1〉 .

Further, the negated 𝑎-invariant of 𝐴(𝑃) coincides with the codegree of 𝑃, i.e.

𝑎(𝐴(𝑃)) = −min
{
𝑘 ∈ ℤ≥1 : int(𝑘𝑃) ∩ℤ𝑑 ≠ ∅

}
.

We recall that the (direct) product of two polytopes 𝑃 ⊂ ℝ𝑑 and𝑄 ⊂ ℝ𝑒 is denoted
by 𝑃×𝑄 ⊂ ℝ𝑑+𝑒 . Note that we can regard 𝑃×𝑄 as the Minkowski sum of polytopes,
as follows. Let

𝑃′ =

(𝑝, 0, . . . , 0︸  ︷︷  ︸
𝑒

) ∈ ℝ𝑑+𝑒 : 𝑝 ∈ 𝑃

 and 𝑄′ =

(0, . . . , 0︸  ︷︷  ︸
𝑑

, 𝑞) ∈ ℝ𝑑+𝑒 : 𝑞 ∈ 𝑄

 .
Then, we can see that𝑃×𝑄 = 𝑃′+𝑄′. Conversely, suppose two polytopes𝑃′, 𝑄′ ⊂ ℝ𝑑

satisfy the following condition: for all 𝑖 ∈ [𝑑] := {1, . . . , 𝑑}, we have that 𝜋𝑖(𝑃′) = {0}
or 𝜋𝑖(𝑄′) = {0}, where 𝜋𝑖 : ℝ𝑑 → ℝ is the projection onto the 𝑖-th coordinate. Then
we can regard 𝑃′ + 𝑄′ as the product of two polytopes. Moreover, let 𝑃 and 𝑄

be two lattice polytopes. It is known that ℂ[𝑃 × 𝑄] is isomorphic to the Segre
product ℂ[𝑃]#ℂ[𝑄].

2.3 Nearly Gorensteinness of lattice polytopes
Throughout this section, the lattice polytope 𝑃 has the facet presentation (2.1).

Definition 2.3.1. We say that 𝑃 is Gorenstein (resp. nearly Gorenstein) if the Ehrhart
ring 𝐴(𝑃) is Gorenstein (resp. nearly Gorenstein).

There are well-known equivalent conditions of Gorensteinness in terms of the
lattice polytope 𝑃 itself. For instance, 𝑃 is Gorenstein if and only if there exists a
positive integer 𝑎 such that a lattice translation of 𝑎𝑃 is reflexive, i.e. 𝑎𝑃 has a unique
interior lattice point which has lattice distance 1 to all facets of 𝑎𝑃.

In this section, we will determine a necessary condition for 𝑃 to be nearly Goren-
stein, in terms of the polytope𝑃 itself. This condition demands that 𝑃 has a particular
Minkowski decomposition. By taking a dual perspective, we see exactly the connec-
tion to reflexive polytopes. Next, we will show that if 𝑃 satisfies the aforementioned
necessary condition and is in some sense “big enough”, then 𝑃 will be nearly Goren-
stein. We end the section by investigating the nearly Gorensteinness of Minkowski
indecomposable lattice polytopes.
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2.3.1 Necessary conditions
The main aim of this subsection is to show the first half of Theorem 2.1.1. Before
we proceed, let us first introduce some helpful notation. For a subset 𝑋 of ℝ𝑑+1

and 𝑘 ∈ ℤ, let 𝑋𝑘 =
{
𝑥 ∈ ℝ𝑑 : (𝑥, 𝑘) ∈ 𝑋

}
be the 𝑘-th piece of 𝑋. Note the subtlety

in our notation: while 𝑋 is a subset of ℝ𝑑+1, its 𝑘-th piece 𝑋𝑘 is a subset of ℝ𝑑.
Moreover, for a lattice polytope 𝑃, we denote its codegree by 𝑎𝑃 – see Proposition 2.2.7
for the definition. When it is clear from context, we simply write 𝑎 instead of 𝑎𝑃 .

Proposition 2.3.2. Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope with codegree 𝑎. Then 𝑃 is nearly
Gorenstein if and only if

(𝐶𝑃 ∩ℤ𝑑+1) \ {0} ⊆ int(𝐶𝑃) ∩ℤ𝑑+1 + ant(𝐶𝑃) ∩ℤ𝑑+1. (2.2)

In particular, if 𝑃 is nearly Gorenstein, then

𝑃 ∩ℤ𝑑 = int(𝐶𝑃)𝑎 ∩ℤ𝑑 + ant(𝐶𝑃)1−𝑎 ∩ℤ𝑑 . (2.3)

The converse also holds if 𝑃 is IDP.

Proof. By definition, 𝑃 is nearly Gorenstein if and only if the trace tr(𝜔) of the canon-
ical ideal 𝜔 of 𝐴(𝑃) contains the maximal ideal 𝔪 of 𝐴(𝑃). By Proposition 2.2.3, this
trace is exactly the product 𝜔𝐴(𝑃) · 𝜔−1

𝐴(𝑃). Then, Proposition 2.2.7 tells us the mono-
mial generators of 𝜔 and 𝜔−1 in terms of the lattice points of int(𝐶𝑃) and ant(𝐶𝑃).
We finally note that the maximal ideal 𝔪 can be generated by the monomials 𝒕𝑥𝑠𝑘 ,
where (𝑥, 𝑘) are lattice points in 𝐶𝑃 \ {0}. From this, it is clear to see that 𝑃 is nearly
Gorenstein if and only if (2.2) holds.

We next prove that (2.3) follows from nearly Gorensteinness of 𝑃. First, note that
the right hand side of (2.2) is contained in 𝐶𝑃 ∩ℤ𝑑+1 by definition. Therefore, when
we take the 1st piece of both sides in (2.2), we obtain the equality

𝑃 ∩ℤ𝑑 = (int(𝐶𝑃) ∩ℤ𝑑+1 + ant(𝐶𝑃) ∩ℤ𝑑+1)1.

Note that when 𝑃 is Gorenstein, int(𝐶𝑃)𝑎 ∩ ℤ𝑑 and ant(𝐶𝑃)−𝑎 ∩ ℤ𝑑 are singleton
sets; therefore, the result easily follows. Otherwise, we claim that ant(𝐶𝑃)1−𝑏 ∩ ℤ𝑑

is empty for all 𝑏 ≥ 𝑎 + 1. Since int(𝐶𝑃)𝑏 is empty for 𝑏 < 𝑎, we obtain the desired
result.

Finally, we show that the converse holds when 𝑃 is IDP. Let (𝑥, 𝑘) ∈ 𝐶𝑃 ∩ℤ𝑑 \ {0}.
Since 𝑃 is IDP, there are 𝑥1, . . . , 𝑥𝑘 ∈ 𝑃 ∩ ℤ𝑑 such that (𝑥, 𝑘) = (𝑥1, 1) + · · · + (𝑥𝑘 , 1).
Further, each 𝑥𝑖 ∈ 𝑃 ∩ ℤ𝑑 can be written as the sum of lattice points in int(𝐶𝑃)
and ant(𝐶𝑃). Therefore, (2.2) holds and so 𝑃 is nearly Gorenstein. □

Definition 2.3.3. Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope with codegree 𝑎. We define its floor
polytope and remainder polytopes as

⌊𝑃⌋ := conv(int(𝑃) ∩ℤ𝑑) and {𝑃} := conv(ant(𝐶𝑃)1−𝑎 ∩ℤ𝑑),
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respectively. Note that ⌊𝑃⌋ coincides with conv(int(𝐶𝑃)1 ∩ℤ𝑑).

We collate a couple of easy facts about these polytopes and reformulate part of
Proposition 2.3.2 into the following statement.

Lemma 2.3.4. Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope with codegree 𝑎. Then:

1. ⌊𝑎𝑃⌋ ⊆
{
𝑥 ∈ ℝ𝑑 : 𝑛𝐹(𝑥) ≥ 1 − 𝑎ℎ𝐹 for all 𝐹 ∈ ℱ (𝑃)

}
;

2. {𝑃} ⊆
{
𝑥 ∈ ℝ𝑑 : 𝑛𝐹(𝑥) ≥ (𝑎 − 1)ℎ𝐹 − 1 for all 𝐹 ∈ ℱ (𝑃)

}
;

3. If 𝑃 is nearly Gorenstein, then 𝑃 ∩ℤ𝑑 = ⌊𝑎𝑃⌋ ∩ℤ𝑑 + {𝑃} ∩ℤ𝑑;

4. If 𝑃 is IDP and 𝑃 ∩ℤ𝑑 = ⌊𝑎𝑃⌋ ∩ℤ𝑑 + {𝑃} ∩ℤ𝑑, then 𝑃 is nearly Gorenstein.

Proof. Statements (1) and (2) follow immediately from the definition of the floor and
remainder polytope. To prove statements (3) and (4), notice that the lattice points
of int(𝐶𝑃)𝑎 coincide with those of ⌊𝑎𝑃⌋ and the lattice points of ant(𝐶𝑃)1−𝑎 coincide
with those of {𝑃}. Then simply substitute this into Proposition 2.3.2. □

The following proposition is the first half of Theorem 2.1.1:

Proposition 2.3.5. If 𝑃 is nearly Gorenstein, then 𝑃 = ⌊𝑎𝑃⌋ + {𝑃}, where 𝑎 is the codegree
of 𝑃.

Proof. Let 𝑥 ∈ ⌊𝑎𝑃⌋ and 𝑦 ∈ {𝑃}. By statements (1) and (2) of Lemma 2.3.4, we have
that, for all facets 𝐹 of 𝑃, 𝑛𝐹(𝑥 + 𝑦) ≥ 1 − 𝑎ℎ𝐹 + (𝑎 − 1)ℎ𝐹 − 1 = −ℎ𝐹. So, 𝑥 + 𝑦 ∈ 𝑃.
Therefore, we obtain that ⌊𝑎𝑃⌋ + {𝑃} ⊆ 𝑃.

On the other hand, let 𝑣 be a vertex of 𝑃. Since 𝑃 is a lattice polytope, 𝑣 ∈
𝑃 ∩ℤ𝑑. Thus, by statement (3) of Lemma 2.3.4, can write 𝑣 as the sum of an element
of ⌊𝑎𝑃⌋ ∩ℤ𝑑 and an element of {𝑃} ∩ℤ𝑑. This implies 𝑃 ⊆ ⌊𝑎𝑃⌋ + {𝑃}. □

Example 2.3.6. Consider the stop sign polytope, given by

𝑃 = conv {(1, 0), (2, 0), (3, 1), (3, 2), (2, 3), (1, 3), (0, 2), (0, 1)} .
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Figure 2.1: The stop sign polytope 𝑃 (left) with its floor polytope ⌊𝑃⌋
(middle) and remainder polytope {𝑃} (right).
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First, we note that 𝑎𝑃 = 1. Next, we may compute the floor and remainder
polytopes:

⌊𝑃⌋ = conv {(1, 1), (2, 1), (1, 2), (2, 2)} and {𝑃} = conv {(1, 0), (0, 1), (−1, 0), (0,−1)} .

By taking the Minkowski sum of these polytopes, we see that 𝑃 satisfies the necessary
condition to be nearly Gorenstein given by Proposition 2.3.5, i.e. 𝑃 = ⌊𝑃⌋ + {𝑃}. On
the other hand, it is straightforward to verify that every lattice point of 𝑃 can be
written as the sum of a lattice point of ⌊𝑃⌋ and a lattice point of {𝑃}. Since 𝑃 is IDP
(as is true for all polygons), statement (4) of Lemma 2.3.4 informs us that 𝑃 is nearly
Gorenstein.

Finally, we remark that the remainder polytope {𝑃} is reflexive. This is not
coincidence, as we will prove in Proposition 2.3.13.

2.3.2 A sufficient condition
In this subsection, we will explore sufficient conditions for a lattice polytope to be
nearly Gorenstein; in particular, we will prove the second half of Theorem 2.1.1.

We first note that the converse of Proposition 2.3.5 does not hold in general.

Example 2.3.7 (compare [82, Example 1.1]). Let 𝑓 = 1
3(𝑒1+· · ·+𝑒6) ∈ ℝ6, where 𝑒1, . . . , 𝑒6

is a basis of the lattice ℤ6. Define a new lattice 𝐿 B ℤ6 + 𝑓 · ℤ, and consider the
lattice polytope

𝑄 B conv {𝑒1, . . . , 𝑒6, 𝑒1 − 𝑓 , . . . , 𝑒6 − 𝑓 }
with respect to the lattice 𝐿. Set 𝑃 B 2𝑄. Since ⌊𝑃⌋ = {𝑃} = 𝑄, it’s easy to see
that 𝑃 = ⌊𝑃⌋ + {𝑃}, meeting the necessary condition of Proposition 2.3.5 for nearly
Gorensteinness.

On the other hand, 𝑄 is not IDP. In particular, 2𝑄 ∩ 𝐿 ≠ (𝑄 ∩ 𝐿) + (𝑄 ∩ 𝐿).
Thus, 𝑃 = 2𝑄 fails the necessary condition of statement (3) in Lemma 2.3.4, and so 𝑃
is not nearly Gorenstein.

So, we need to make more assumptions about 𝑃 in order to be guaranteed nearly
Gorensteinness. This brings us to the following result, which is the second half of
Theorem 2.1.1:

Theorem 2.3.8. Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope satisfying 𝑃 = ⌊𝑎𝑃⌋ + {𝑃}, where 𝑎 is the
codegree of 𝑃. Then there exists some integer 𝐾 ≥ 1 (depending on 𝑃) such that for all 𝑘 ≥ 𝐾,
the polytope 𝑘𝑃 is nearly Gorenstein.

In order to prove the above, we rely on a few key ingredients. The first ingredient
is an extension of known results from the reflexive case, which appear in [45].

Lemma 2.3.9. Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope satisfying 𝑃 = ⌊𝑎𝑃⌋ + {𝑃}, where 𝑎 is the
codegree of 𝑃. Then the following statements hold:

1. 𝑘𝑃 = ⌊(𝑘 + 𝑎 − 1)𝑃⌋ + {𝑃}, for all 𝑘 ≥ 1;

2. ⌊𝑘′𝑃⌋ = ⌊𝑎𝑃⌋ + (𝑘′ − 𝑎)𝑃, for all 𝑘′ ≥ 𝑎.



32 Chapter 2. Nearly Gorenstein Polytopes

Before we give the proof, we will restrict these statements to the reflexive case for
the sake of comparison. First, we have 𝑎 = 1. Next, since ⌊𝑃⌋ is the origin, 𝑃 = {𝑃}.
So, for reflexive polytopes, the statement (1) is equivalent to 𝑘𝑃 = ⌊𝑘𝑃⌋ + 𝑃. After
cancellation by 𝑃, we obtain the reflexive version of statement (2): ⌊𝑘𝑃⌋ = (𝑘 − 1)𝑃.

Proof of Lemma 2.3.9. Let 𝑘 ≥ 1 be an integer. Throughout this proof, we repeatedly
use the two inequalities appearing in statements (1) and (2) of Lemma 2.3.4. We also
use the inequalities appearing in the facet presentations for 𝑃 and its dilates.

We first prove the “⊇” part of statement (1), i.e. that

𝑘𝑃 ⊇ ⌊(𝑘 + 𝑎 − 1)𝑃⌋ + {𝑃} , for all 𝑘 ≥ 1. (2.4)

Let 𝑥 ∈ ⌊(𝑘+𝑎−1)𝑃⌋ and 𝑦 ∈ {𝑃}. Then 𝑛𝐹(𝑥+𝑦) ≥ (1−(𝑘+𝑎−1)ℎ𝐹)+((𝑎−1)ℎ𝐹−1) =
−𝑘ℎ𝐹, for all facets 𝐹 of 𝑃. Thus, 𝑥 + 𝑦 ∈ 𝑘𝑃.

Next, we note that 𝑘𝑃 = (𝑘 − 1)𝑃 + ⌊𝑎𝑃⌋ + {𝑃}. We substitute this into (2.4), then
cancel {𝑃} from both sides to obtain ⌊(𝑘 + 𝑎 − 1)𝑃⌋ ⊆ (𝑘 − 1)𝑃 + ⌊𝑎𝑃⌋.

We now prove the reverse inclusion of the above. Let 𝑥 ∈ (𝑘 − 1)𝑃 and 𝑦 ∈ ⌊𝑎𝑃⌋.
Then, 𝑛𝐹(𝑥+𝑦) ≥ −(𝑘−1)ℎ𝐹+(1−𝑎ℎ𝐹) = 1−(𝑘+𝑎−1)ℎ𝐹. Therefore, 𝑥+𝑦 ∈ ⌊(𝑘+𝑎−1)𝑃⌋.
Thus, we obtain the equality ⌊(𝑘 + 𝑎 − 1)𝑃⌋ = (𝑘 − 1)𝑃 + ⌊𝑎𝑃⌋. Setting 𝑘′ B 𝑘 + 𝑎 − 1
then gives us statement (2). Adding {𝑃} to both sides gives us statement (1). □

The main ingredient in proving Theorem 2.3.8 is a result of Haase and Hof-
mann, which allows us to guarantee that the second condition of statement (4) of
Lemma 2.3.4 holds.

Theorem 2.3.10 ([35, Theorem 4.2]). Let 𝑃, 𝑄 ⊂ ℝ𝑑 be rational polytopes such that the
normal fan 𝒩(𝑃) of 𝑃 is a refinement of the normal fan 𝒩(𝑄) of 𝑄. Suppose also that for
each edge 𝐸 of 𝑃, the corresponding face 𝐸′ of 𝑄 has lattice length ℓ𝐸′ satisfying ℓ𝐸 ≥ 𝑑ℓ𝐸′.
Then (𝑃 +𝑄) ∩ℤ𝑑 = (𝑃 ∩ℤ𝑑) + (𝑄 ∩ℤ𝑑).

In order to guarantee the first condition of statement (4) of Lemma 2.3.4, we need
this next result:

Theorem 2.3.11 ([102, Theorem 1.3.3]). Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope. Then (𝑑 − 1)𝑃
is IDP.

We are now ready to give the proof.

Proof of Theorem 2.3.8. We first wish to find a suitable 𝐾 which satisfies

𝑘𝑃 ∩ℤ𝑑 = ⌊𝑘𝑃⌋ ∩ℤ𝑑 + {𝑘𝑃} ∩ℤ𝑑 , for all 𝑘 ≥ 𝐾.

Let 𝑎 be the codegree of 𝑃. Looking at statement (2) of Lemma 2.3.9, we see that (𝑘 −
𝑎)𝑃 is a Minkowski summand of ⌊𝑘𝑃⌋; thus, we get a crude lower bound on the length
of the edges of ⌊𝑘𝑃⌋: for 𝑘 ≥ 𝑎, every edge 𝐸 of ⌊𝑘𝑃⌋ has lattice length ℓ𝐸 ≥ 𝑘 − 𝑎.
Denote by 𝐿 the maximum edge length of {𝑎𝑃} and set 𝐾 B 𝑑𝐿 + 𝑎. Note that
for 𝑘 ≥ 𝑎, the polytopes {𝑘𝑃} and {𝑎𝑃} coincide. So, for all 𝑘 ≥ 𝐾, every edge 𝐸
of ⌊𝑘𝑃⌋ will have lattice length ℓ𝐸 ≥ 𝑘 − 𝑎 ≥ 𝑑𝐿.



2.3. Nearly Gorensteinness of lattice polytopes 33

Further, statement (2) of Lemma 2.3.9 implies that, for 𝑘 ≥ 𝑎 + 1, the normal
fan 𝒩(⌊𝑘𝑃⌋) coincides with 𝒩(𝑃). Hence, 𝒩(⌊𝑘𝑃⌋) is a refinement of the normal fan
of {𝑘𝑃}. Thus, we may apply Theorem 2.3.10, obtaining that 𝑘𝑃 ∩ℤ𝑑 = ⌊𝑘𝑃⌋ ∩ℤ𝑑 +
{𝑘𝑃} ∩ℤ𝑑.

Finally, since 𝑎, 𝐿 ≥ 1, we see that 𝐾 ≥ 𝑑 − 1. Thus, by Theorem 2.3.11, we have
that 𝑘𝑃 is IDP. Therefore, by statement (4) of Lemma 2.3.4, we can conclude that 𝑘𝑃
is nearly Gorenstein for all 𝑘 ≥ 𝐾. □

Remark 2.3.12. We say that a graded ring 𝑅 is Gorenstein on the punctured spec-
trum [42] if tr(𝜔𝑅) contains 𝔪𝑘 for some integer 𝑘 ≥ 0. If 𝑘 = 0, this is just the
Gorenstein condition; if 𝑘 = 1, it is the nearly Gorenstein condition. Now, for a lat-
tice polytope 𝑃 ⊂ ℝ𝑑, it can be shown that its Ehrhart ring 𝐴(𝑃) is Gorenstein on the
punctured spectrum if there exists a positive integer 𝐾 such that 𝑘𝑃 ∩ ℤ𝑑 coincides
with (int(𝐶𝑃)∩ℤ𝑑+1+ant(𝐶𝑃)∩ℤ𝑑+1)𝑘 , for all 𝑘 ≥ 𝐾. Therefore, using Theorem 2.3.8,
it’s straightforward to show that all lattice polytopes 𝑃 satisfying 𝑃 = ⌊𝑎𝑃⌋ + {𝑃} are
Gorenstein on the punctured spectrum.

2.3.3 Decompositions of nearly Gorenstein polytopes
In this subsection, we first prove Theorem 2.1.2. This naturally leads to an investiga-
tion of whether nearly Gorenstein polytopes decompose into the Minkowski sum of
Gorenstein polytopes (Questions 2.3.15 and 2.3.16). We prove Theorem 2.1.3, which
leads to a way to systematically construct examples of nearly Gorenstein polytopes.
This is then used to find a counterexample to Questions 2.3.15 and 2.3.16. Finally,
we conclude the section with a result about indecomposable nearly Gorenstein poly-
topes.

Theorem 2.3.13 (Theorem 2.1.2). Let 𝑃 ⊂ ℝ𝑑 be a lattice polytope which satisfies 𝑃 =

⌊𝑎𝑃⌋ + {𝑃}, where 𝑎 is the codegree of 𝑃. Then we have

⌊𝑎𝑃⌋ =
{
𝑥 ∈ ℝ𝑑 : 𝑛𝐹(𝑥) ≥ 1 − 𝑎ℎ𝐹 for all 𝐹 ∈ ℱ (𝑃)

}
and

{𝑃} =
{
𝑥 ∈ ℝ𝑑 : 𝑛𝐹(𝑥) ≥ (𝑎 − 1)ℎ𝐹 − 1 for all 𝐹 ∈ ℱ (𝑃)

}
.

In particular, the right hand sides of the equalities are lattice polytopes. Furthermore, if 𝑎 = 1,
then {𝑃} is a reflexive polytope.

Proof. Label the two polytopes on the right-hand sides as 𝑄1 and 𝑄2, respectively.
It’s straightforward to see that ⌊𝑎𝑃⌋ = conv(𝑄1 ∩ ℤ𝑑) and {𝑃} = conv(𝑄2 ∩ ℤ𝑑).
Thus, ⌊𝑎𝑃⌋ ⊆ 𝑄1 and {𝑃} ⊆ 𝑄2. Ultimately, we want to prove the reverse inclusions
but first, we must show an intermediate equality:𝑃 = 𝑄1+𝑄2. Let 𝑥 ∈ 𝑄1 and 𝑦 ∈ 𝑄2.
Then, for all facets 𝐹 of 𝑃, we have 𝑛𝐹(𝑥 + 𝑦) ≥ 1 − 𝑎ℎ𝐹 + (𝑎 − 1)ℎ𝐹 − 1 = −ℎ𝐹.
Thus, 𝑥 + 𝑦 ∈ 𝑃 and so, 𝑄1 + 𝑄2 ⊆ 𝑃. Conversely, if we combine this with our
assumption that 𝑃 = ⌊𝑎𝑃⌋ + {𝑃}, we obtain that, in fact, 𝑃 = 𝑄1 +𝑄2.

We now use the above equality to obtain that ⌊𝑎𝑃⌋ = 𝑄1 and {𝑃} = 𝑄2, as follows.
Assume towards a contradiction that 𝑄1 ⊈ ⌊𝑎𝑃⌋, i.e. there exists a vertex 𝑣 of 𝑄1
which doesn’t belong to ⌊𝑎𝑃⌋. Choose a normal vector 𝑛 ∈ (ℝ𝑑)∗ which achieves its
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minimal value ℎ1 over𝑄1 only at 𝑣 (i.e. 𝑛 lies in the interior of the cone 𝜎𝑣 in the (inner)
normal fan 𝒩(𝑄1) which corresponds to 𝑣). Denote by ℎ2 the minimal evaluation
of 𝑛 over 𝑄2. Then, the minimal evaluation of 𝑛 over 𝑃 is ℎ1 + ℎ2. However, for
all 𝑥 ∈ ⌊𝑎𝑃⌋ and 𝑦 ∈ {𝑃}, we have that 𝑛(𝑥 + 𝑦) > ℎ1 + ℎ2. This contradicts the fact
that 𝑃 = ⌊𝑎𝑃⌋ + {𝑃}. Therefore, the vertices of 𝑄1 coincide with the vertices of ⌊𝑎𝑃⌋;
in particular, ⌊𝑎𝑃⌋ = 𝑄1. We similarly obtain that {𝑃} = 𝑄2.

Next, since ⌊𝑎𝑃⌋ and {𝑃} are lattice polytopes by definition, we note that 𝑄1
and 𝑄2 are lattice polytopes in this situation.

Finally, suppose we are in the case when 𝑃 has an interior lattice point, i.e. 𝑎 = 1.
By substituting this into the second equality, we see that the remainder polytope {𝑃}
is indeed reflexive as all its facets lie at height 1.

□

In contrast, when 𝑃 has no interior points, the remainder polytope {𝑃} is not
necessarily even Gorenstein.

Example 2.3.14. Consider the polytope

𝑃 = conv {(0, 0, 0), (2, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (2, 0, 1), (1, 1, 1), (0, 1, 1)} .

We can verify that 𝑃 is nearly Gorenstein and IDP, but the remainder polytope {𝑃}
is not Gorenstein. However, {𝑃} can be written as the Minkowski sum of

conv {(0, 0, 0), (1, 0, 0), (0, 1, 0)} and conv {(−1,−1,−1), (−1,−1, 0)} ,

which are both Gorenstein.

We see similar behavior when studying the nearly Gorensteinness for certain
restricted classes of polytopes. This motivated us to pose the following question.

Question 2.3.15. If 𝑃 is nearly Gorenstein, then can we write 𝑃 = 𝑃1 + · · · + 𝑃𝑠 for
some Gorenstein lattice polytopes 𝑃1, . . . , 𝑃𝑠?

We recall that 𝑃 is (Minkowski) indecomposable if 𝑃 is not a singleton and if there
exist lattice polytopes 𝑃1 and 𝑃2 with 𝑃 = 𝑃1 + 𝑃2, then either 𝑃1 or 𝑃2 is a singleton.
Note that if 𝑃 is not a singleton, then we can write 𝑃 = 𝑃1 + · · · + 𝑃𝑠 for some inde-
composable lattice polytopes 𝑃1, . . . , 𝑃𝑠 . Then, a stronger version of Question 2.3.15
can be posed:

Question 2.3.16. If 𝑃 has an indecomposable non-Gorenstein lattice polytope as a
Minkowski summand, then is 𝑃 not nearly Gorenstein?

This question has a positive answer for IDP 0/1-polytopes, which is shown in
Section 2.4. For the remainder of this section, we will build up some machinery
which allows for the efficient construction of nearly Gorenstein polytopes. We then
use this in Example 2.3.19 to give an answer to Questions 2.3.15 and 2.3.16.
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Theorem 2.3.17 (Theorem 2.1.3). Let 𝑃 ⊂ ℝ𝑑 be a nearly Gorenstein polytope. Then there
exists a reflexive polytope 𝑄 ⊂ ℝ𝑑 such that

𝑃 =
{
𝑥 ∈ ℝ𝑑 : 𝑛(𝑥) ≥ −ℎ𝑛 for all 𝑛 ∈ 𝜕𝑄∗ ∩ (ℤ𝑑)∗

}
,

where ℎ𝑛 are integers. Moreover, the inequalities defined by 𝑛 ∈ 𝒱(𝑄∗) are irredundant.
Furthermore, the number of facets of a nearly Gorenstein polytope is bounded by a constant
depending on the dimension 𝑑.

Before we dive into the proof, it will be useful to have the following lemma.

Lemma 2.3.18. Let 𝑃 be a lattice polytope satisfying 𝑃 = ⌊𝑎𝑃⌋+{𝑃}, where 𝑎 is the codegree
of 𝑃. Then 𝑎𝑃 = ⌊𝑎𝑃⌋ + {𝑎𝑃}. Moreover, {𝑎𝑃} = (𝑎 − 1)𝑃 + {𝑃}.

Proof. We first wish to show that (𝑎−1)𝑃+{𝑃} ⊆ {𝑎𝑃}. Let 𝑥 ∈ (𝑎−1)𝑃 and 𝑦 ∈ {𝑃}.
Then, by Lemma 2.3.4 (2), 𝑛𝐹(𝑥 + 𝑦) ≥ −(𝑎 − 1)ℎ𝐹 + (𝑎 − 1)ℎ𝐹 − 1 = −1, for all facets 𝐹
of 𝑃. So, 𝑥 + 𝑦 ∈ {𝑎𝑃}. Thus, (𝑎 − 1)𝑃 + {𝑃} ⊆ {𝑎𝑃}.

We can add ⌊𝑎𝑃⌋ to both sides of the inclusion to get 𝑎𝑃 ⊆ ⌊𝑎𝑃⌋ + {𝑎𝑃}.
We next wish to show the reverse inclusion of the above. Let 𝑧 ∈ ⌊𝑎𝑃⌋ and 𝑤 ∈

{𝑎𝑃}. Then 𝑛𝐹(𝑧 + 𝑤) ≥ (1 − 𝑎ℎ𝐹) − 1 = −𝑎ℎ𝐹, for all facets 𝐹 of 𝑃. So, 𝑧 + 𝑤 ∈ 𝑎𝑃.
Therefore, ⌊𝑎𝑃⌋ + {𝑎𝑃} ⊆ 𝑎𝑃. Combining the two inclusions gives the desired
equality: 𝑎𝑃 = ⌊𝑎𝑃⌋ + {𝑎𝑃}.

Moreover, we obtain that ⌊𝑎𝑃⌋ + {𝑃} + (𝑎 − 1)𝑃 = ⌊𝑎𝑃⌋ + {𝑎𝑃}. Since Minkowski
addition of convex sets satisfies the cancellation law, we may cancel both sides
by ⌊𝑎𝑃⌋ to obtain the equality {𝑎𝑃} = (𝑎 − 1)𝑃 + {𝑃}. □

Proof of Theorem 2.3.17. We wish to study the (inner) normal fan 𝒩(𝑃) of 𝑃, as it’s
enough to show that its primitive ray generators all lie in 𝜕𝑄∗ ∩ (ℤ𝑑)∗, for some
reflexive polytope 𝑄 ⊂ ℝ𝑑. Let 𝑎 be the codegree of 𝑃. Since dilation has no effect
on the normal fan, we may pass to the normal fan of 𝑎𝑃. Now, by Lemma 2.3.18, 𝑎𝑃
has a Minkowski decomposition into ⌊𝑎𝑃⌋ and {𝑎𝑃}. Thus, 𝒩(𝑎𝑃) is the common
refinement of𝒩(⌊𝑎𝑃⌋) and𝒩({𝑎𝑃}). By Proposition 2.3.13, we obtain that𝑄 B {𝑎𝑃}
is a reflexive polytope. Hence, the primitive ray generators of 𝒩(𝑄) are vertices of
the reflexive polytope 𝑄∗ ⊂ (ℝ𝑑)∗; in particular, they are lattice points lying in the
boundary of 𝑄∗.

We next look at the contribution to 𝒩(𝑎𝑃) coming from ⌊𝑎𝑃⌋. Let 𝑛 ∈ (ℤ𝑑)∗
be a primitive ray generator of 𝒩(⌊𝑎𝑃⌋). Then, by definition of the remainder
polytope, 𝑛(𝑥) ≥ −1, for all 𝑥 ∈ 𝑄. But now, this means that 𝑛 lies in 𝑄∗. So,
since 𝑛 ≠ 0 and 𝑄 is reflexive, we obtain that 𝑛 ∈ 𝜕𝑄∗ ∩ (ℤ𝑑)∗. Therefore, we have
now shown that the primitive ray generators of 𝒩(𝑃) = 𝒩(𝑎𝑃) contain the vertices
of 𝑄∗, and that they all lie in 𝜕𝑄∗ ∩ (ℤ𝑑)∗.

Finally, we note that the number of facets of a nearly Gorenstein polytope 𝑃 ⊂ ℝ𝑑

is bounded by 𝑐𝑑 B sup𝑄 |𝜕𝑄∗∩(ℤ𝑑)∗ |, where𝑄 runs over all 𝑑-dimensional reflexive
polytopes. Since there are only finitely reflexive polytopes in each dimension 𝑑, and
all polytopes only have a finite number of boundary points, we see that 𝑐𝑑 is a finite
number. □
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We will now detail how to construct nearly Gorenstein polytopes. First, choose
a reflexive polytope 𝑄 ⊂ ℝ𝑑. Then, choose a (possibly empty) subset 𝑆′ of the
boundary lattice points of 𝑄∗ which are not vertices of 𝑄∗. Now, for each 𝑛 ∈ 𝑆 B
𝑆′∪𝒱(𝑄∗), choose the height ℎ𝑛 ∈ ℤ. Construct a polytope 𝑃′ defined by 𝑛(𝑥) ≥ −ℎ𝑛
for all 𝑛 ∈ 𝑆, and assert that none of these inequalities are redundant. Next, we can
dilate𝑃′ to 𝑟𝑃′ so that it’s a lattice polytope which contains an interior lattice point. By
construction, its remainder polytope {𝑟𝑃′} coincides with the reflexive polytope 𝑄.
In practice, 𝑟𝑃′ has a Minkowski decomposition into ⌊𝑟𝑃′⌋ and {𝑟𝑃′}, but we don’t
yet have a proof that this always holds. Finally, we can use Theorem 2.3.8 to dilate 𝑟𝑃′

even further to 𝑃 B 𝑘𝑟𝑃′ so that 𝑃 = ⌊𝑃⌋ + {𝑃} is nearly Gorenstein.

Example 2.3.19. Consider the polytope

𝑃 = conv {(−4,−3,−4), (−3,−1,−3), (−2,−2,−3), (0, 1, 4), (0, 4, 1), (3, 1, 1)} .

Note that 𝑃 has many interior lattice points, it has codegree 1. Its floor polytope is

⌊𝑃⌋ = conv {(−3,−2,−3), (0, 3, 1), (0, 1, 3), (2, 1, 1)} .

This is an indecomposable simplex, which is not Gorenstein. Its remainder polytope
is

{𝑃} = conv {(−1,−1,−1), (1, 0, 0), (0, 1, 0), (0, 0, 1)} ,
which is clearly reflexive. We have 𝑃 = ⌊𝑃⌋ + {𝑃}. We use Magma [16] to verify
that 𝑃 ∩ ℤ3 = (⌊𝑃⌋ ∩ ℤ3) + ({𝑃} ∩ ℤ3) and that 𝑃 is IDP. Thus, we may conclude by
Lemma 2.3.4 that 𝑃 is a nearly Gorenstein polytope.

It can be shown that 𝑃 = ⌊𝑃⌋ + {𝑃} is the only non-trivial Minkowski decompo-
sition of 𝑃. Thus, we may conclude that the nearly Gorenstein polytope 𝑃 cannot be
decomposed into Gorenstein polytopes. Therefore, we may answer Questions 2.3.15
and 2.3.16 in the negative.

It now remains to show that 𝑃 has no other Minkowski decompositions. But first,
we need a way to measure the ℤ-translations of one polytope which are contained in
another. We define the (lattice) Minkowski difference of two lattice polytopes 𝑃, 𝑄 ⊂ ℝ𝑑

as 𝑃 ÷𝑄 B conv
{
𝑥 ∈ ℤ𝑑 : 𝑥 +𝑄 ⊆ 𝑃

}
. Thus, (𝑃 ÷𝑄) +𝑄 ⊆ 𝑃.

Let 𝑃 = 𝑃1 + 𝑃2 be a Minkowski decomposition of 𝑃 into two lattice polytopes.
Now, consider the following facet of 𝑃.

𝐹 = conv {(−4,−3,−4), (−2,−2,−3), (0, 1, 4), (3, 1, 1)} .

We can compute that 𝑃 ÷ 𝐹 = {(0, 0, 0)}. So, it follows that if 𝐹 is a face of 𝑃1
or 𝑃2, then 𝑃1 = 𝑃 or 𝑃2 = 𝑃, respectively. The facet 𝐹 has only one non-trivial
decomposition 𝐹 = 𝐹1 + 𝐹2, where

𝐹1 = conv {(−3,−2,−3), (0, 1, 3), (2, 1, 1)} and 𝐹2 = conv {(−1,−1,−1), (1, 0, 0), (0, 0, 1)} .

Without loss of generality, we may assume that 𝐹1 is a face of 𝑃1 and 𝐹2 is a face of 𝑃2.
Let 𝑃′

1 B 𝑃 ÷ 𝐹2 and 𝑃′
2 B 𝑃 ÷ 𝐹1. By definition, we must have 𝑃1 ⊆ 𝑃′

1 and 𝑃2 ⊆ 𝑃′
2.

So, 𝑃 = 𝑃1 + 𝑃2 ⊆ 𝑃′
1 + 𝑃

′
2 ⊆ 𝑃. This implies that 𝑃1 = 𝑃′

1 and 𝑃2 = 𝑃′
2. But now, if
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we compute the Minkowski differences, we see that 𝑃′
1 and 𝑃′

2 (and hence 𝑃1 and 𝑃2)
coincide with ⌊𝑃⌋ and {𝑃}, respectively. Thus, 𝑃 = ⌊𝑃⌋ + {𝑃} is the only non-trivial
Minkowski decomposition of 𝑃.

We end this section by giving the following theorem about nearly Gorensteinness
of indecomposable polytopes, which plays an important role in the characterisation
of nearly Gorenstein 0/1-polytopes in Section 2.4.

Theorem 2.3.20. Let 𝑃 be an indecomposable lattice polytope. Then, 𝑃 is nearly Gorenstein
if and only if 𝑃 is Gorenstein.

Proof. It is already clear that Gorensteinness implies nearly Gorensteinness, so we
just have to treat the converse implication. Suppose that 𝑃 is nearly Gorenstein. By
Proposition 2.3.5, we have that 𝑃 = ⌊𝑎𝑃⌋ + {𝑃}, where 𝑎 is the codegree of 𝑃. Since 𝑃
is indecomposable, either (i) ⌊𝑎𝑃⌋ is a singleton or (ii) {𝑃} is a singleton.

We first deal with case (i). Consider 𝑎𝑃. By Lemma 2.3.18, 𝑎𝑃 = ⌊𝑎𝑃⌋ + {𝑎𝑃}.
Thus, 𝑎𝑃 is a translation of {𝑎𝑃}. By Proposition 2.3.13, {𝑎𝑃} is reflexive. Thus, 𝑃 is
Gorenstein.

The argument for case (ii) is similar. We consider {𝑎𝑃}. By Lemma 2.3.18, {𝑎𝑃} =
(𝑎−1)𝑃+{𝑃}. Proposition 2.3.13 tells us that {𝑎𝑃} is reflexive; therefore, (𝑎−1)𝑃 is a
translation of a reflexive polytope. But this is an absurdity as it implies that (𝑎 − 1)𝑃
has an interior lattice point, contradicting that the codegree of 𝑃 is 𝑎. Thus, this case
cannot occur.

□

2.4 Nearly Gorenstein 0/1-polytopes
In this section, we consider the case of 0/1-polytopes. We provide the characterisa-
tion of nearly Gorenstein 0/1-polytopes which are IDP. Moreover, we also characterise
nearly Gorenstein edge polytopes of graphs satisfying the odd cycle condition and
characterise nearly Gorenstein graphic matroid polytopes.

2.4.1 The characterisation of nearly Gorenstein 0/1-polytopes
Lemma 2.4.1. Let 𝑃 ⊂ ℝ𝑑 be a 0/1-polytope. Then, after a change of coordinates, we can
write 𝑃 = 𝑃1 × · · · × 𝑃𝑠 for some indecomposable 0/1-polytopes 𝑃1, . . . , 𝑃𝑠 .

Proof. As mentioned in Section 2.3, we can write 𝑃 = 𝑃′
1 + · · · +𝑃′

𝑠 for some indecom-
posable lattice polytopes 𝑃′

1, . . . , 𝑃
′
𝑠 .

First, we show that we can choose 𝑃′
1, . . . , 𝑃

′
𝑠 so that these are 0/1-polytopes.

Suppose that we can write 𝑃 = 𝑃′
1 + 𝑃

′
2 for some lattice polytopes 𝑃′

1 and 𝑃′
2. Then,

for any 𝑣 ∈ 𝑃′
1 ∩ ℤ𝑑 and for any 𝑢 ∈ 𝑃′

2 ∩ ℤ𝑑, 𝑣 + 𝑢 is a 0/1-vector. Therefore, for
any 𝑖 ∈ [𝑑], 𝜋𝑖(𝑃′

1∩ℤ𝑑) can take one of the following forms: (i) {𝑤𝑖} or (ii) {𝑤𝑖 , 𝑤𝑖+1}
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for some𝑤𝑖 ∈ ℤ. In case (i),𝜋𝑖(𝑃′
2∩ℤ𝑑) is equal to {−𝑤𝑖}, {−𝑤𝑖+1} or {−𝑤𝑖 ,−𝑤𝑖+1}.

In case (ii), 𝜋𝑖(𝑃′
2∩ℤ𝑑) is equal to {−𝑤𝑖}. Thus, in all cases, 𝑃′

1−𝑤 and 𝑃′
2+𝑤 are 0/1-

polytopes and we have 𝑃 = (𝑃′
1 − 𝑤) + (𝑃′

2 + 𝑤), where 𝑤 = (𝑤1, . . . , 𝑤𝑑).
Moreover, if we can write 𝑃 = 𝑃′

1 + 𝑃′
2 for some 0/1-polytopes 𝑃′

1 and 𝑃′
2, then

we can see that either 𝜋𝑖(𝑃′
1) or 𝜋𝑖(𝑃′

2) is equal to {0} for any 𝑖 ∈ [𝑑]. Therefore,
after a change of coordinates, we can write 𝑃 = 𝑃1 × 𝑃2 for some 0/1-polytopes 𝑃1
and 𝑃2. □

Now, we provide the main theorem of this section.

Theorem 2.4.2. Let𝑃 be an IDP 0/1-polytope. Then, 𝑃 is nearly Gorenstein if and only if you
can write𝑃 = 𝑃1×· · ·×𝑃𝑠 for some Gorenstein 0/1-polytopes𝑃1, . . . , 𝑃𝑠 with |𝑎𝑃𝑖−𝑎𝑃𝑗 | ≤ 1,
where 𝑎𝑃𝑖 and 𝑎𝑃𝑗 are the respective codegrees of 𝑃𝑖 and 𝑃𝑗 , for 1 ≤ 𝑖 < 𝑗 ≤ 𝑠.

Proof. It follows from Lemma 2.4.1 that we can write 𝑃 = 𝑃1 × · · · × 𝑃𝑠 for some
indecomposable 0/1-polytopes 𝑃1, . . . , 𝑃𝑠 . Thus, we have ℂ[𝑃] � ℂ[𝑃1]# · · · #ℂ[𝑃𝑠].
Note that if 𝑃 is IDP, then so is 𝑃𝑖 for each 𝑖 ∈ [𝑠], and 𝐴(𝑃) (resp. 𝐴(𝑃𝑖)) coin-
cides with ℂ[𝑃] (resp. ℂ[𝑃𝑖]). Therefore, since 𝑃 is nearly Gorenstein, ℂ[𝑃] is nearly
Gorenstein, and hence ℂ[𝑃𝑖] is also nearly Gorenstein from Lemma 2.2.6 (1). Fur-
thermore, 𝑃𝑖 is nearly Gorenstein. Since 𝑃𝑖 is indecomposable, 𝑃𝑖 is Gorenstein by
Theorem 2.3.20. Moreover, it follows from [43, Corollary 2.8] that |𝑎𝑃𝑖 − 𝑎𝑃𝑗 | ≤ 1
for 1 ≤ 𝑖 < 𝑗 ≤ 𝑠.

The converse also holds from [43, Corollary 2.8]. □

From this theorem, we immediately obtain the following corollaries:

Corollary 2.4.3. Question 2.3.15 is true for IDP 0/1-polytopes.

Corollary 2.4.4. Let 𝑃 be an IDP 0/1-polytope. If ℂ[𝑃] is nearly Gorenstein, then ℂ[𝑃] is
level.

Proof. It follows immediately from Lemma 2.2.6 (2) and Theorem 2.4.2. □

The result of Theorem 2.4.2 can be applied to many classes of 0/1-polytopes such
as order polytopes and stable set polytopes.

Order polytopes, which were introduced by Stanley [96], arise from posets. Let Π
be a poset equipped with a partial order ⪯. The Ehrhart ring of the order polytope
of a poset Π is called the Hibi ring of Π, denoted by ℂ[Π]. It is known that Hibi
rings are standard graded ([44]). For a subset 𝐼 ⊂ 𝑃, we say that 𝐼 is a poset ideal
of 𝑃 if 𝑝 ∈ 𝐼 and 𝑞 ⪯ 𝑝 then 𝑞 ∈ 𝐼. According to [96], the characteristic vectors of
poset ideals in ℝΠ are precisely the vertices of the order polytope of Π (hence order
polytopes are 0/1-polytopes). By this fact, we can see that the order polytope of a
poset Π is indecomposable if and only if Π is connected. Nearly Gorensteinness of
Hibi rings have been studied in [42]. It is shown that ℂ[Π] is nearly Gorenstein if
and only if Π is the disjoint union of pure connected posets Π1, . . . ,Π𝑞 such that
their ranks of any two also can only differ by at most 1. Moreover, in this case, ℂ[Π𝑖]
is Gorenstein and ℂ[Π] � ℂ[Π1]# · · · #ℂ[Π𝑠]. Therefore, its characterisation can be
derived from Theorem 2.4.2.
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Stable set polytopes, which were introduced by Chvátal [21], arise from graphs.
For a finite simple graph 𝐺 on the vertex set 𝑉(𝐺) with the edge set 𝐸(𝐺), the stable
set polytope of𝐺, denoted by Stab𝐺, is defined as the convex hull of the characteristic
vectors of stable sets of 𝐺 in ℝ𝑉(𝐺), hence Stab𝐺 is a 0/1-polytope. Here, we say that a
subset 𝑆 of𝑉(𝐺) is a stable set if {𝑣, 𝑢} ∉ 𝐸(𝐺) for any 𝑣, 𝑢 ∈ 𝑆. This implies that Stab𝐺
is indecomposable if and only if 𝐺 is connected. Stable set polytopes behave well
for perfect graphs. For example, Stab𝐺 is IDP if 𝐺 is perfect (cf.[84]). Moreover, the
characterisation of nearly Gorenstein stable set polytopes of perfect graphs has been
given in [46, 81]. Let𝐺 be a perfect graph with connected components𝐺1, . . . , 𝐺𝑠 and
let 𝛿𝑖 denote the maximal cardinality of cliques of 𝐺𝑖 . Then, it is known that Stab𝐺
is nearly Gorenstein if and only if the maximal cliques of each 𝐺𝑖 have the same
cardinality and |𝛿𝑖 − 𝛿 𝑗 | ≤ 1 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑠. In this case, as in the case of
order polytopes, ℂ[Stab𝐺𝑖 ] is Gorenstein and ℂ[Stab𝐺] � ℂ[Stab𝐺1]# · · · #ℂ[Stab𝐺𝑠 ].
Therefore, its characterisation can also follow from Theorem 2.4.2.

Furthermore, by using this theorem, we can study the nearly Gorensteinness of
other classes of 0/1-polytopes.

2.4.2 Nearly Gorenstein edge polytopes
First, we define the edge polytope and edge ring of a graph. We refer the reader
to [40, Section 5] and [103, Chapters 10 and 11] for an introduction to edge rings.

Let 𝐺 be a finite simple graph on the vertex set 𝑉(𝐺) = {1, . . . , 𝑑} with the edge
set 𝐸(𝐺). Given an edge 𝑒 = {𝑖 , 𝑗} ∈ 𝐸(𝐺), let 𝜌(𝑒) := 𝒆𝑖 + 𝒆 𝑗 , where 𝒆𝑖 denotes the 𝑖-th
unit vector of ℝ𝑑 for 𝑖 ∈ [𝑑]. We define the edge polytope 𝑃𝐺 of 𝐺 as follows:

𝑃𝐺 = conv {𝜌(𝑒) : 𝑒 ∈ 𝐸(𝐺)} .

The toric ring of 𝑃𝐺 is called the edge ring of 𝐺, denoted by ℂ[𝐺] instead of ℂ[𝑃𝐺].
Let 𝐺1, . . . , 𝐺𝑠 be the connected components of 𝐺. From the definition of edge

polytope, we can see that ℂ[𝐺] � ℂ[𝐺1] ⊗ · · · ⊗ ℂ[𝐺𝑠]. Therefore, in considering
the characterisation of nearly Gorenstein edge polytopes, we may assume that 𝐺 is
connected.

Moreover, for a connected graph 𝐺, 𝑃𝐺 is IDP if and only if 𝐺 satisfies the odd
cycle condition, in other words, for each pair of odd cycles 𝐶 and 𝐶′ with no common
vertex, there is an edge {𝑣, 𝑣′} with 𝑣 ∈ 𝑉(𝐶) and 𝑣′ ∈ 𝑉(𝐶′) (see [85, 94]).

Gorenstein edge polytopes have been investigated in [86]. We now state the
characterisation of nearly Gorenstein edge polytopes.

Corollary 2.4.5. Let𝐺 be a connected simple graph satisfying the odd cycle condition. Then,
the edge polytope 𝑃𝐺 of 𝐺 is nearly Gorenstein if and only if 𝑃𝐺 is Gorenstein or 𝐺 is the
complete bipartite graph 𝐾𝑛,𝑛+1 for some 𝑛 ≥ 2.

Proof. If 𝑃𝐺 is nearly Gorenstein, then Theorem 2.4.2 allows us to write 𝑃𝐺 = 𝑃1 ×
· · · × 𝑃𝑠 for some indecomposable Gorenstein 0/1-polytopes 𝑃1, . . . , 𝑃𝑠 . Then, we
have 𝑠 ≤ 2 since 𝑃𝐺 ⊂ {(𝑥1, . . . , 𝑥𝑑) ∈ ℝ𝑑 : 𝑥1 + · · · + 𝑥𝑑 = 2}, where 𝑑 = |𝑉(𝐺)|. In
the case 𝑠 = 1, 𝑃𝐺 is Gorenstein. If 𝑠 = 2, we can see that 𝑃1 = conv{𝒆1, . . . , 𝒆𝑛} ⊂ ℝ𝑛
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and 𝑃2 = conv{𝒆1, . . . , 𝒆𝑑−𝑛} ⊂ ℝ𝑑−𝑛 for some 1 < 𝑛 < 𝑑 − 1. Therefore, we have 𝐺 =

𝐾𝑛,𝑑−𝑛 , and it is shown by [46, Proposition 1.5] that for any 1 < 𝑛 < 𝑑 − 1, 𝑃𝐾𝑛,𝑑−𝑛 is
nearly Gorenstein if and only if 𝑑 − 𝑛 ∈ {𝑛, 𝑛 + 1}. Since 𝑃𝐾𝑛,𝑛 is Gorenstein, we get
the desired result. □

2.4.3 Nearly Gorenstein graphic matroid polytopes
We start by giving one of several equivalent definitions of a matroid.

Definition 2.4.6. Let 𝐸 be a finite set and let ℬ be a subset of the power set of 𝐸
satisfying the following properties:

1. ℬ ≠ ∅.

2. If 𝐴, 𝐵 ∈ ℬ with 𝐴 ≠ 𝐵 and 𝑎 ∈ 𝐴 \ 𝐵, then there exists some 𝑏 ∈ 𝐵 \ 𝐴 such
that (𝐴 \ {𝑎}) ∪ {𝑏} ∈ ℬ.

Then the tuple 𝑀 = (𝐸,ℬ) is called a matroid with ground set 𝐸 and set of bases ℬ.

Let now 𝐺 = (𝑉, 𝐸) be a multigraph. The graphic matroid associated to 𝐺 is the
matroid𝑀𝐺 whose ground set is the set of edges 𝐸 and whose bases are precisely the
subsets of 𝐸 which induce a spanning tree of 𝐺. Given two matroids 𝑀𝐸 = (𝐸,ℬ𝐸)
and 𝑀𝐹 = (𝐹,ℬ𝐹), their direct sum 𝑀𝐸 ⊕ 𝑀𝐹 is the matroid with ground set 𝐸 ⊔ 𝐹

such that for each basis 𝐵 of 𝑀𝐸 ⊕ 𝑀𝐹, there exist bases 𝐵𝐸 ∈ ℬ𝐸 and 𝐵𝐹 ∈ ℬ𝐹

with 𝐵 = 𝐵𝐸 ⊔ 𝐵𝐹. If such a decomposition is not possible for a matroid 𝑀, we call it
irreducible.

A graphic matroid with underlying multigraph 𝐺 is irreducible if and only if its
underlying graph is 2-connected. If it is not irreducible, its irreducible components
correspond precisely to the 2-connected components of 𝐺.

For any matroid 𝑀 = (𝐸,ℬ), we can define its matroid base polytope (or simply base
polytope) by

𝐵𝑀 = conv

{∑
𝑏∈𝐵

𝑒𝑏 : 𝐵 ∈ ℬ
}
⊂ ℝ|𝐸 |

where 𝑒𝑏 is the incidence vector in ℝ|𝐸 | corresponding to the basis 𝑏. If 𝐵𝑀 comes
from a graphic matroid 𝑀𝐺, we will call it 𝐵𝐺.

An alternative definition of matroid base polytopes is as follows.

Definition 2.4.7 ([33, Section 4]). A 0/1-polytope 𝑃 ⊂ ℝ𝑑 is called (matroid) base
polytope if there is a positive integer ℎ such that every vertex 𝑣 = (𝑣1, . . . , 𝑣𝑛) sat-
isfies

∑𝑑
𝑖=1 𝑣𝑖 = ℎ and every edge (i.e. dimension 1 face) of 𝑃 is a translation of a

vector 𝑒𝑖 − 𝑒 𝑗 with 𝑖 ≠ 𝑗.

It is shown in [33, Theorem 4.1] that this definition is indeed equivalent to that
of a base polytope as given above and that the underlying matroid is uniquely
determined. This gives us the following two lemmas.



2.4. Nearly Gorenstein 0/1-polytopes 41

Lemma 2.4.8. Let 𝐺 be a multigraph and let 𝐺1, . . . 𝐺𝑛 be its 2-connected components.
Then 𝐵𝐺 can be written as a direct product of the base polytopes 𝐵𝐺1 , . . . , 𝐵𝐺𝑛 . Conversely,
if 𝐵𝐺 can be written as a direct product of polytopes 𝑃1, . . . , 𝑃𝑛 , where no 𝑃𝑖 is itself a
direct product, then these polytopes correspond to the base polytopes of the 2-connected
components 𝐺1, . . . , 𝐺𝑛 of 𝐺.

Proof. The first statement is trivially satisfied.
The converse follows from two key insights. Firstly, the fact that if a base poly-

tope 𝐵𝑀 associated to a (not necessarily graphic) matroid 𝑀 can be written as a
direct product 𝑃1 × 𝑃2, then 𝑃1 and 𝑃2 are again base polytopes. Secondly, if a
graphic matroid 𝑀𝐺 can be written as a direct sum 𝑀1 ⊕ 𝑀2, then 𝑀1 and 𝑀2 are
again graphic matroids corresponding to subgraphs of 𝐺 which have at most one
vertex in common.

The first insight follows from the alternative definition of a base polytope: Every
edge of 𝐵𝑀 is given by an edge in 𝑃1 and a vertex of 𝑃2, or vice versa. Hence, 𝑃1
and 𝑃2 must satisfy the definition as well, making them base polytopes with unique
underlying matroids 𝑀1 and 𝑀2. The second insight is a classical result and can be
found, among other places, in [101, Lemma 8.2.2]. □

The following proposition is the polytopal version of a classical result due to
White.

Lemma 2.4.9 ([105, Theorem 1]). Matroid base polytopes are IDP.

We can now define Gorensteinness, nearly Gorensteinness, and levelness of a
matroid by identifying it with its base polytope. In [47] and [69], a constructive,
graph-theoretic criterion of Gorensteinness for graphic matroids was found. Since
the direct product of two Gorenstein polytopes that have the same codegree is again
Gorenstein, the characterisation is presented in terms of 2-connected graphs.

Proposition 2.4.10 ([69, Theorems 2.22 and 2.25]). Let 𝐺 be a 2-connected multigraph.
Then the following are equivalent.

1. 𝐵𝐺 is Gorenstein with codegree 𝑎 = 2

2. Either 𝐺 is the 2-cycle or 𝐺 can be obtained from copies of the clique 𝐾4 and Construc-
tion 2.15 in [69].

The following are also equivalent.

1. 𝐵𝐺 is Gorenstein with codegree 𝑎 > 2

2. 𝐺 can be obtained from copies of the cycle 𝐶𝑎 and Constructions 2.15, 2.17, 2.18
in [69] with 𝛿 = 𝑎.

The full characterisation of nearly Gorenstein graphic matroids is thus an imme-
diate corollary of Theorem 2.4.2 and Proposition 2.4.10.

Corollary 2.4.11. Let 𝐺 be a multigraph with 2-connected components 𝐺1, . . . , 𝐺𝑛 , then
the following are equivalent.
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1. 𝐵𝐺 is nearly Gorenstein

2. 𝐵𝐺1 , . . . , 𝐵𝐺𝑛 are Gorenstein with codegrees 𝑎1, . . . , 𝑎𝑛 , where |𝑎𝑖 − 𝑎 𝑗 | ≤ 1 for 1 ≤
𝑖 < 𝑗 ≤ 𝑠.
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Chapter 3

A New Mutation Invariant of Fano
Polygons

3.1 Introduction
Recall that the mirror symmetry approach to the classification of Fano manifolds was
specialised in two dimensions in [3]. Here, the conjectural correspondence is between
orbifold del Pezzo surfaces having a toric degeneration (up to qG-deformation) and
Fano polygons (up to mutation). Because there is an infinite number of these surfaces,
the basket of (residual) cyclic quotient singularities must be fixed in order to get a
finite classification. The conjecture has been verified in the smooth case [66] and in
the case where the surfaces have at worst 1

3(1, 1) singularities [28, 66]. Crucial to the
classification on the polygon side was the notion of minimal Fano polygons. In [66,
Theorem 6.3], it was shown that each mutation-equivalence class of Fano polygons
has a finite number of minimal polygons. Using [17], all minimal polygons with a
given basket of singularities can be classified.

The final step in obtaining a conjectural classification of these varieties is to
remove the redundant minimal polygons. This is because some of the minimal
polygons may be mutation-equivalent to each other. There are already several tools
available which can be used to show that two polygons are not mutation-equivalent;
for example, the Ehrhart series of the dual polygon and the singularity content are
known to be invariant under mutation [2, 62]. However, this is sometimes not enough
to distinguish polygons up to mutation.

In Section 3.2, we introduce a new constant 𝑘𝑃 associated to a Fano polygon 𝑃,
called the partial crepant resolution (PCR) index. We prove in Theorem 3.2.10 that the
PCR index is invariant under mutation. Computation of this invariant is cheap, and
so it can be used to easily distinguish more mutation-equivalence classes of Fano
polygons; see Examples 3.2.13 and 3.2.14. Finally, in Corollary 3.2.9, we derive a
formula for the PCR index which is in terms of the singularities of 𝑋𝑃 .

In Section 3.3, we revisit the classification of minimal polygons from [66] which
correspond to the smooth del Pezzo surfaces. In particular, we use the Markov-
like diophantine equations similar to those appearing in [1] in order to classify all
minimal Fano triangles.



44 Chapter 3. A New Mutation Invariant of Fano Polygons

3.2 The Partial Crepant Resolution Index

3.2.1 A natural definition of the PCR index
We first highlight a known behaviour of the (standard) index under mutation, whose
definition we recall below.

Definition 3.2.1. Let 𝑃 ⊂ 𝑁ℚ be a lattice polygon. Its index is 𝑘𝑃 B [𝑁 : Γ𝑃], where Γ𝑃
is the sublattice of 𝑁 spanned by the vertices of 𝑃.

Example 3.2.2. Let 𝑃 = conv {(−1,−1), (2,−1), (−1, 2)} ⊂ 𝑁ℚ. This has index 𝑘𝑃 =

3. Now consider 𝑄 = conv {(−1,−1), (2,−1), (2, 1), (−1, 1)}. In particular, 𝑄 has
index 𝑘𝑄 = 1. Further, we note that𝑄 = mut𝑤(𝑃, 𝒅), where 𝑤 = (1, 0)𝑡 and 𝒅 = (0, 1).
Thus, the index is not invariant under mutation.

So, in order to create a mutation-invariant, we need to add more points to the
sublattice. Really, we want it to contain the vertices of all the polygons in the
mutation-equivalence class. Of course, this will trivially be a mutation-invariant;
however, at first sight, it seems that it would be wholly inefficient to compute.

We can decorate the edges of a Fano polygon 𝑃 in a way that encodes the possible
non-trivial mutations of 𝑃. This was first described in [62].

Definition 3.2.3. Let 𝐸 = [𝒗 , 𝒗+ℓ𝒅] be an edge of an IP polygon; the edge has length ℓ
and height ℎ, so that 𝒅 is primitive. By the division algorithm, we have ℓ = 𝑛ℎ+ ℓ̃ for
some unique integers 𝑛 ≥ 0 and 0 ≤ ℓ̃ < ℎ. Thus, we can subdivide the edge 𝐸 into 𝑛
segments of length and height ℎ and one (possibly empty) segment of length ℓ̃ and
height ℎ. One choice of subdivision of 𝐸 is the ordered set {𝒗 + 𝑖ℎ𝒅 : 0 ≤ 𝑖 ≤ 𝑛} ∪
{𝒗 + ℓ𝒅}. We call any choice of subdivision an (ordered) set of PCR points for 𝐸.

Lemma 3.2.4. Let 𝐸 be an edge of an IP polygon with height ℎ and primitive direction
vector 𝒅. Let 𝑉𝐸 ⊂ 𝑁 be a choice of PCR points for 𝐸. Then the lattice Γ̃𝐸 spanned by 𝑉𝐸 is
generated by the vertices of 𝐸 and, if 𝐸 is long, the point ℎ𝒅. In particular, Γ̃𝐸 is independent
of the choice of PCR points for 𝐸.

Proof. We may write 𝐸 = [𝒗 , 𝒗 + ℓ𝒅], where ℓ is the length of 𝐸. Further, we have
that ℓ = 𝑛ℎ + ℓ̃ for some unique integers 𝑛 ≥ 0 and 0 ≤ ℓ̃ < ℎ. So, the PCR points 𝑉𝐸
must subdivide 𝐸 into 𝑖 segments of length and height ℎ, one (possibly empty)
segment of length ℓ̃ and height ℎ, and then 𝑛 − 𝑖 segments of length and height ℎ,
for some 0 ≤ 𝑖 ≤ 𝑛. So, the set of PCR points𝑉𝐸 is the union of {𝒗 + 𝑗ℎ𝒅 : 0 ≤ 𝑗 ≤ 𝑖}
and {𝒗 + (ℓ − 𝑗ℎ)𝒅 : 0 ≤ 𝑗 ≤ 𝑛 − 𝑖}.

It clearly follows that when 𝐸 isn’t long, i.e. 𝑛 = 0, the lattice Γ̃𝐸 is spanned
by {𝒗 , 𝒗 + ℓ𝒅}. Further, it is clear that when 𝐸 is long, i.e. 𝑛 ≥ 1, the lattice Γ̃𝐸 is
spanned by {𝒗 , 𝒗 + ℓ𝒅, ℎ𝒅}. Since these generators are independent of the choice
of 𝑖, the lattice Γ̃𝐸 is independent of the choice of PCR points for 𝐸. □

Definition 3.2.5. The sublattice Γ̃𝑃 is defined as the smallest lattice containing Γ̃𝐸 for
all edges 𝐸 of 𝑃. We call 𝑘𝑃 B [𝑁 : Γ̃𝑃] the PCR index of 𝑃.
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3.2.2 A formula for the PCR index
We now describe a convenient formula for the PCR index of a Fano polygon. We
do this by switching to the point of view of fans, which correspond one-to-one with
Fano polygons by definition.

Definition 3.2.6. Let Σ be a fan whose cones lie in 𝑁ℚ. For a ray 𝜌 ⊂ 𝑁ℚ, we denote
by 𝒗𝜌 its primitive ray generator. We now define 𝑁Σ B spanℤ

{
𝒗𝜌 : 𝜌 ∈ Σ(1)

}
as the

sublattice of 𝑁 spanned by the primitive ray generators 𝒗𝜌 of the rays 𝜌 in Σ. The
index of this sublattice is denoted 𝑘Σ B [𝑁 : 𝑁Σ].

Note that a cone can be naturally endowed with the structure of a fan by taking
all of its faces. Thus, we often conflate 𝜎 with its associated fan; for example, we use
the notation 𝜎(1) to mean the one-dimensional faces of 𝜎, and 𝑘𝜎 to mean the index
of the sublattice of 𝑁 spanned by its primitive ray generators.

In the case of 2-dimensional cones, it is straightforward to compute the index: 𝑘𝜎 =

| det(𝒙 , 𝒚)|, where 𝒙 and 𝒚 are the primitive ray generators of 𝜎. More generally, for a
fan Σ, we have 𝑘Σ = gcd(det(𝒗𝜌1 , 𝒗𝜌2) : 𝜌1, 𝜌2 ∈ Σ(1)). The following result simplifies
this formula so that we only look at the maximal dimensional cones of Σ.

Lemma 3.2.7. Let Σ be a fan over 𝑁ℚ. Then 𝑘Σ = gcd(𝑘𝜎 : 𝜎 ∈ Σ(2)).
Proof. Before demonstrating the general statement, we must first consider the case
when there are three rays in the fan. For distinct primitive lattice points 𝒙 , 𝒚, 𝒛 ∈ 𝑁 ,
set

𝑘0 B det(𝒙 , 𝒚), 𝑘1 B det(𝒚, 𝒛), 𝑘2 B det(𝒛, 𝒙).
We claim that gcd(𝑘0, 𝑘1, 𝑘2) = gcd(𝑘0, 𝑘1). To see this, we consider the sublattice Γ

spanned by 𝒙 , 𝒚, 𝒛. First, apply an SL2(ℤ)-transformation 𝑈 which sends 𝒚 to (0, 1).
Since determinants are preserved under this transformation, 𝒙 is sent to (𝑘0,−𝑎0)
and 𝒛 is sent to (−𝑘1,−𝑎1), for some integers 𝑎0, 𝑎1. It is straightforward to see that
the sublattice𝑈Γ has index gcd(𝑘0, 𝑘1). Thus, the claim is proven.

We now demonstrate the statement for a general fan Σ. Label its primitive ray
generators as 𝒗0, 𝒗1, . . . , 𝒗𝑚 in anticlockwise order. Then, each maximal dimen-
sional cone of Σ will have primitive ray generators 𝒗𝑖 and 𝒗𝑖+1, for some 𝑖, where
indices are taken modulo 𝑚 + 1. As before, we apply an SL2(ℤ)-transformation
sending 𝒗0 to (0, 1) and all other 𝒗𝑖 to 𝒗′

𝑖
. It is clear to see that 𝑘Σ coincides

with gcd(𝑘01, 𝑘02, . . . , 𝑘0𝑚), where 𝑘0𝑖 B det(𝒗0, 𝒗𝑖) = det((0, 1), 𝒗′
𝑖
).

We may apply our claim twice to get that gcd(𝑘01, 𝑘02) = gcd(𝑘01, 𝑘02, 𝑘12) =

gcd(𝑘01, 𝑘12). In total, we may apply our claim 2(𝑚 − 1) times to obtain that 𝑘Σ =

gcd(𝑘01, 𝑘12, 𝑘13, . . . , 𝑘1𝑚). Then, we may apply the claim 2(𝑚 − 2) times to obtain
that 𝑘Σ = gcd(𝑘01, 𝑘12, 𝑘23, . . . , 𝑘2𝑚). We may proceed inductively, until we obtain
that 𝑘Σ = gcd(𝑘01, 𝑘12, 𝑘23, . . . , 𝑘(𝑚−1)𝑚).

If Σ is a complete fan, then we may also include 𝑘𝑚0 inside the gcd at no extra
cost. In either case, we obtain the desired result. □

From the above lemma, we obtain formulas for the usual and PCR indices. The
latter can be obtained by refining the spanning fan of a Fano polygon, as will be
explained now.
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Definition 3.2.8. Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon. For each edge 𝐸 of 𝑃, choose a set
of PCR points 𝑉𝐸. Then, Σ̃𝑃 is defined to be a standard partial crepant resolution of 𝑃 if
its rays are generated by the points in 𝑉𝐸, for all edges 𝐸 of 𝑃.

Corollary 3.2.9. Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon. Then the following hold.

1. 𝑃 has (usual) index 𝑘𝑃 = gcd(𝑘𝐸 : 𝐸 an edge of 𝑃);

2. 𝑃 has PCR index 𝑘𝑃 = gcd({𝑘𝜎 : 𝜎 ∈ ℬ𝑃} ∪
{
ℎ2
𝐸

: 𝐸 is a long edge of 𝑃
}
).

Proof. The first statement follows immediately from Lemma 3.2.7. We now deal
with the second statement. Consider the fan Σ̃𝑃 , which is a standard partial crepant
resolution of Σ𝑃 . If an edge 𝐸 is not long, then it contributes ℓ̃𝐸ℎ𝐸 towards the PCR
index. Otherwise, by Lemma 3.2.7, it contributes ℎ2

𝐸
and ℓ̃𝐸ℎ𝐸 to the PCR index.

Therefore, the formula holds. □

3.2.3 Mutation-invariance of the PCR index
In this subsection, we aim to prove that the PCR index of a Fano polygon is invariant
under mutation.

Theorem 3.2.10. Let 𝑃, 𝑄 ⊂ 𝑁ℚ be mutation-equivalent Fano polygons. Then the sublat-
tices Γ̃𝑃 and Γ̃𝑄 coincide. Moreover, the PCR indices are equal, i.e. 𝑘𝑃 = 𝑘𝑄 .

We start by observing that this theorem does not hold for non-Fano polygons.

Example 3.2.11. Consider the non-Fano lattice polytope𝑃 = conv {(0, 1), (−2,−2), (2,−2)}.
We may extend our definition of PCR index, keeping the labelling. We obtain 𝑘𝑃 = 2.
Now consider 𝑄 = mut𝑤(𝑃, 𝒅), where 𝑤 = (0, 1)𝑡 and 𝒅 = (1, 0). Then 𝑄 =

conv {(0, 1), (1, 1), (−2,−2), (0,−2)}. This has PCR index 𝑘𝑄 = 1. So, PCR index
is not invariant under mutation for non-Fano polygons.

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Figure 3.1: The polygons 𝑃 and 𝑄 from Example 3.2.11.

The primitive vertex condition is thus essential for the invariance of the PCR index
under mutation. This motivates the following lemma, which we will be needed to
prove Theorem 3.2.10.

Lemma 3.2.12. Let 𝐿 be the sublattice of𝑁 spanned by the lattice points (𝑥, ℎ), (𝑥′, ℎ′), (ℎ, 0).
Suppose that (𝑥, ℎ) is primitive. Then (ℎ′, 0) ∈ 𝐿.
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Proof. To show that (ℎ′, 0) belongs to 𝐿, we will express it as a ℤ-linear combination
of the generators of 𝐿. Since 𝑥 and ℎ are coprime, there exist integers 𝑝 and 𝑞 such
that 𝑝𝑥 + 𝑞ℎ = 1. Thus, we may write

(ℎ′, 0) = 𝑝ℎ′ · (𝑥, ℎ) − 𝑝ℎ · (𝑥′, ℎ′) + (𝑝𝑥′ + 𝑞ℎ′) · (ℎ, 0) ∈ 𝐿.

And so, we are done. □

We can now prove the main theorem of the section.

Proof of Theorem 3.2.10. By Lemma 1.3.5 (3), it is enough to consider the case when 𝑃
and 𝑄 are related by a single primitive mutation, i.e. 𝑄 = mut𝑤(𝑃, 𝒅) for some
mutation data (𝑤, 𝒅) for 𝑃, where 𝒅 is primitive. Further, by Lemma 1.3.5 (2), it is
enough to prove that Γ̃𝑃 ≥ Γ̃𝑄 .

Without loss of generality, 𝑤 = (0, 1)𝑡 and 𝒅 = (1, 0). Label the vertices of 𝑃 as in
Definition 1.3.4. Now, the vertices of 𝑄 will be

𝒗1, 𝒗2, . . . , 𝒗𝑖 , 𝐴𝒗𝑖+1, . . . , 𝐴𝒗𝑚+1, (3.1)

where 𝐴 is the 𝑤-shear sending (𝑥, ℎ) ∈ 𝑁 to (𝑥 + ℎ, ℎ). Further, if 𝑉 is a set of PCR
points for an edge 𝐸, then 𝐴𝑉 is a set of PCR points for the edge 𝐴𝐸.

Now, since there is a long edge with primitive vertices and with normal vector 𝑤,
Lemma 3.2.12 tells us that Γ̃𝑃 is invariant under 𝑤-shears. Thus, the PCR points for
all edges of 𝑄 whose primitive inner normals aren’t ±𝑤 are contained in Γ̃𝑃 .

So, it remains to consider the PCR points of the edges of 𝑄 which have primitive
inner normal ±𝑤. In fact, we only have to consider those PCR points which aren’t
vertices (3.1), since their vertices have already been accounted for by their adjacent
edges.

Let 𝐸′
𝑚+1 B [𝒗1, 𝐴𝒗𝑚+1] and 𝐸′

𝑖
B [𝒗𝑖 , 𝐴𝒗𝑖+1]. The former is the long edge of 𝑄

maximising 𝑤 and the latter is the face of 𝑄 minimising 𝑤. By Lemma 3.2.4, 𝐸′
𝑚+1

contributes ℎ𝑚+1𝒅 to Γ̃𝑄 , where ℎ𝑚+1 is the height of 𝐸′
𝑚+1. If 𝐸′

𝑖
is a long edge then,

by Lemma 3.2.4, it contributes ℎ𝑖𝒅 to Γ̃𝑄 , where ℎ𝑖 is the height of 𝐸′
𝑖
; otherwise,

it doesn’t contribute anything. Now, we already have that ℎ𝑖𝒗𝑖 ∈ Γ̃𝑃 . Since 𝒗𝑖 is
primitive and 𝑤(𝒗1) = ℎ𝑚+1, Lemma 3.2.12 gives us that ℎ𝑚+1𝒅 ∈ Γ̃𝑃 .

We have now shown that the generators of Γ̃𝑄 are contained in the lattice Γ̃𝑃 ;
so, Γ̃𝑃 ≥ Γ̃𝑄 . By the invertibility of mutations, it follows that Γ̃𝑃 = Γ̃𝑄 and 𝑘𝑃 = 𝑘𝑄 . □

3.2.4 Applying the PCR index
Now that we have proved the PCR index is invariant under mutation, we can use it
to distinguish between mutation-inequivalent polygons which have the same singu-
larity content.

Example 3.2.13. Let𝑃 = conv {(3, 4), (−6, 1), (3,−2)} and𝑄 = conv {(−6, 1), (3, 4), (−1,−4)}
be Fano polygons whose corresponding toric varieties are the fake weighted pro-
jective planes 𝑋𝑃 = ℙ(1, 2, 3)/ℤ9 and 𝑋𝑄 = ℙ(8, 25, 27). These polygons can be
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seen in Figure 3.2. They both have anticanonical degree 2/3 and singularity con-
tent

(
3,

{ 1
27(1, 20)

})
. However, their respective PCR indices are 𝑘𝑃 = 9 and 𝑘𝑄 = 1.

Thus, by Theorem 3.2.10, 𝑃 and 𝑄 are not mutation-equivalent.
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Figure 3.2: The polygons 𝑃 and 𝑄 from Example 3.2.13.

Example 3.2.14. We consider another pair of Fano triangles which have the same sin-
gularity content but different PCR indices. Set 𝑃 = conv {(−2,−17), (−2, 3), (6,−1)}
and 𝑄 = conv {(13,−80), (−2,−5), (13, 45)}. Their corresponding toric varieties are
the fake weighted projective planes 𝑋𝑃 = ℙ(2, 5, 13)/ℤ8 and 𝑋𝑄 = ℙ(1, 9, 65)/ℤ25.
They both have anticanonical degree 5/13 and singularity content

(
11,

{ 1
104(1, 55)

})
.

However, their respective PCR indices are 𝑘𝑃 = 4 and 𝑘𝑄 = 1. So, by Theorem 3.2.10,
the Fano polygons 𝑃 and 𝑄 are not mutation-equivalent.

3.3 The Existence of Fano Triangles in a Mutation-Equivalence
Class

We begin with a motivating example and some questions, which we aim to answer
in this section.

Example 3.3.1. Consider the Fano polygon with vertices ±(1, 0) and ±(0, 1). It corre-
sponds to the toric Fano variety ℙ1 × ℙ1, which has degree 8. Now, it is known that
this polygon is mutation-equivalent to the triangle corresponding to ℙ(1, 1, 2).

Next, consider the Fano polygon with vertices (−1,−1), (1, 0), (1, 1), and (0, 1).
It corresponds to the Hirzebruch surface 𝔽1, which is a toric Fano variety also of
degree 8. Is its corresponding Fano polygon mutation-equivalent to a triangle, i.e.
does 𝔽1 have a qG-deformation to a fake weighted projective plane?

In fact, we want to answer the more general question: given any Fano polygon,
does there exist a triangle that is mutation equivalent to it?

3.3.1 Markov-like Diophantine equations
In [1], they described one-step mutations of Fano triangles. In particular, they
described how the weights and the index of the triangle changed under mutation.
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Proposition 3.3.2 ([1, Proposition 3.12]). Let 𝑃, 𝑄 ⊂ 𝑁ℚ be a Fano triangles with
respective weights (𝜆0,𝜆1,𝜆2) and (𝜆′

0,𝜆
′
1,𝜆

′
2) and respective (usual) indices 𝑘 and 𝑘′.

Write 𝜆𝑖 = 𝑐𝑖𝑎
2
𝑖
, where the 𝑎𝑖 are positive integers and the 𝑐𝑖 are square-free positive

integers. Suppose that 𝑃 and 𝑄 are related by a sequence of one-step mutations. Then 𝑄
has weights satisfying 𝜆′

𝑖
= 𝑐𝑖𝑏

2
𝑖
, where the 𝑏𝑖 are positive integers. Furthermore, (𝑎0, 𝑎1, 𝑎2)

and (𝑏0, 𝑏1, 𝑏2) are solutions to the same Diophantine equation

𝑑𝑥𝑦𝑧 = 𝑒(𝑐0𝑥
2 + 𝑐1𝑦

2 + 𝑐2𝑧
2), (3.2)

for some positive integers 𝑑 and 𝑒. Moreover, the indices of 𝑃 and 𝑄 coincide, i.e. 𝑘 = 𝑘′.

This connection to Markov-like Diophantine equations allows us to describe
one-step mutations of Fano polygons with index one, i.e. those corresponding
to weighted projective spaces.

Example 3.3.3. Consider the Fano triangle 𝑃 ⊂ 𝑁ℚ with corresponding to the
weighted projective plane ℙ(1, 1, 2). By Proposition 3.3.2, if a triangle is related to 𝑃
by a sequence of one-step mutations, then it corresponds to the weighted projective
space ℙ(𝑎2

0 , 𝑎
2
1 , 2𝑎

2
2), for some positive integers 𝑎0, 𝑎1, 𝑎2 satisfying

4𝑎0𝑎1𝑎2 = 𝑎2
0 + 𝑎2

1 + 2𝑎2
2 .

From one solution (𝑥, 𝑦, 𝑧) to the above equation, three other solutions can be ob-
tained:

(4𝑦𝑧 − 𝑥, 𝑦, 𝑧), (𝑥, 4𝑥𝑧 − 𝑦, 𝑧), (𝑥, 𝑦, 2𝑥𝑦 − 𝑧).

These solutions form a tree, with the fundamental (or minimal) solution (1, 1, 1) as
the parent of the tree; see Figure 3.3. It can be shown that this Markov-like equation
has only the one fundamental solution. However, as shown in [1, Section 4], there
also exist Markov-like equations with infinitely many fundamental solutions.

(1, 1, 1)

(1, 3, 1)

(11, 3, 1)

(11, 41, 1) (11, 3, 65)

(1, 3, 5)

(59, 3, 5) (1, 19, 5)

Figure 3.3: The tree of solutions of 4𝑥𝑦𝑧 = 𝑥2 + 𝑦2 + 2𝑧2, up to permu-
tation of 𝑥 and 𝑦, displayed to a depth of four.
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3.3.2 Method to produce all equations and their solutions
We can modify the approach of [1] in order to describe all one-step mutation families
with a given singularity content. We get a finite number of equations which each
have a finite number of fundamental solutions. What we present in this section is
the specialisation of this approach to the case when the basket of R-singularities is
empty.

Theorem 3.3.4. Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon with an empty basket of R-singularities.
Suppose that 𝑃 is mutation-equivalent to a triangle 𝑄. Then, the following statements hold:

(i) 𝑄 has edges with length 𝑛𝑖ℎ𝑖 and height ℎ𝑖 , where 𝑛𝑖 and ℎ𝑖 are some positive integers,
for 𝑖 = 0, 1, 2, and 𝑛0 ≥ 𝑛1 ≥ 𝑛2.

(ii) 𝑛0, 𝑛1, 𝑛2 appear in a row of Table 3.1 and the tuple of heights (ℎ0, ℎ1, ℎ2) is a solution
to the Markov-like equation

𝑑𝑥𝑦𝑧 = 𝑛0𝑥
2 + 𝑛1𝑦

2 + 𝑛2𝑧
2, (3.3)

where 𝑑 is given in Table 3.1.

(iii) 𝑄 is related by a sequence of one-step mutations to a fundamental triangle, whose
heights are given in Table 3.1.

Before we proceed with the proof of Theorem 3.3.4, we need to recall a couple of
formulas for the anticanonical degree of a toric Fano surface. The first formula is a
classical result which holds for fake weighted projective planes.

Proposition 3.3.5. Let 𝑃 ⊂ 𝑁ℚ be a Fano triangle with weights (𝜆0,𝜆1,𝜆2) and index 𝑘.
Then,

Vol(𝑃∗) = (𝜆0 + 𝜆1 + 𝜆2)2
𝑘𝜆0𝜆1𝜆2

.

This next formula is for general toric Fano surfaces.

Proposition 3.3.6 ([62, Proposition 3.3]). Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon with singularity
content (𝑛,ℬ). Then the anticanonical degree of 𝑋𝑃 is

Vol(𝑃∗) = 12 − 𝑛 −
∑
𝜎∈ℬ

𝐴𝜎 ,

where 𝐴𝜎 is a rational number depending only on the singularity type 𝜎.

Remark 3.3.7. An exact formula for 𝐴𝜎 in terms of Hirzebruch-Jung continued frac-
tions is given in [62], but we omit it here.

We are now ready to prove the first main theorem of the section.

Proof of Theorem 3.3.4. We first prove (i). Let 𝐸0, 𝐸1, 𝐸2 be the edges of𝑄. Since 𝑃 has
empty basket and is mutation-equivalent to 𝑄, then 𝑄 must also have empty basket
by Theorem 1.3.11. Thus, if ℎ0, ℎ1, ℎ2 are the respective heights of the edges of 𝑄,
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Equation ID 𝑑 𝑛0 𝑛1 𝑛2 Fundamental solution(s) Corresponding Surface
3 3 1 1 1 (1, 1, 1) ℙ2

4 4 2 1 1 (1, 1, 1) ℙ(1, 1, 2)
6 6 3 2 1 (1, 1, 1) ℙ(1, 2, 3)
7 5 5 1 1 (1, 2, 1), (1, 1, 2) ℙ(1, 4, 5)
8 8 4 2 2 (1, 1, 1) ℙ(1, 1, 2)/ℤ2
9a 6 6 2 1 (1, 1, 2) ℙ(1, 2, 3)/ℤ2
9b 9 3 3 3 (1, 1, 1) ℙ2/ℤ3
10a 4 8 1 1 (1, 2, 2) ℙ(1, 1, 2)/ℤ4
10b 6 6 3 1 (1, 1, 3) ℙ(1, 2, 3)/ℤ3
10c 8 4 4 2 (1, 1, 2) ℙ(1, 1, 2)/ℤ4
11a 3 9 1 1 (1, 3, 3) ℙ2/ℤ9
11b 4 8 2 1 (1, 2, 4) ℙ(1, 1, 2)/ℤ8
11c 5 5 5 1 (1, 2, 5), (2, 1, 5) ℙ(1, 4, 5)/ℤ5
11d 6 6 3 2 (1, 2, 3) ℙ(1, 2, 3)/ℤ6

Table 3.1: Solutions to the Diophantine equations 𝑑𝑥𝑦𝑧 = 𝑛0𝑥
2 +𝑛1𝑦

2 +
𝑛2𝑧

2, along with their corresponding fake weighted projective planes.
The first number of each equation ID is the number of primitive T-
singularities 𝑛0 + 𝑛1 + 𝑛2 of each Fano triangle represented by the equa-
tion. The weights and index of each corresponding surface can be
computed directly from 𝑛0 , 𝑛1 , 𝑛2 and the solution. In equations 7 and
11c, there are two fundamental solutions; both correspond to the same

surface.

then the lengths must be of the form 𝑛𝑖ℎ𝑖 , for some positive integers 𝑛𝑖 , for 𝑖 = 0, 1, 2.
Without loss of generality, we may assume that 𝑛0 ≥ 𝑛1 ≥ 𝑛2 ≥ 1.

We now prove (ii). Let (𝜆0,𝜆1,𝜆2) be the weights and 𝑘 be the index of 𝑄. We
note that the index of each edge of 𝑄 can be written in two ways:

𝑘𝜆𝑖 = 𝑛𝑖ℎ
2
𝑖 ,

for 𝑖 = 0, 1, 2. We now compute the degree of 𝑋𝑄 in two different ways, and apply
the above identity. By Propositions 3.3.5 and 3.3.6, we obtain that

12 − 𝑛0 − 𝑛1 − 𝑛2 =
(𝑛0ℎ

2
0 + 𝑛1ℎ

2
1 + 𝑛2ℎ

2
2)2

𝑛0ℎ
2
0 · 𝑛1ℎ

2
1 · 𝑛2ℎ

2
2

.

Now, we can compare the square-free parts of both sides of the above identity to
get that (12 − 𝑛0 − 𝑛1 − 𝑛2)𝑛0𝑛1𝑛2 is a square 𝑑2, for some positive integer 𝑑. It now
follows from comparing the squared parts of both sides that (ℎ0, ℎ1, ℎ2) is a solution
to Equation (3.3).

Finally, we prove (iii). We first note that the degree of 𝑋𝑄 must be positive,
so our coefficients satisfy the bounds 3 ≤ 𝑛0 + 𝑛1 + 𝑛2 ≤ 11. A simple brute-
force algorithm can loop through all possible tuples (𝑛0, 𝑛1, 𝑛2) satisfying the above
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bounds, returning only those such that (12 − 𝑛0 − 𝑛1 − 𝑛2)𝑛0𝑛1𝑛2 is a square. This
produces the list of values of 𝑛0, 𝑛1, 𝑛2 given in Table 3.1.

It now remains to show that each equation has the given fundamental solution(s).
Previous work of [90, Satz] gives the fundamental solutions for the first four equations
in Table 3.1. The remaining equations can be solved by reducing them to one of the
first four, as we now demonstrate.

We first deal with Equation 8. Reading the coefficients off the table, the equation
is 8𝑥𝑦𝑧 = 4𝑥2 + 2𝑦2 + 2𝑧2. Clearly, if we divide both sides by 2, then we obtain
Equation 4. So, (𝑥, 𝑦, 𝑧) is a fundamental solution to Equation 8 if and only if it
is a fundamental solution to Equation 4. Thus, Equation 8 has one fundamental
solution: (1, 1, 1).

Next, we look at Equation 9a, which is 6𝑥𝑦𝑧 = 6𝑥2 + 2𝑦2 + 𝑧2. We see that 𝑧 must
be even; so, let 𝑧 = 2𝑧̂ for some 𝑧̂ ∈ ℤ. Substituting this back into Equation 9a and
dividing both sides by 2, we obtain 6𝑥𝑦𝑧̂ = 3𝑥2 + 𝑦2 + 2𝑧̂2. This is just Equation 6.
So, (𝑥, 𝑦, 2𝑧̂) is a fundamental solution to Equation 9a if and only if (𝑥, 𝑧̂, 𝑦) is
a fundamental solution to Equation 6. Thus, Equation 9a has one fundamental
solution: (1, 1, 2).

We now skip to consider Equation 10a, which is 4𝑥𝑦𝑧 = 8𝑥2 + 𝑦2 + 𝑧2. Looking
modulo 4, we see that 𝑦 and 𝑧 must be even; so, let 𝑦 = 2𝑦̂ and 𝑧 = 2𝑧̂, for
some 𝑦̂ , 𝑧̂ ∈ ℤ. Substituting this back into Equation 10a and dividing both sides by 4,
we obtain 4𝑥𝑦̂𝑧̂ = 2𝑥2 + 𝑦̂2 + 𝑧̂2. This is just Equation 4. Thus, Equation 10a has one
fundamental solution: (1, 2, 2).

Using similar such reasoning, the fundamental solutions appearing in Table 3.1
can be produced for the rest of the equations. □

We can now make a statement about the PCR indices of such Fano polygons.
Corollary 3.3.8. Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon with empty basket of R-singularities. If 𝑃
is mutation-equivalent to a Fano triangle, then it has PCR index 𝑘𝑃 = 1.
Proof. From Table 3.1, we see that all Fano triangles with empty basket have an edge
of height one. Thus, by Corollary 3.2.9 (2), all Fano triangles with empty basket have
PCR index one. Since 𝑃 is mutation-equivalent to a Fano triangle with empty basket,
by Theorem 3.2.10, 𝑃 must also have PCR index one. □

3.3.3 Realisation
While Table 3.1 presents a list of invariants that a Fano triangle with an empty basket
must satisfy, it still remains to show that such polygons are actually realisable. Of
course, they all appear in [66], but we wish to verify this independently from their
classification, using methods specific to triangles.
Theorem 3.3.9. Let 𝑑 and (𝑛0, 𝑛1, 𝑛2) be the coefficients appearing in a row of Table 3.1.
Let (ℎ0, ℎ1, ℎ2) be a corresponding fundamental solution. Then, up to GL2(ℤ)-equivalence,
there is exactly one Fano triangle 𝑃(𝑝0 ,𝑝1) whose edges 𝐸𝑖 have length 𝑛𝑖ℎ𝑖 and height ℎ𝑖 ,
for 𝑖 = 0, 1, 2. This triangle 𝑃(𝑝0 ,𝑝1) has the vertices:

(−𝑛1ℎ
2
1 , 1 − 𝑛1ℎ1𝑝1), (𝑛0ℎ

2
0 , 1 − 𝑛0ℎ0𝑝0), (0, 1).
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The realisation (𝑝0, 𝑝1) is listed in Table 3.2.

Equation ID Equation 𝑝0 𝑝1 ℎ0 ℎ1

3 𝑝0 + 𝑝1 = 3 1 2 1 1
4 𝑝0 + 𝑝1 = 2 1 1 1 1
6 𝑝0 + 𝑝1 = 1 1 0 1 1
7 𝑝0 + 𝑝1 = 2 1 1 1 1
8 𝑝0 + 𝑝1 = 1 1 0 1 1
9a 𝑝0 + 𝑝1 = 1 1 0 1 1
9b 𝑝0 + 𝑝1 = 1 1 0 1 1
10a 2𝑝0 + 𝑝1 = 1 0 1 1 2
10b 𝑝0 + 𝑝1 = 1 1 0 1 1
10c 𝑝0 + 𝑝1 = 1 1 0 1 1
11a 3𝑝0 + 𝑝1 = 1 0 1 1 3
11b 2𝑝0 + 𝑝1 = 1 0 1 1 2
11c 2𝑝0 + 𝑝1 = 1 0 1 1 2
11d 2𝑝0 + 𝑝1 = 1 0 1 1 2

Table 3.2: Realisations of the fundamental solutions of Table 3.1. The
equation must be satisfied by (𝑝0 , 𝑝1) to ensure that the edge 𝐸2 has
index 𝑛2ℎ

2
2. We include the heights ℎ0 and ℎ1 so that it is convenient to

check that 𝑝𝑖 and ℎ𝑖 are coprime for 𝑖 = 0, 1.

Before we proceed with the proof, we need a couple of technical results.

Lemma 3.3.10. Let 𝜎 = 1/𝑟(1, 𝑎) be a cyclic quotient singularity, so that 𝑎 and 𝑟 are positive
coprime integers, with 0 < 𝑎 ≤ 𝑟. Then 𝐴𝜎 ≡ −𝑚/𝑟 mod ℤ, for some integer 𝑚 satisfying

𝑎𝑚 ≡ (1 + 𝑎)2 mod 𝑟. (3.4)

Proof. We prove by induction. The base case 𝑟 = 𝑎 = 1 is immediate.
Now suppose that the statement is true for 𝜎 = 1/𝑟(1, 𝑎). For the induction step,

we must prove that it holds for 𝜎′ = 1/𝑟′(1, 𝑟), where 𝑟′ ≡ 𝑎 mod 𝑟. We compute the
degree of ℙ(1, 𝑟 , 𝑟′) in two ways, using Propositions 3.3.5 and 3.3.6, and compare in
order to find 𝐴𝜎′:

(1 + 𝑟 + 𝑟′)2
𝑟𝑟′

≡ −𝐴𝜎 − 𝐴𝜎′ mod ℤ.

By the induction assumption, we have that

𝐴𝜎′ ≡
𝑟′𝑚 − (1 + 𝑟 + 𝑟′)2

𝑟𝑟′
mod ℤ.

By Equation (3.4), and since 𝑟′ ≡ 𝑎 mod 𝑟, we have that 𝑟′𝑚 − (1+ 𝑟 + 𝑟′)2 = 𝑟𝑚′, for
some integer 𝑚. Furthermore, we can see that 𝑚′ satisfies the congruence relation
analogous to Equation (3.4), i.e. 𝑟𝑚′ ≡ (1+ 𝑟)2 mod 𝑟′. Thus, the result now follows
by induction. □
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The following statement will be necessary in the proof of Theorem 3.3.9. In
particular, we will use it to show that our triangles 𝑃(𝑝0 ,𝑝1) do indeed have empty
baskets.

Corollary 3.3.11. Let 𝜎 = 1/𝑟(1, 𝑎) be a cyclic quotient singularity, so that 𝑎 and 𝑟 are
positive coprime integers. Then the denominator of 𝐴𝜎 is 𝑟/gcd(𝑟, (1 + 𝑎)2).
Proof. From Lemma 3.3.10, the denominator of 𝐴𝜎 is 𝑟/gcd(𝑟, 𝑚). Since 𝑎 and 𝑟

are coprime, this is equal to 𝑟/gcd(𝑟, 𝑎𝑚). Finally, the result follows by applying
Equation (3.4). □

We are now ready to prove the second main theorem of this section.

Proof of Theorem 3.3.9. Suppose that𝑃 is a Fano triangle whose edges𝐸𝑖 have length 𝑛𝑖ℎ𝑖
and height ℎ𝑖 . Then, all its vertices are primitive and so, after an appropriate GL2(ℤ)-
transformation, we may assume that the common vertex of 𝐸0 and 𝐸1 is (0, 1). Fur-
ther, since the index of 𝐸𝑖 is 𝑛𝑖ℎ2

𝑖
for 𝑖 = 0, 1, we may assume that the other vertex

of 𝐸0 is (𝑛0ℎ
2
0 , 𝑎0) while the other vertex of 𝐸1 is (−𝑛1ℎ

2
1 , 𝑎1), for some integers 𝑎0

and 𝑎1. Since 𝐸0 has length 𝑛0ℎ0, we must have that 𝑎0 = 1 − 𝑛0ℎ0𝑝0, for some inte-
ger 𝑝0 coprime to ℎ0. Similarly, 𝑎1 = 1 − 𝑛1ℎ1𝑝1, for some integer 𝑝1 coprime to ℎ1.
So, 𝑃 = 𝑃(𝑝0 ,𝑝1). It remains to prove that (𝑝0, 𝑝1) must appear in the corresponding
row of Table 3.2 and that 𝐸2 has the correct length and height.

Since the index of 𝐸2 is 𝑛2ℎ
2
2, and then by the Markov-like equation, we obtain

that
𝑛0ℎ0𝑛1ℎ1(ℎ1𝑝0 + ℎ0𝑝1) = 𝑛0ℎ

2
0 + 𝑛1ℎ

2
1 + 𝑛2ℎ

2
2 = 𝑑ℎ0ℎ1ℎ2.

So, it follows that
𝑛0𝑛1(ℎ1𝑝0 + ℎ0𝑝1) = 𝑑ℎ2. (3.5)

Let 𝑔 B gcd(ℎ0, ℎ1) and ℎ𝑖 = 𝑔ℎ̂𝑖 , for 𝑖 = 0, 1. If (𝑝0, 𝑝1) is a solution, then (𝑝0 +
𝑚ℎ̂0, 𝑝1 − 𝑚ℎ̂1) is a solution for all 𝑚 ∈ ℤ. In fact, these are all the solutions to
Equation (3.5). Note that 𝑃(𝑝0 ,𝑝1) and 𝑃(𝑝0+𝑚ℎ̂0 ,𝑝1−𝑚ℎ̂1) are related by a shear whenever
the integer 𝑚 is divisible by 𝑔. Thus, since we only care about enumerating our
triangles up to GL2(ℤ)-equivalence, we may assume that 0 ≤ 𝑚 < 𝑔. But now,
since ℎ0 and ℎ1 are coprime in each row of Table 3.2, we have that 𝑔 = 1. Therefore,
there is at most one realisation (𝑝0, 𝑝1), up to the transformation.

Finally, we must check that the length ℓ and height ℎ of𝐸2 do indeed coincide with
the prescribed length 𝑛2ℎ2 and height ℎ2. By Theorem 3.3.4 and Proposition 3.3.5,
the dual triangle 𝑃∗

(𝑝0 ,𝑝1) has volume 12 − 𝑛0 − 𝑛1 − 𝑛2. Since we know that 𝐸0 and 𝐸1

have 𝑛0 + 𝑛1 primitive T-singularities between them (and no residual singularity), it
follows from Proposition 3.3.6 that the degree contribution of 𝐸2 is 𝑛2.

In particular, the degree contribution of 𝐸2 has denominator 1. So, by Corol-
lary 3.3.11, we must have that 𝑟 = gcd(𝑟, (1 + 𝑎)2), where the singularity associated
to 𝐸2 is 1/𝑟(1, 𝑎). This implies that 𝑟 divides (1 + 𝑎)2. Now, we may write 𝑎 = ℓ 𝑝 − 1,
for some integer 𝑝 coprime to ℎ. Thus, we obtain that ℎ divides ℓ . In partic-
ular, 𝐸2 has empty residue and, by Proposition 3.3.6, it has exactly 𝑛2 primitive T-
singularities. So, because each realisation (𝑝0, 𝑝1) in Table 3.2 satisfies gcd(ℎ0, 𝑝0) = 1
and gcd(ℎ1, 𝑝1) = 1, then the result follows. □
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Remark 3.3.12. At the start of the section, we wanted to know whether the Hirze-
bruch surface 𝔽1 was qG-deformation-equivalent to a fake weighted projective space;
we can now answer such a question. First, note that 𝑋𝑃 = ℙ1 × ℙ1 and 𝑋𝑄 = 𝔽1
both have the same degree 8. The corresponding Fano polygons 𝑃 and 𝑄 are not
mutation-equivalent, by [66, Example 3.12]. Now, 𝑃 is mutation-equivalent to the tri-
angle corresponding to ℙ(1, 1, 2). Since there are no other Fano triangles in Table 3.1,
it is impossible for 𝑄 to be mutation-equivalent to a triangle.

We further note that there are no Fano triangles in Table 3.1 with 5 primitive
T-singularities, i.e. whose corresponding toric variety has degree 7. Now, since
Theorem 3.3.9 tells us that all the solutions in Table 3.1 are indeed realisable, we can
conclude that exactly eight of the mutation-equivalence classes of Fano polygons
with empty basket contain a triangle.
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Chapter 4

On the Uniqueness of Kähler-Einstein
Polygons up to Mutation

This chapter is based on the work appearing in my paper [37].

4.1 Introduction
One of the main motivations for this chapter is to study minimal Fano polygons,
which are important objects appearing in Mirror Symmetry for orbifold del Pezzo
surfaces (see our discussion of these in Section 1.3).

Another concept in algebraic geometry which has seen much recent interest
is K-stability. It was initially formulated by Tian [100] as a way to characterise
the existence of Kähler–Einstein metrics on Fano manifolds. K-stability has since
been expanded by Donaldson [30] to polarised varieties. The Yau–Tian–Donaldson
conjecture predicts that a Fano variety 𝑋 is K-polystable if and only if it admits a
Kähler–Einstein metric. This was proven in the smooth case by Chen–Donaldson–
Sun [19, 20] and Tian [99]; the singular case has seen recent progress [14, 72], but
remains open. Its main application is the construction of well-behaved moduli
spaces, called K-moduli spaces, of Fano varieties [73, 58, 15].

We study toric Kähler–Einstein Fano varieties. Following Hwang–Kim [53], a
Fano polygon 𝑃 is called Kähler–Einstein if its corresponding toric variety 𝑋𝑃 admits
a Kähler–Einstein metric. A related class, introduced by Batyrev–Selivanova [13],
are symmetric polygons: these are polygons whose automorphism group fixes only
the origin.

Theorem 4.1.1 ([13, Theorem 1.1], [54, Theorem 1.3]). All symmetric polytopes are
Kähler–Einstein.

The converse to Theorem 4.1.1 holds for smooth Fano polytopes in dimension
less than seven. Nill–Paffenholz [83] found that exactly one smooth Fano polytope
in dimension seven, and exactly two smooth Fano polytopes in dimension eight, are
Kähler–Einstein but not symmetric.

In this chapter, we study symmetric Fano polygons and Kähler–Einstein Fano tri-
angles. These were conjectured by Hwang–Kim [54] to constitute all Kähler–Einstein
Fano polygons.
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Conjecture 4.1.2 ([54, Conjecture 1.6]). All Kähler–Einstein polygons are either sym-
metric or triangles.

We prove that symmetric Fano polygons and Kähler–Einstein Fano triangles
are minimal (see, respectively, Lemmas 4.3.15 and 4.4.3). So, in each mutation-
equivalence class, there is a finite number of these polygons. The main result of this
chapter is the following:

Theorem 4.1.3. In each mutation-equivalence class, there is at most one Fano polygon which
is either symmetric or a Kähler–Einstein triangle.

Both behaviours are exhibited: there are examples of mutation-equivalence classes
with no symmetric Fano polygons or Kähler–Einstein triangles (Example 4.3.2) and
examples with exactly one (Example 4.3.3).

In §4.5.1 we provide a counterexample to Conjecture 4.1.2:

Proposition 4.1.4. The Fano polygon

𝑃 B conv {(−9,−190), (19, 27), (15, 113), (−13, 112)} ⊂ 𝑁ℚ

is a Kähler–Einstein Fano quadrilateral. In particular, Conjecture 4.1.2 does not hold.

All Fano quadrilaterals with barycentre zero are described in Proposition 4.5.5. This
allows us to present a method for systematically producing non-symmetric Käh-
ler–Einstein quadrilaterals; see Remark 4.5.7.

As noted above, both symmetric Fano polygons and Kähler–Einstein Fano trian-
gles are minimal. Furthermore, all the non-symmetric Kähler–Einstein Fano quadri-
lateral examples we have found are minimal. It is natural to ask whether this holds
more generally for all Kähler–Einstein Fano polygons; however, this is not the case:

Proposition 4.1.5 (see Proposition 4.5.11). There exist Kähler–Einstein Fano polygons
which are not minimal.

We now summarise the structure of this chapter. In §4.2, we fix our notation
for the objects of study: polygons and mutation. We then extend the notion of
basket of singularities to suit our needs. The next two sections are dedicated to
proving Theorem 4.1.3. In §4.3, we prove Theorem 4.3.1, which states that there is
at most one symmetric Fano polygon in each mutation-equivalence class. In §4.4,
we prove the rest of Theorem 4.1.3. In particular, we prove that there is at most
one Kähler–Einstein Fano triangle in each mutation-equivalence class and that if a
symmetric Fano polygon is mutation-equivalent to a Kähler–Einstein triangle, then
they are isomorphic. We conclude with §4.5, where we provide a counterexample to
Conjecture 4.1.2. We compute iterated barycentric transformations of 𝑃, and show
that it has strict type 𝐵2. Finally, we describe an alternative method for constructing
non-symmetric Kähler–Einstein Fano polygons and use it to show that there are
Kähler–Einstein Fano polygons which are not minimal (Proposition 4.5.11).
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4.2 Preliminaries
Throughout, we refer to the lattice 𝑁 � ℤ2 and its dual lattice 𝑀 B Hom(𝑁,ℤ).
We also refer to their ℚ-extensions as 𝑁ℚ B 𝑁 ⊗ ℚ and 𝑀ℚ B 𝑀 ⊗ ℚ. For
elements 𝑢 ∈ 𝑀ℚ and 𝒙 ∈ 𝑁ℚ, we denote their natural pairing as 𝑢(𝒙).

4.2.1 The Hermite normal form of a cone
In toric geometry, we typically consider cones and polytopes up to GL2(ℤ)-equivalence.
A subtle point used throughout this chapter is to sometimes consider these ob-
jects up to the slightly weaker SL2(ℤ)-equivalence, since several properties rele-
vant to mutation are only invariant under SL2(ℤ)-transformations and not GL2(ℤ)-
transformations.

A classical way to describe a cone or an edge of a Fano polygon is by its singularity
type 1

𝑟 (1, 𝑎), which is equivalently a matrix in Hermite normal form
( 1 𝑟−𝑎

0 𝑟

)
. It is

invariant under GL2(ℤ)-transformations. So, it throws away information; in partic-
ular, the orientation of the edge. But knowing how the edges of our polygons are
oriented will be vital in several proofs in this chapter. Thus, we modify the notion
of Hermite normal form so that it keeps the orientation information.

Definition 4.2.1. Let 𝜎 ⊂ 𝑁ℚ be a (pointed, full-dimensional) cone. Denote the
primitive ray generators of 𝜎 by 𝒗0 and 𝒗1, going anticlockwise. Let 𝐴𝜎 be the matrix
with left column 𝒗0 and right column 𝒗1. Let 𝐻𝜎 be the (row-style) Hermite normal
form of 𝐴𝜎. We call 𝐻𝜎 the Hermite normal form of the cone 𝜎. Equivalently, we can
speak of the Hermite normal form 𝐻𝐸 of an edge 𝐸 of a Fano polygon by passing to the
cone over 𝐸.

Note that the Hermite normal form of 𝜎 will be of the form 𝐻𝜎 =
( 1 𝑎

0 𝑟

)
, for

some 𝑟, 𝑎 ∈ ℤ with 0 ≤ 𝑎 < 𝑟. We know that the first column of 𝐻𝜎 must be (1, 0),
since the ray generators of 𝜎 are primitive. For the same reason, 𝑎 and 𝑟 must be
coprime.

We now describe the exact behaviour of our orientation-preserving Hermite
normal form; in particular, we describe how it behaves when we apply unimodular
transformations to the cone (or edge).

Lemma 4.2.2. Let 𝜎 ⊂ 𝑁ℚ be a pointed, full-dimensional cone with Hermite normal
form 𝐻𝜎 =

( 1 𝑎
0 𝑟

)
. Let 𝐺 be a unimodular matrix. If 𝐺 has determinant 1, then 𝐺𝜎 has

Hermite normal form 𝐻𝐺𝜎 = 𝐻𝜎. Instead suppose that 𝐺 has determinant −1. Then 𝐺𝜎 has
Hermite normal form 𝐻𝐺𝜎 =

( 1 𝑎∗
0 𝑟

)
, where 𝑎𝑎∗ ≡ 1 mod 𝑟.

Proof. First, suppose that 𝐺 has determinant 1. So, 𝐺 preserves the orientation of the
ray generators of 𝜎. Thus, 𝐴𝐺𝜎 = 𝐺𝐴𝜎. Since the Hermite normal form of matrices
is invariant under unimodular transformation, it follows that 𝐻𝐺𝜎 = 𝐻𝜎.

Now, suppose that 𝐺 has determinant −1. Consider the cone 𝜎′ B
( 0 1

1 0
)
𝐺𝜎.

This is SL2(ℤ)-equivalent to 𝜎, and thus has the same Hermite normal form 𝐻𝜎. In
particular, 𝜎′ can be transformed so that its primitive ray generators are the columns
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of 𝐻𝜎, which are (1, 0) and (𝑎, 𝑟). Applying the matrix
( 0 1

1 0
)

again, we see that 𝐺𝜎
can be transformed so that it has primitive ray generators (𝑟, 𝑎) and (0, 1).

We now aim to compute the Hermite normal form of the matrix 𝐴 B
(
𝑟 0
𝑎 1

)
.

Setting𝑈 B
(
𝑟 −𝑎∗
𝑎 1−𝑎𝑎∗

𝑟

)
, for the unique integer 0 ≤ 𝑎∗ < 𝑟 satisfying 𝑎𝑎∗ ≡ 1 mod 𝑟, we

see that 𝐴 = 𝑈
( 1 𝑎∗

0 𝑟

)
. Thus, since 𝐺𝜎 is 𝑆𝐿2(ℤ)-equivalent to 𝐴 and𝑈 is unimodular,

the Hermite normal form of 𝐺𝜎 is as described. □

We can recover the singularity type of 𝜎 from its associated Hermite normal
form

( 1 𝑎
0 𝑟

)
. The singularity type is simply 1

𝑟 (1,−𝑎). Since cones are usually con-
sidered only up to GL2(ℤ)-equivalence, we can also get a Hermite normal form
of

( 1 𝑎∗
0 𝑟

)
, where 𝑎𝑎∗ ≡ 1 mod 𝑟, which results in a singularity type of 1

𝑟 (1,−𝑎∗). This
is consistent, since these two singularities are in fact indistinguishable in the world
of algebraic geometry.

4.2.2 The directed singularity content of a polygon
In [62], they introduced the important notion of singularity content of a Fano poly-
gon. They proved that the singularity content of a Fano polygon is invariant under
mutation. Here, we will introduce a modified version of this invariant. In particular,
while the classical singularity content keeps track of singularity types of cones, we
keep track of Hermite normal forms of cones. This modification will be vital to the
success of later proofs.

We first define the notion locally, i.e. at the level of the edge (or cone).

Definition 4.2.3. Let 𝐸 be an edge of a Fano polygon with length ℓ and height ℎ.
Then ℓ = 𝑛ℎ+ ℓ̃ , for some integers 𝑛 ≥ 0 and 0 ≤ ℓ̃ < ℎ. So, we can subdivide 𝐸 into 𝑛
segments of length ℎ and a (possibly empty) segment res(𝐸)of length ℓ̃ . We call res(𝐸)
the residue of 𝐸. Each segment of length and height ℎ corresponds to a primitive T-
singularity. If ℓ̃ > 0, then the segment res(𝐸) corresponds to an R-singularity. We de-
fine the directed singularity content SC(𝐸) of 𝐸 as the tuple (𝑛𝐸 , res(𝐻𝐸)), where res(𝐻𝐸)
is the residue of the Hermite normal form of 𝐸, i.e. if ℓ̃ > 0, then res(𝐻𝐸) = 𝐻res(𝐸);
else, res(𝐻𝐸) = ∅.

We now define the notion globally, i.e. at the level of the polygon.

Definition 4.2.4. Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon. The number 𝑛𝑃 of primitive T-
singularities of 𝑃 is defined as the sum over all edges 𝐸 of 𝑃 of the number 𝑛𝐸 of
primitive T-singularities of 𝐸. The directed basket

−→ℬ𝑃 of 𝑃 is defined as the cyclically
ordered set of non-empty residues of the Hermite normal forms of the edges of 𝑃
(ordered anticlockwise). We define the directed singularity content SC(𝑃) of 𝑃 as the
tuple (𝑛𝑃 ,

−→ℬ𝑃). The subscript 𝑃’s are often omitted when clear from context.

Next, we prove that this modified version of singularity content is indeed a
mutation-invariant of Fano polygons.
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Proposition 4.2.5. Let 𝑃, 𝑄 ⊂ 𝑁ℚ be Fano polygons. Suppose that they are related by
a mutation, i.e. 𝑄 = mut𝑤(𝑃, 𝒅) for some mutation data (𝑤, 𝒅) of 𝑃. Then, the directed
singularity contents of 𝑃 and 𝑄 coincide, i.e. SC(𝑃) = SC(𝑄).

Proof. Let
−→ℬ𝑃 B {𝐻1, 𝐻2, . . . , 𝐻𝑚} be the directed basket of𝑃 and

−→ℬ𝑄 B
{
𝐻′

1, 𝐻
′
2, . . . , 𝐻

′
𝑚′

}
be the directed basket of 𝑄. By [62, Proposition 3.6], the usual singularity content
is invariant under mutation; therefore, we have 𝑚 = 𝑚′ and 𝐻′

𝑖
∈

{
𝐻𝑖 , 𝐻

∗
𝑖

}
, for

all 𝑖 = 1, 2, . . . , 𝑚. It remains to show that 𝐻′
𝑖
= 𝐻𝑖 for all 𝑖 = 1, 2, . . . , 𝑚. But this

follows from the fact that Hermite normal forms of edges are invariant under SL2(ℤ)-
transformations; from 𝑃 to 𝑄, the normals of the edges undergo one of two linear
transformations which have determinant 1. □

Before we discuss minimality of Fano polygons, we will introduce some minor
notation. Fix an edge 𝐸 of a Fano polygon 𝑃. Then ℎmin(𝐸) B min𝒙∈𝑃 𝑢𝐸(𝒙) and
ℎmax(𝐸) B max𝒙∈𝑃 𝑢𝐸(𝒙), where 𝑢𝐸 is the primitive inner normal to 𝐸. Note that we
simply write ℎmin and ℎmax when the edge 𝐸 is clear from context.

There are several equivalent conditions for a Fano polygon to be minimal (see [66,
Lemma 4.2]). We can now summarise the main characterisation that we use.
Lemma 4.2.6 ([66, Corollary 4.5]). Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon. Then 𝑃 is minimal if
and only if |ℎmin | ≤ ℎmax, for each long edge 𝐸 of 𝑃.
Remark 4.2.7. There are two properties of reflexive polygons relevant to minimality
which we wish to highlight. First, it follows by Lemma 4.2.6 that all reflexive polygons
are minimal (see [66, Example 4.4]). Second, their edges are all long and pure. In
particular, all reflexive polygons have an empty basket.

We finally introduce the notion of edge data, which is instrumental in the proof
of Theorem 4.3.1.
Definition 4.2.8. Let𝑃 ⊂ 𝑁ℚ be a Fano polygon. Order its edges anticlockwise:𝐸1, 𝐸2, . . . , 𝐸𝑚 .
The edge data ℰ(𝑃) of 𝑃 is defined as the cyclically ordered set {𝐻1, 𝐻2, . . . , 𝐻𝑚},
where 𝐻𝑖 is the Hermite normal form of the edge 𝐸𝑖 .

In general, the edge data is not a mutation-invariant. Note that if we take the
residue of the edge data, and remove the empty entries, then we recover the directed
basket, which is invariant under mutation.
Example 4.2.9. Consider the Fano polygon

𝑃 = conv {±(5, 1),±(5, 6),±(4, 7),±(−3, 7),±(−4, 5)} ,

which is shown in Figure 4.1. This has edge data

ℰ(𝑃) =
{( 1 6

0 25
)
,
( 1 3

0 11
)
,
( 1 36

0 49
)
,
( 1 10

0 13
)
,
( 1 23

0 29
)
,
( 1 6

0 25
)
,
( 1 3

0 11
)
,
( 1 36

0 49
)
,
( 1 10

0 13
)
,
( 1 23

0 29
)}
.

Finally, we remark that edge data is invariant under SL2(ℤ)-transformation. Fur-
ther, applying a transformation in GL2(ℤ) with determinant −1 to the polygon 𝑃

changes the edge data in a predictable way. Write the edge data of 𝑃 as ℰ(𝑃) =

{𝐻1, 𝐻2, . . . , 𝐻𝑚} and let 𝑈 ∈ GL2(ℤ) \ SL2(ℤ). Then, ℰ(𝑈𝑃) =
{
𝐻∗
𝑚 , . . . , 𝐻

∗
2, 𝐻

∗
1
}
.

Of course, the analogous fact holds for the directed basket
−→ℬ of 𝑃.
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Figure 4.1: An example of a centrally symmetric Fano polygon with
exactly two pairs of long edges ±𝐸1 ,±𝐸2 whose primitive normals span

the dual lattice 𝑀. Its edge data is described in Example 4.2.9.

4.2.3 Symmetric and Kähler–Einstein polygons
The main objects of study in this chapter are symmetric and Kähler–Einstein Fano
polygons. In this subsection, we state their definitions and several basic results
concerning them.

Definition 4.2.10. Let 𝑃 ⊂ 𝑁ℚ be a Fano polygon. It’s called Kähler–Einstein if the
barycentre of its dual polytope 𝑃∗ is the origin. It’s called symmetric if its automor-
phism group Aut(𝑃) only fixes the origin, i.e. {𝒙 ∈ 𝑁ℚ : 𝐺 · 𝒙 = 𝒙 , ∀𝐺 ∈ Aut(𝑃)} =

{0}.

Definition 4.2.11. Let 𝑃 ⊂ 𝑁ℚ be a polygon. We call it centrally symmetric if for all 𝒙 ∈
𝑃, we also have −𝒙 ∈ 𝑃. We call it 3-symmetric if there exists an element 𝐺 ∈ Aut(𝑃)
of order 3.

It is straightforward to see that if a polygon is centrally symmetric or 3-symmetric,
then it is also symmetric. We show that the converse also holds.

Proposition 4.2.12. Let 𝑃 ⊂ 𝑁ℚ be a symmetric polygon. Then 𝑃 is either centrally
symmetric or 3-symmetric.

Proof. Consider the automorphism group of 𝑃, which is a finite subgroup of GL2(ℤ).
Since 𝑃 is symmetric, Aut(𝑃) must contain a rotation 𝐺. By [75, Theorem 3], Aut(𝑃)
is isomorphic to a subgroup of 𝐷4 or 𝐷6, the dihedral groups of order 8 and 12,
respectively. Thus, the rotation 𝐺 has order in {2, 3, 4, 6}. If 𝐺 has order 3, then 𝑃
is 3-symmetric. Otherwise, 𝐺 has even order 2𝑔. Since the element 𝐺𝑔 , which
belongs to Aut(𝑃), is

( −1 0
0 −1

)
, it follows that 𝑃 is centrally symmetric. □

Remark 4.2.13. The polygon of Example 4.2.9 is centrally symmetric. For cyclically
ordered sets like directed baskets and edge data, let us introduce the notation ×𝑔
to indicate that the objects are repeated 𝑔 times. For example, {𝐻1, 𝐻2, 𝐻3} × 2
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means {𝐻1, 𝐻2, 𝐻3, 𝐻1, 𝐻2, 𝐻3}. It is a fact that the directed basket (and edge data)
of a centrally symmetric polygon can always be written as 𝒞 × 2, for some cyclically
ordered set 𝒞. The analogous fact holds for 3-symmetric polygons (replace ×2
with ×3).

Next, let us recall the definition of weights and weight matrices of polygons. As
we will immediately see, Kähler-Einstien Fano triangles have a nice description in
terms of weights. Further, we will give a description in §4.5 of a Kähler–Einstein
quadrilateral 𝑃 in terms of the weight system of 𝑃∗.

Remark 4.2.14. The toric variety corresponding to a Fano polygon 𝑃 ⊂ 𝑁ℚ is a fake
weighted projective plane 𝑋𝑃 = ℙ(𝜆0𝜆1,𝜆2)/𝐺, where (𝜆0,𝜆1,𝜆2) are the weights
of 𝑃 and 𝐺 is the group 𝑁/𝑁𝑃 and 𝑁𝑃 is the sublattice of 𝑁 generated by the vertices
of 𝑃. Since we are in dimension two, 𝐺 is a cyclic group of order 𝑘.

There are typically several different fake weighted projective planes with the
same weights (𝜆0,𝜆1,𝜆2) and index 𝑘. In some cases, though, there is only one such
variety up to isomorphism. In these cases, we are safe to write𝑋𝑃 = ℙ(𝜆0,𝜆1,𝜆2)/ℤ𝑘 .
For instance, throughout the chapter we will write 𝑋𝑃 = ℙ2 when 𝑃 is isomorphic to
the triangle with vertices (−1,−1), (1, 0), and (0, 1). We will also write 𝑋𝑃 = ℙ2/ℤ3
when 𝑃 is isomorphic to the triangle with vertices (−1,−1), (2,−1), and (−1, 2).

We prove the following statement, which will be useful in both §4.3.3 and §4.4.

Lemma 4.2.15. Let 𝑃 ⊂ 𝑁ℚ be a Fano triangle. Then 𝑃 is Kähler–Einstein if and only if 𝑃
has weights (1, 1, 1).

Proof. It is well-known that the barycentre of a triangle is the average of its vertices.
Therefore, a triangle has barycentre zero if and only if the sum of its vertices is the ori-
gin. Equivalently, a triangle has barycentre zero if and only if it has weights (1, 1, 1).
By [27, Lemma 3.5], the weights of a Fano triangle coincide with the weights of its
dual. Thus, a Fano triangle is Kähler–Einstein if and only if it has weights (1, 1, 1). □

We can also use the above to give an alternative proof for the following statement,
which was proven in [54] using direct computation of the barycentre of the dual.

Lemma 4.2.16 ([54, Proposition 4.1]). Let 𝑃 ⊂ 𝑁ℚ be a Fano triangle. Then 𝑃 is
Kähler–Einstein if and only if 𝑃 is isomorphic to a triangle with vertices (−𝑘, 𝑎 − 1), (𝑘,−𝑎),
and (0, 1), for some integers 𝑘, 𝑎 ≥ 1 satisfying gcd(𝑘, 𝑎) = gcd(𝑘, 𝑎 − 1) = 1.

Proof. Since 𝑃 is Fano, we may assume without loss of generality that one of its
vertices (0, 1). We label its other vertices as (−𝑚, 𝑏) and (𝑘,−𝑎), for some inte-
gers 𝑎, 𝑏, 𝑘, 𝑚 ≥ 1. By Lemma 4.2.15, since 𝑃 is Kähler–Einstein, the sum of its
vertices must be the origin. So, (𝑘 −𝑚, 1+ 𝑏 − 𝑎) = (0, 0). Thus, 𝑚 = 𝑘, 𝑏 = 𝑎 − 1, and
the result follows. □

Finally, we must give the following lemma, which again is used in both §4.3.3
and §4.4.

Lemma 4.2.17. Let 𝑃 ⊂ 𝑁ℚ be a Kähler–Einstein Fano triangle. Suppose that all the edges
of 𝑃 have the same height ℎ and are long. Then, either 𝑋𝑃 = ℙ2 or 𝑋𝑃 = ℙ2/ℤ3.
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Proof. By Lemma 4.2.16, we may apply an appropriate transformation so that 𝑃 has
vertices (−𝑘, 𝑎 − 1), (𝑘,−𝑎), and (0, 1), for some integers 𝑎, 𝑘 ≥ 1. For each edge 𝐸
of 𝑃, consider the triangle with base 𝐸 and peak 0. It has (normalised) volume 𝑘. It
also has volume ℓ𝐸ℎ𝐸, where ℓ𝐸 is the length of 𝐸 and ℎ𝐸 is the height of 𝐸. But by
assumption, all the edges of 𝑃 have the same height ℎ. Thus, all edges have the same
length ℓ and so we obtain the following condition:

ℓ = gcd(𝑘, 𝑎 + 1) = gcd(𝑘, 𝑎 − 2) = gcd(2𝑘, 2𝑎 − 1). (4.1)

We see that ℓ divides 𝑎 + 1 and 𝑎 − 2; thus, ℓ divides 3.
If ℓ = 1 then, since each edge of 𝑃 is long, we have ℎ = 1. We may write 𝑎 = 1.

It follows that 𝑋𝑃 = ℙ2. Otherwise, ℓ = 3. We may write 𝑎 = 3𝑏 − 1, for some
integer 𝑏 ≥ 1. Plugging this into (4.1), we obtain:

1 = gcd(ℎ, 𝑏) = gcd(ℎ, 𝑏 − 1) = gcd(2ℎ, 2𝑏 − 1). (4.2)

Since the edges of 𝑃 are long, we have ℎ ≤ 3. If ℎ = 1, then we may write 𝑏 = 1.
It follows that 𝑋𝑃 = ℙ2/ℤ3. If ℎ = 2, then (4.2) implies that 𝑏 ̸≡ 0, 1 mod 2, which
cannot hold. Else ℎ = 3, and (4.2) implies that 𝑏 ̸≡ 0, 1, 2 mod 3, which also cannot
hold. □

4.3 At most one symmetric
We dedicate this section to proving part of Theorem 4.1.3. Namely, we prove the
following statement.

Theorem 4.3.1. There is at most one symmetric Fano polygon in each mutation-equivalence
class.

As we will see later in Proposition 4.3.16, the above theorem holds for symmetric
Fano polygons with empty basket ℬ. Thus, the next few subsections will mainly
focus on the case ℬ ≠ ∅.

4.3.1 Observation of both behaviours
Before we prove Theorem 4.3.1, we will first demonstrate that both possibilities
occur. More precisely, we show that there exists a mutation-equivalence class with
no symmetric Fano polygons or Kähler–Einstein Fano triangles and that there exists
a mutation-equivalence class with exactly one of them.

Example 4.3.2. Consider the Fano polygon 𝑃 B conv {(2,−3), (1, 5), (−1,−2)} ⊂ 𝑁ℚ.
Since 𝑃 is a triangle with weights (3, 7, 13), it is not Kähler–Einstein by Lemma 4.2.15.
Further, the edges of 𝑃 all have length 1 while their heights are 3, 7, and 13 — all
greater than 1. Thus, none of the edges of 𝑃 are long. Therefore, 𝑃 is the only
polygon in its mutation-equivalence class. So, the mutation-equivalence class of 𝑃
contains no Kähler–Einstein polygons. In particular, it contains no symmetric Fano
polygons or Kähler–Einstein Fano triangles.
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We now show that the other possibility can occur.

Example 4.3.3. Consider the Fano polygon 𝑃 B conv {(±(1,−2),±(2,−1),±(1, 1)} ⊂
𝑁ℚ. Clearly, 𝑃 is centrally symmetric (and thus symmetric). The edges of 𝑃 all have
length 1 and height 3; thus, none of the edges of 𝑃 are long. Therefore, 𝑃 is the only
polygon in its mutation-equivalence class. So, the mutation-equivalence class of 𝑃
contains exactly one Kähler–Einstein polygon. In particular, it contains exactly one
symmetric Fano polygon or Kähler–Einstein Fano polygon.

In the following subsections, we will show that for symmetric Fano polygons, no
other possibility can occur, i.e. that if two symmetric Fano polygons are mutation-
equivalent, then they are isomorphic.

4.3.2 Constraints on centrally symmetric Fano polygons
When mutating polygons, it’s the long edges (in particular, the T-singularities) which
move and change, while the short edges (i.e. the R-singularities) stay the same.
Generally speaking, if a polygon has more long edges, then its behaviour under
mutation will be richer. As we saw in Example 4.3.2 and Example 4.3.3, if a polygon
has no long edges, then its mutation-equivalence class is trivial; we can conclude
that Theorem 4.1.3 holds in this case. For centrally symmetric polygons, the next
simplest case is when the polygon has exactly one pair of parallel long edges.

Proposition 4.3.4. Let 𝑃 ⊂ 𝑁ℚ be a centrally symmetric polygon with exactly one pair of
long edges ±𝐸. Let 𝑄 ⊂ 𝑁ℚ be a symmetric polygon. Suppose 𝑃 is mutation-equivalent
to 𝑄. Then 𝑃 � 𝑄.

Proof. Let 𝑤 ∈ 𝑀 be the primitive inner normal to 𝐸. Then −𝑤 is the primitive inner
normal to−𝐸. Consider mut𝑤(𝑃, 𝒅), where (𝑤, 𝒅) is mutation data for 𝑃. Then again,
this polygon will have at most two long edges, whose primitive inner normals are
in {𝑤,−𝑤}. Thus, by induction, all polygons mutation-equivalent to 𝑃 will have at
most two long edges with inner normals in {𝑤,−𝑤}.

Now consider the symmetric polygon 𝑄, which is mutation-equivalent to 𝑃.
Since the number of primitive T-singularities is invariant under mutation, and 𝑃 has
at least one primitive T-singularity, it follows that 𝑄 has at least one long edge. If 𝑄
were 3-symmetric, then it would have at least three long edges. So, since 𝑄 has at
most two long edges, it must be centrally symmetric. In particular, the number of
primitive T-singularities on its two long edges must be equal. Thus,𝑄 is isomorphic
to 𝑃. □

Now, we are left to consider centrally symmetric Fano polygons with at least two
pairs of parallel long edges. The rest of the subsection is dedicated to constraining
the combinatorics of these polygons. In fact, in Corollary 4.3.10, we discover that
these polygons must have exactly two pairs of parallel long edges with at most 8
primitive T-singularities in total. This restricts the complexity of their behaviour
under mutation, making the study of these objects under mutation realistic.
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Lemma 4.3.5. Let 𝑃 ⊂ 𝑁ℚ be a centrally symmetric Fano polygon with non-empty basket ℬ
and two pairs of opposite long edges ±𝐸1 and ±𝐸2. Then the primitive normals to 𝐸1 and 𝐸2
span the dual lattice 𝑀.
Proof. We may apply an appropriate unimodular transformation so that the primitive
inner normal to 𝐸1 is 𝑢1 = 𝑒∗1. We may also assume that the edge 𝐸2 is on the bottom.
Thus, its primitive inner normal vector 𝑢2 B (𝑎, 𝑏)𝑡 ∈ 𝑀 will have 𝑏 > 0, as in
Figure 4.2. We obtain det(𝑢1, 𝑢2) = 𝑏. Thus, 𝑢1 and 𝑢2 span 𝑀 if and only if 𝑏 = 1.
So, assume towards a contradiction that 𝑏 ≥ 2.

Let ℓ1 and ℓ2 be the (lattice) lengths of 𝐸1 and 𝐸2, respectively, and let ℎ1 and ℎ2 be
the respective heights of 𝐸1 and 𝐸2. Consider the primitive direction vector for 𝐸2,
which is (𝑏,−𝑎). We can see that the starting vertex of 𝐸2 uses up one lattice point,
and each unit segment of 𝐸2 uses up 𝑏 lattice points. Since there are 2ℎ1 + 1 lattice
points between 𝐸1 and −𝐸1 for 𝐸2 to go through, we obtain the inequality 𝑏ℓ2 ≤ 2ℎ1.
We can similarly derive that 𝑏ℓ1 ≤ 2ℎ2. Now, since 𝐸2 is a long edge and 𝐸1 has a
smaller height than 𝐸2, we obtain that 𝑏ℎ1 ≤ 2ℎ1. Thus, 𝑏 = 2 and the inequalities
become equalities, giving ℓ1 = ℎ1 = ℎ2 = ℓ2. Further, all 2ℎ1 + 1 lattice points were
used up by 𝐸2. This means that no more lattice points are left for any other edges
going from 𝐸1 to −𝐸1 to go through. So, no more pairs of edges exist other than ±𝐸1
and ±𝐸2. Thus, 𝑃 is a centrally symmetric quadrilateral with only T-singularities,
which contradicts our assumption that the basket ℬ is non-empty. □
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Figure 4.2: A configuration of two long edges of a centrally symmetric
polygon; see the proof of Lemma 4.3.5

Remark 4.3.6. 1. Let 𝑃 ⊂ 𝑁ℚ be a centrally symmetric Fano polygon with two
pairs of long edges ±𝐸1 and ±𝐸2 whose primitive inner normal vectors are ±𝑢1
and ±𝑢2, respectively. If ℬ𝑃 ≠ ∅ then, by Lemma 4.3.5, det(𝑢1, 𝑢2) = 1. The
matrix 𝑉 with rows 𝑢1 and 𝑢2 is invertible in GL2(ℤ). Thus, we can apply
a unimodular transformation to 𝑃 so that the primitive inner normals to 𝐸1
and 𝐸2 become 𝑒∗1 and 𝑒∗2, respectively.
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2. Later, in §4.3.4, we will be working with the edge data ℰ(𝑃) and directed
basket

−→ℬ𝑃 of 𝑃. Thus, we will want to only transform 𝑃 by elements of SL2(ℤ)
so that this data stays the same. If the matrix 𝑉 has determinant −1, we
instead simply consider the matrix 𝑉′ with rows 𝑢1 and −𝑢2. This now has
determinant 1, and so we can apply an SL2(ℤ)-transformation to 𝑃 so that the
primitive inner normals to 𝐸1 and −𝐸2 become 𝑒∗1 and 𝑒∗2, respectively.

We now give the following lemma, which helps us to prove Proposition 4.3.8.

Lemma 4.3.7. Let 𝑃 ⊂ 𝑁ℚ be a centrally symmetric Fano polygon with non-empty bas-
ket ℬ ≠ ∅. Suppose that 𝑃 has two pairs of opposite long edges ±𝐸1 and ±𝐸2 with
heights ℎ1 ≤ ℎ2. Then, 2 ≤ ℎ1 ≤ ℎ2 < 2ℎ1.

Proof. We may assume without loss of generality that the primitive inner normals
to 𝐸1 and 𝐸2 are 𝑒∗1 and 𝑒∗2, respectively. We first show that ℎ1 ≥ 2. Assume towards
a contradiction that ℎ1 = 1. Then 𝑃 is contained in the strip {−1 ≤ 𝑥 ≤ 1}. So, 𝐸2 has
length at most 2. Now, since 𝐸2 is long, it must have height ℎ2 = 1 or ℎ2 = 2. We
explore both possibilities.

Suppose that ℎ2 = 1. Then 𝑃 is contained in the box {−1 ≤ 𝑥, 𝑦 ≤ 1}. Up
to isomorphism, there are two polygons in this box which have long edges 𝐸1
and 𝐸2 with the prescribed heights: either 𝑃 = conv {±(1, 1),±(−1, 1)} or 𝑃 =

conv {±(1, 0),±(1, 1),±(0, 1)}. In either case, 𝑃 has an empty basket ℬ = ∅, which is
a contradiction.

Now suppose that ℎ2 = 2. Then𝑃must be the quadrilateral conv {±(1, 2),±(−1, 2)}.
This has empty basket ℬ = ∅, so we again reach a contradiction. Thus, we have
shown that ℎ1 ≥ 2.

Finally, we show that ℎ2 < 2ℎ1. Note that𝑃 is contained in the strip {−ℎ1 ≤ 𝑥 ≤ ℎ1},
which implies that 𝐸2 has length ℓ2 ≤ 2ℎ1. Since 𝐸2 is a long edge, we obtain
that ℎ2 ≤ 2ℎ1. We see that it now remains to show that ℎ2 ≠ 2ℎ1.

Suppose towards a contradiction that ℎ2 = 2ℎ1. Then𝑃must be the rectangle with
vertices ±(ℎ1, 2ℎ1) and ±(−ℎ1, 2ℎ1). Since 𝑃 is Fano, its vertices must be primitive,
i.e. gcd(ℎ1, 2ℎ1) = 1. Thus, ℎ1 = 1. But we have already seen above that this results
in a contradiction. Therefore, ℎ2 < 2ℎ1. □

In order to decide whether two polygons 𝑃 and 𝑄 are mutation-equivalent, we
can compare their mutation-invariants. One such invariant is the Ehrhart series of the
dual polygon, i.e. Ehr𝑃∗(𝑡) = Ehr𝑄∗(𝑡). We find a striking pattern in the coefficients
of the Ehrhart series.

Proposition 4.3.8. Let 𝑃 ⊂ 𝑁ℚ be a centrally symmetric Fano polygon with non-empty
basket of R-singularities. Suppose 𝑃 has two non-parallel long edges 𝐸1 and 𝐸2, which have
primitive inner normals 𝑢1 and 𝑢2 and heights ℎ1 and ℎ2, respectively, with ℎ1 ≤ ℎ2. Then,

𝑘𝑃∗ ∩𝑀 =


{0} , 0 ≤ 𝑘 < ℎ1

{0,±𝑢1} , ℎ1 ≤ 𝑘 < ℎ2

{0,±𝑢1,±𝑢2} , 𝑘 = ℎ2.
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Proof. The inclusion “⊇” is clear; thus, it is enough to show that ℎ2𝑃
∗ ∩ 𝑀 ⊆

{0,±𝑢1,±𝑢2}. By Lemma 4.3.5, we may assume that 𝑢1 = (1, 0)𝑡 and 𝑢2 = (0, 1)𝑡 .
We first show that ±(1, 1)𝑡 ∉ ℎ2𝑃

∗. This is equivalent to showing that there exists a
point (𝑥, 𝑦) ∈ 𝑃 satisfying 𝑥 + 𝑦 < −ℎ2. Let (𝑎,−ℎ2) be the left vertex of 𝐸2, where 𝑎
is an integer satisfying −ℎ1 ≤ 𝑎 ≤ ℎ1 − ℎ2 ≤ 0. In fact, 𝑎 < 0. Otherwise, (0,−ℎ2)
would be a vertex of 𝑃. By Lemma 4.3.7, ℎ2 ≥ 2. On the other hand, since 𝑃 is Fano,
its vertices must be primitive. So, we must have that ℎ2 = 1, which is a contradiction.
Thus, we have (𝑎,−ℎ2) ∈ 𝑃 satisfying 𝑎 < 0. Equivalently, 𝑎 − ℎ2 < −ℎ2. We can
conclude that (1, 1)𝑡 is not in ℎ2𝑃

∗.
Using the same logic as above, we can also show that ±(−1, 1)𝑡 ∉ ℎ2𝑃

∗. Fur-
thermore, since (1, 1)𝑡 ∉ ℎ2𝑃

∗, we can rule out from ℎ2𝑃
∗ all points in the re-

gion (1, 1)𝑡 + cone((1, 0)𝑡 , (0, 1)𝑡). We can rule out similarly defined regions from
the other 3 quadrants; see Figure 4.3. It now remains to treat the points on the axes.

−2 −1 1 2

−2
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Figure 4.3: In red: the polygon conv {±𝑢1 ,±𝑢2}. In grey: the regions
which can be ruled out from ℎ2𝑃

∗ given that their apexes are not in ℎ2𝑃
∗.

Clearly, the only points of ℎ2𝑃
∗ on the 𝑦-axis are 0 and ±𝑢2. By Lemma 4.3.7, we

have ℎ2 < 2ℎ1. Therefore, the only points of ℎ2𝑃
∗ on the 𝑥-axis are 0 and ±𝑢1. Thus,

we now have the desired result. □

An immediate implication of Proposition 4.3.8 is that the heights of the long
edges can be read off the Ehrhart series.

Example 4.3.9. Consider the polygon 𝑃 ⊂ 𝑁ℚ from Example 4.2.9. Let 𝑄 ⊂ 𝑁ℚ be a
centrally symmetric Fano polygon mutation-equivalent to 𝑃. Then it must also have
at least two pairs of opposite long edges whose primitive normals span the lattice 𝑀.
The dual polygon𝑃∗ has Ehrhart series Ehr𝑃∗(𝑡) = 1+𝑡+𝑡2+𝑡3+𝑡4+3𝑡5+3𝑡6+5𝑡7+𝑂(𝑡8).
Since 𝑄 is mutation-equivalent to 𝑃, its dual 𝑄∗ has the same Ehrhart series. Since
the coefficient jumps from 1 to 3 at the 𝑡5 term and then to 5 at the 𝑡7 term, it follows
that 𝑄 has long edges with heights 5 and 7, just as 𝑃 does. This is because, by
Proposition 4.3.8, the non-origin lattice points in 7𝑄∗∩𝑀 must be primitive normals
to the long edges of 𝑄.

The main implications of Proposition 4.3.8 are summarised in the following
corollary.

Corollary 4.3.10. Let 𝑃 be a centrally symmetric Fano polygon with non-empty basket.
Suppose that 𝑃 has at least two pairs of long edges ±𝐸1 and ±𝐸2. Then the long edges of 𝑃 are



4.3. At most one symmetric 69

exactly ±𝐸1 and ±𝐸2. Moreover, if 𝑃 has an R-singularity 𝐻𝜎 ∈ −→ℬ𝑃 with the same height as
one of the long edges, then 𝜎 will be on a long edge of 𝑃, i.e. 𝐻𝜎 = res(𝐻𝐸𝑖 ) for some 𝑖 = 1, 2.
In particular, the number of edges is fixed.

Proof. Without loss of generality, suppose that the height ℎ1 of 𝐸1 is the smallest out
of all long edges of 𝑃 and the height ℎ2 of 𝐸2 is the largest out of all long edges
of 𝑃. By Proposition 4.3.8, there are no edges of 𝑃 other than ±𝐸1 and ±𝐸2 which
have height between 1 and ℎ2, inclusively; otherwise, the primitive inner normal of
such an edge would be a lattice point of ℎ2𝑃

∗ ∩𝑀. Thus, we may conclude that ±𝐸1
and ±𝐸2 are the only long edges of 𝑃 and that all other edges of 𝑃 must have height
strictly greater than ℎ2. It now follows that if an R-singularity of 𝑃 has height ℎ1
or ℎ2, then it must be on one of the long edges of 𝑃. □

4.3.3 Constraints on 3-symmetric Fano polygons
As stated at the beginning of §4.3.2, the more long edges a polygon has, the richer
its behaviour under mutation will be. The simplest non-trivial case for 3-symmetric
polygons is when there is at least one triple of long edges. In fact, similarly to the
centrally symmetric case, we see that these polygons must have exactly one triple of
long edges (Corollary 4.3.13).

Before we proceed with the first lemma of the subsection, we reiterate a subtle
distinction regarding the action of matrices on points of 𝑁ℚ and 𝑀ℚ. First recall that
points in 𝑁ℚ are regarded as column vectors and that points in the dual space 𝑀ℚ

are regarded as row vectors. Now, matrices in GL2(ℤ) act on the left for points in
𝑁ℚ and on the right for points in 𝑀ℚ. As a consequence, if 𝑃 ⊂ 𝑁ℚ is an IP polytope
and 𝐺 ∈ GL2(ℤ), then we have that (𝐺𝑃)∗ = 𝑃∗𝐺−1.

Since we will reuse the following result in the general setting, we emphasise
that 𝑃 can have either empty or non-empty basket of R-singularities in the following
lemma.

Lemma 4.3.11. Let 𝑃 ⊂ 𝑁ℚ be a 3-symmetric Fano polygon with 𝐺 ∈ Aut(𝑃) having
order 3. Suppose 𝑃 has a long edge 𝐸 with primitive inner normal 𝑢. Then, one of the
following must hold:

(i) det(𝑢, 𝑢𝐺) = 3 and 𝑋𝑃 = ℙ2;

(ii) det(𝑢, 𝑢𝐺) = 1.

Proof. Denote by ℎ𝐸 the height of 𝐸. Consider the (not necessarily lattice) triangle 𝑄
which is the intersection of the supporting half-spaces of 𝐸, 𝐺𝐸, and 𝐺2𝐸, i.e.

𝑄 B
{
𝒙 ∈ 𝑁ℚ : 𝑢(𝒙) ≥ −ℎ𝐸 , (𝑢𝐺)(𝒙) ≥ −ℎ𝐸 , (𝑢𝐺2)(𝒙) ≥ −ℎ𝐸

}
.

Due to the action of 𝐺 on𝑄, there exists a unique 𝑡 ∈ ℚ>0 such that 𝑡𝑄 has primitive
vertices. Since𝑄 contains the origin, we can conclude that 𝑡𝑄 is Fano. Now, consider
the sum of the vertices of 𝑡𝑄. This is fixed by 𝐺, so it must equal the origin. Thus, 𝑡𝑄
has weights (1, 1, 1).



70 Chapter 4. On the Uniqueness of Kähler-Einstein Polygons up to Mutation

Let 𝐹 be an edge of 𝑡𝑄. Then the other two edges of 𝑡𝑄 are 𝐺𝐹 and 𝐺2𝐹. In
particular, the edges of 𝑡𝑄 all have the same height. Further, since the original
edge 𝐸 of 𝑃 is long, the edges 𝐹, 𝐺𝐹, and 𝐺2𝐹 must also be long. So, we may apply
Lemma 4.2.17 to 𝑡𝑄. We obtain that either (i) 𝑋𝑡𝑄 = ℙ2 or (ii) 𝑋𝑡𝑄 = ℙ2/ℤ3.

In case (i), the result follows from the observation that 𝑡 = 1 and 𝑃 = 𝑄. In
case (ii), the result follows after noticing that 𝐸 and 𝐹 have the same primitive inner
normal vector. □

The above lemma is enough to prove that 3-symmetric Fano polygons are min-
imal, which we do later in Lemma 4.3.15. For the rest of this subsection, we again
focus on 3-symmetric Fano polygons with non-empty baskets. The above lemma
also constrains the dual polygon 𝑃∗. As in §4.3.2, we next describe the mutation-
invariants |𝑘𝑃∗ ∩𝑀 | for relevant 𝑘.

Proposition 4.3.12. Let 𝑃 ⊂ 𝑁ℚ be a 3-symmetric Fano polygon with element 𝐺 ∈ Aut(𝑃)
of order 3. Suppose that 𝑃 has a non-empty basket of singularities and that 𝑃 has a long
edge 𝐸 with primitive inner normal 𝑢 and height ℎ. Then

𝑘𝑃∗ ∩𝑀 =

{
{0} , 0 ≤ 𝑘 < ℎ{

0, 𝑢, 𝑢𝐺, 𝑢𝐺2} , 𝑘 = ℎ.

Proof. Since the basket of R-singularities is non-empty, we are in case (ii) of Lemma 4.3.11.
Thus, we may assume, after applying a suitable linear transformation to 𝑃, that 𝑢 =

(0, 1)𝑡 and 𝑢𝐺 = (1, 0)𝑡 . This determines 𝐺, and so 𝑢𝐺2 = (−1,−1)𝑡 . Now, since the
edges 𝐸, 𝐺𝐸, and 𝐺2𝐸 all have height ℎ, we see that 𝑢, 𝑢𝐺, 𝑢𝐺2 ∉ 𝑘𝑃∗, for 0 ≤ 𝑘 < ℎ,
and

{
0, 𝑢, 𝑢𝐺, 𝑢𝐺2} ⊆ ℎ𝑃∗ ∩𝑀.

In order to show the reverse inclusion, it is enough to show that (1, 1)𝑡 ∉ ℎ𝑃∗, as
we will now explain. Consider the cone 𝐶 in 𝑀ℚ generated by (1, 0)𝑡 and (0, 1)𝑡 . It
is clear that, for 𝑚 > 1, the points (𝑚, 0)𝑡 and (0, 𝑚)𝑡 do not belong to ℎ𝑃∗. Now
let 𝑤 ∈ (1, 1)𝑡 + 𝐶. It is clear that (1, 1)𝑡 is contained in conv

{
(1, 0)𝑡 , (0, 1)𝑡 , 𝑤

}
.

So, if 𝑤 ∈ ℎ𝑃∗, then (1, 1)𝑡 ∈ ℎ𝑃∗. Therefore, if we can show that (1, 1)𝑡 ∉ ℎ𝑃∗,
then ℎ𝑃∗ ∩ 𝐶 ∩ 𝑀 = {0, 𝑢, 𝑢𝐺}. We can treat 𝐶𝐺 and 𝐶𝐺2 similarly, and reach the
desired conclusion.

−2 −1 1 2
−1

1

Figure 4.4: In red: the polygon conv
{
𝑢, 𝑢𝐺, 𝑢𝐺2}. In grey: the regions

which can be ruled out from ℎ𝑃∗ given that their apexes are not in ℎ𝑃∗.

It remains to prove that (1, 1)𝑡 is not contained in ℎ𝑃∗. This is equivalent to
showing that there exists a point (𝑥, 𝑦) ∈ 𝑃 such that 𝑥 + 𝑦 < −ℎ. Let (𝑎,−ℎ) be a
vertex of 𝐸. Without loss of generality, and due to 𝐸 being a long edge, we know
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that (𝑎 + ℎ,−ℎ) ∈ 𝐸. So, we get the point 𝐺 · (𝑎 + ℎ,−ℎ) = (−ℎ,−𝑎) of 𝑃. Then, we
may set

(𝑥, 𝑦) B
{
(𝑎,−ℎ), 𝑎 < 0
(−ℎ,−𝑎), 𝑎 > 0.

The case 𝑎 = 0 cannot occur. Otherwise, since 𝑃 is a Fano polytope, its vertex (𝑎,−ℎ)
must be primitive. It follows that ℎ = 1. Now, 𝑃 has exactly one interior lattice point,
i.e. it is reflexive. But this implies that 𝑃 has an empty basket of R-singularities, which
contradictions our starting assumption. Thus, we may conclude that indeed (1, 1)𝑡
does not belong to ℎ𝑃∗. □

Let us now summarise the main implications of Proposition 4.3.12. Note that this
is analogous to Corollary 4.3.10.

Corollary 4.3.13. Let 𝑃 be a 3-symmetric Fano polygon with non-empty basket. Suppose
that 𝑃 has at least one triple of long edges 𝐸, 𝐺𝐸, and 𝐺2𝐸, where 𝐺 ∈ Aut(𝑃) is an element
of order 3. Then the long edges of 𝑃 are exactly 𝐸, 𝐺𝐸, and 𝐺2𝐸. Moreover, if 𝑃 has an
R-singularity 𝐻𝜎 ∈ −→ℬ𝑃 with the same height as one of the long edges, then 𝜎 will be on a
long edge of 𝑃, i.e. 𝐻𝜎 = res(𝐻𝐸). In particular, the number of edges is fixed.

Proof. Without loss of generality, take 𝐸 to be a long edge of 𝑃 achieving the maximal
height ℎ among all long edges of 𝑃. By Proposition 4.3.12, the only edges of 𝑃 which
have height ℎ′ ≤ ℎ are in

{
𝐸, 𝐺𝐸, 𝐺2𝐸

}
; otherwise, the primitive inner normal of

such an edge would be a lattice point of ℎ𝑃∗∩𝑀. Thus, we may conclude that 𝐸, 𝐺𝐸,
and 𝐺2𝐸 are the only long edges of 𝑃 and that all other edges of 𝑃 must have height
strictly greater than ℎ. It now follows that if an R-singularity of 𝑃 has height ℎ, then
it must be on one of the long edges of 𝑃. □

Finally, we give the following lemma specific to 3-symmetric polygons which will
be of use in the following subsection.

Lemma 4.3.14. Let 𝑃 ⊂ 𝑁ℚ be a 3-symmetric polygon with non-empty basket ℬ. Suppose 𝐸
is an edge of 𝑃 with height ℎ. Then ℎ ≥ 2.

Proof. Suppose towards a contradiction that ℎ = 1. Then 𝐸 is a long edge. Since ℬ ≠

∅, case (ii) of Lemma 4.3.11 applies. Therefore, 𝑃 is contained in a reflexive triangle𝑄
with 𝑋𝑄 = ℙ2/ℤ3. In particular, 𝑃 itself is reflexive. This is a contradiction, since it
implies that ℬ = ∅. □

4.3.4 The proof for symmetric Fano polygons
In this subsection, the aim is to prove Theorem 4.3.1. We first prove it for the case
when the basket of R-singularities is empty. Then, we prove the non-empty basket
case.

So, we begin by proving that all symmetric Fano polygons are minimal.

Lemma 4.3.15. Let 𝑃 ⊂ 𝑁ℚ be a symmetric Fano polygon. Then 𝑃 is minimal.
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Proof. If 𝑃 is centrally symmetric, then minimality of 𝑃 is clear. It remains to treat the
case when 𝑃 is 3-symmetric. If 𝑃 has no long edges, then we are done. Otherwise,
let 𝐸 be a long edge of 𝑃 with length ℓ and height ℎ. In order to demonstrate
minimality of 𝑃, we need to prove that there is a point 𝒙 of 𝑃 satisfying 𝑢(𝒙) ≥ ℎ.

We can apply Lemma 4.3.11. In case (i), it’s straightforward to see that 𝑃 is
minimal. We now consider case (ii). Without loss of generality, 𝑢 = (0, 1)𝑡 is the
inner normal to 𝐸 and (1, 0)𝑡 is the inner normal to 𝐺𝐸, where 𝐺 ∈ Aut(𝑃) is an
element of order 3. Thus, 𝐺 =

( −1 −1
1 0

)
. We may write 𝐸 = conv {(𝑎,−ℎ), (𝑎 + ℓ ,−ℎ)}

for some integer 𝑎. Since 𝐸 is long, the point (𝑎 + ℎ,−ℎ) is in 𝐸.
Consider the points 𝐺 · (𝑎,−ℎ) = (−ℎ, ℎ − 𝑎) and 𝐺2 · (𝑎 + ℎ,−ℎ) = (−𝑎, ℎ + 𝑎),

which belong to 𝑃. If we evaluate them at 𝑢, we obtain ℎ − 𝑎 and ℎ + 𝑎, respectively.
At least one of these is greater than or equal to ℎ. Thus, we are done. □

Previous work of [66] already contains the answer for symmetric Fano polygons
whose baskets of R-singularities are empty.

Proposition 4.3.16. Let 𝑃, 𝑄 ⊂ 𝑁ℚ be symmetric Fano polygons with empty basket ℬ. If 𝑃
and 𝑄 are mutation-equivalent, then 𝑃 is isomorphic to 𝑄.

Proof. In [66, Theorem 5.4], all minimal Fano polygons with ℬ = ∅ are classified up
to isomorphism. Since symmetric Fano polygons are minimal by Lemma 4.3.15, the
ones with empty basket all appear in their list.

We display all 6 symmetric Fano polygons with empty baskets in Figure 4.5. They
each have a different number of primitive T-singularities. So, none are mutation-
equivalent to each other. Therefore, no two non-isomorphic symmetric Fano poly-
gons are mutation-equivalent to each other.
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(e) 𝑛 = 9.
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(f) 𝑛 = 10.

Figure 4.5: The six symmetric Fano polygons with 𝑛 primitive T-
singularities and empty basket ℬ = ∅.

□
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So, we can restrict our attention to symmetric Fano polygons which have a non-
empty basket ℬ of R-singularities. We prove the remainder of Theorem 4.3.1 in two
big steps. In the first step, we prove that two symmetric Fano polygons with the
same edge data are isomorphic (Proposition 4.3.19). In the second step, we prove
that if two symmetric Fano polygons are mutation-equivalent, then their edge data
is the same (Proposition 4.3.21). Thus, Theorem 4.3.1 would then follow.

In order to complete the first step, we need the following two lemmas.

Lemma 4.3.17. Let 𝐻 =
( 1 𝑎

0 𝑟

)
be a Hermite normal form satisfying gcd(𝑎, 𝑟) = 1. Fix an

edge 𝐸 with primitive vertices 𝒗0 and 𝒗1 in 𝑁 , which are ordered anticlockwise. Let 𝑢𝐸 ∈ 𝑀
be the primitive inner normal of 𝐸 and let ℎ𝐸 be the height of 𝐸. Let ℱ be the set of all edges 𝐹
which satisfy the following conditions:

(i) 𝐹 has Hermite normal form 𝐻;

(ii) The first vertex of 𝐹 is the second vertex 𝒗1 of 𝐸;

(iii) The second vertex 𝒗2 of 𝐹 satisfies −ℎ𝐸 < 𝑢𝐸(𝒗2) ≤ (𝑟 − 1)ℎ𝐸.

Then, |ℱ | ≤ 1.

Proof. Since the vertices are primitive, we may assume without loss of generality
that 𝒗0 = (𝑏,−𝑠) and 𝒗1 = (1, 0), for some coprime integers 𝑏, 𝑠 > 0. If ℱ = ∅, then
we are done. Otherwise, let 𝐹, 𝐹′ ∈ ℱ so that, by (ii), 𝐹 has vertices 𝒗1 and 𝒗2 and 𝐹′
has vertices 𝒗1 and 𝒗′

2, ordered anticlockwise. We aim to show that 𝐹 = 𝐹′.
Write 𝒗2 = (𝑥, 𝑦) and 𝒗′

2 = (𝑥′, 𝑦′). By (i), there exists some 𝑈,𝑈′ ∈ SL2(ℤ) such
that 𝐹 = 𝑈𝐻 and 𝐹′ = 𝑈′𝐻. It follows that 𝑦 = 𝑦′ = 𝑟 and 𝑥 ≡ 𝑥′ ≡ 𝑎 mod 𝑟.
Thus, 𝑥′ = 𝑥 + 𝑑𝑟 for some 𝑑 ∈ ℤ.

It remains to show that 𝑑 = 0. To do this, we apply condition (iii). An important
observation is that the half-open strip 𝑆 B {𝒙 ∈ 𝑁ℚ : − ℎ𝐸 < 𝑢𝐸(𝒙) ≤ (𝑟 − 1)ℎ𝐸} is
the Minkowski sum of the half-open segment {(𝑥, 0) : 1 − 𝑟 ≤ 𝑥 < 1} and a line with
non-horizontal slope. From this, we can see that at each fixed 𝑦-coordinate, there are
at most 𝑟 lattice points in 𝑆. The vertices 𝒗2 and 𝒗′

2 both lie in 𝑆 and share the same 𝑦-
coordinate; consequently, |𝑥 − 𝑥′| < 𝑟, i.e. |𝑑𝑟 | < 𝑟. Thus, 𝑑 = 0. Therefore, 𝒗2 = 𝒗′

2,
and so 𝐹 = 𝐹′. It now follows that |ℱ | ≤ 1.

□

This next lemma generalises a behaviour shared by centrally symmetric polygons
and 3-symmetric polygons.

Lemma 4.3.18. Let 𝑃 ⊂ 𝑁ℚ be a symmetric polygon and 𝐸 be an edge of 𝑃. Then, 𝑃 is
contained in the strip supported by 𝐸 and −2𝐸.

Proof. Let𝑆 be the strip supported by𝐸 and−2𝐸, i.e.𝑆 B {𝒙 ∈ 𝑁ℚ : − ℎ ≤ 𝑢(𝒙) ≤ 2ℎ},
where 𝑢 is the primitive inner normal to 𝐸 and ℎ is the height of 𝐸. If 𝑃 is
centrally symmetric, then −𝐸 is an edge of 𝑃. So, by convexity, 𝑃 ⊆ 𝑆. Other-
wise, 𝑃 is 3-symmetric. Now, as in the proof of Lemma 4.3.11, consider the trian-
gle 𝑄 B

{
𝒙 ∈ 𝑁ℚ : (𝑢𝐺𝑘)(𝒙) ≥ −ℎ, for 𝑘 = 0, 1, 2

}
. It has weights (1, 1, 1). Thus, 𝑄
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Figure 4.6: An example to demonstrate Lemma 4.3.17. Here, 𝐸 =

conv {(2,−3), (1, 0)} and 𝐻 =
( 1 3

0 4
)
. The red points are the three choices

for the second vertex 𝒗2 of 𝐹; the only valid choice for 𝒗2 is (−1, 4).

is isomorphic to the triangle with vertices (−𝑎,−ℎ), (ℓ − 𝑎,−ℎ), and (2𝑎 − ℓ , 2ℎ),
for some 𝑎, ℓ > 0. So, 𝑄 is contained in the strip 𝑆 and, since 𝑃 ⊆ 𝑄, the result
follows. □

We can now use the above two lemmas to complete the first step, which was to
prove the following statement.

Proposition 4.3.19. Let 𝑃, 𝑄 ⊂ 𝑁ℚ be symmetric Fano polygons with non-empty basket
of R-singularities. Suppose they have the same edge data, i.e. ℰ(𝑃) = ℰ(𝑄). Then 𝑃 is
isomorphic to 𝑄.

Proof. Let ℰ(𝑃) = ℰ(𝑄) = {𝐻1, 𝐻2, . . . , 𝐻𝑚}. To get the desired result, we aim
to repeatedly apply Lemma 4.3.17. In order to do so, we must show that all the
hypotheses of the lemma hold. Let 𝐸 and 𝐹 be two consecutive edges of 𝑃, ordered
anticlockwise. Let 𝐻 be the Hermite normal form of 𝐹. Since 𝑃 is Fano, the vertices
of 𝐹 are primitive; hence, 𝐻 satisfies the requirements of Lemma 4.3.17. We next
show that 𝐹 belongs to the set ℱ of Lemma 4.3.17.

Condition (i) is satisfied by the definition of 𝐻. Since 𝐸 is adjacent to 𝐹, condition
(ii) is satisfied. It remains to show condition (iii). Consider the second vertex 𝒗2 of 𝐹.
Since 𝒗2 does not lie on 𝐸, the first inequality 𝑢𝐸(𝒗2) > −ℎ holds. In order to prove
the second inequality, we must use the fact that 𝑃 is symmetric. By Lemma 4.3.18,
we have 𝑢𝐸(𝒗2) ≤ 2ℎ. Now, it remains to show that 2ℎ ≤ (𝑟 − 1)ℎ, i.e. that 𝑟 ≥ 3.

We note that 𝑟 = ℓ𝐹ℎ𝐹. Since 𝑃 is symmetric and has non-empty empty basket, it
follows from Lemma 4.3.7 and Lemma 4.3.14 that ℎ𝐹 ≥ 2. If ℎ𝐹 ≥ 3, then 𝑟 ≥ 3 and
we are done. Otherwise, 𝐹 has height ℎ𝐹 = 2. Since the vertices of 𝑃 are primitive,
the length ℓ𝐹 of 𝐹 must be even; hence, ℓ𝐹 ≥ 2. So, 𝑟 ≥ 4, and we are done.

We may now prove the statement of the proposition. Label anticlockwise the
edges of 𝑃 and 𝑄 as 𝐸1, 𝐸2, . . . , 𝐸𝑚 and 𝐸′

1, 𝐸
′
2, . . . , 𝐸

′
𝑚 , respectively, so that 𝐸𝑖 and 𝐸′

𝑖
have Hermite normal form 𝐻𝑖 . So, there exists some𝑈 ∈ SL2(ℤ) such that𝑈𝐸′

1 = 𝐸1.
The next edge of 𝑈𝑄 is 𝑈𝐸′

2. We may apply Lemma 4.3.17 to obtain 𝑈𝐸′
2 = 𝐸2. By
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induction, we obtain that 𝑈𝐸′
𝑖
= 𝐸𝑖 for all 𝑖 = 1, 2, . . . , 𝑚. Therefore, 𝑄 = 𝑈𝑃, and

we are done. □

We now move onto the final step in order to prove Theorem 4.3.1. Before we
proceed with the final proposition of the section, we require the following small
result.

Lemma 4.3.20. Let 𝑃 ⊂ 𝑁ℚ be a polygon. Let 𝑢 ∈ 𝑀 be primitive and let 𝑛 ≥ 2 be an
integer. Suppose there are exactly 𝑛 vertices 𝒗 of 𝑃 which satisfy 𝑢(𝒗) ≤ 0. If 𝑃 is centrally
symmetric, then 𝑃 has at most 2𝑛 vertices. If 𝑃 is 3-symmetric, then 𝑃 has at most 3𝑛
vertices.

Proof. Without loss of generality, we may take 𝑢 = (0, 1)𝑡 . Let 𝒗1, 𝒗2, . . . , 𝒗𝑛 be the 𝑛
vertices of 𝑃 satisfying 𝑢(𝒗𝑖) ≤ 0, i.e. they lie on or below the 𝑥-axis. We assume that
the vertices are ordered anticlockwise.

First, suppose that 𝑃 is centrally symmetric. Then 𝑃 has either 0 or 2 vertices on
the 𝑥-axis and either 𝑛 or 𝑛 − 2 vertices strictly below it, respectively. By the central
symmetry of 𝑃, it has either 𝑛 or 𝑛 − 2 vertices strictly above it, respectively. So, 𝑃
has either 2𝑛 or 2𝑛 − 2 vertices in total. In particular, 𝑃 has at most 2𝑛 vertices.

Instead, suppose that 𝑃 is 3-symmetric. Let 𝐺 ∈ Aut(𝑃) be an element of
order 3. Let 𝒗0 be the vertex of 𝑃 immediately before 𝒗1 and let 𝒗𝑛+1 be the
vertex of 𝑃 immediately after 𝒗𝑛 . By assumption, these two vertices lie strictly
above the 𝑥-axis. Consider the triangle 𝑇 = conv

{
𝒗0, 𝐺𝒗0, 𝐺

2𝒗0
}

and the line 𝐿
passing through 𝒗0 and the origin 0. Without loss of generality, 𝐺𝒗0 lies be-
low 𝐿 and 𝐺2𝒗0 lies above 𝐿. By convexity of 𝑃, 𝐺𝒗0 in fact lies below the 𝑥-
axis. Thus, 𝐺𝒗0 = 𝒗𝑖 for some 𝑖 = 1, 2, . . . , 𝑛. This means that the vertices
of 𝑃 are 𝒗0, 𝒗1, . . . , 𝒗𝑖−1, 𝐺𝒗0, 𝐺𝒗1, . . . , 𝐺𝒗𝑖−1, 𝐺

2𝒗0, 𝐺
2𝒗1, . . . , 𝐺

2𝒗𝑖−1. Therefore, 𝑃
has 3𝑖 ≤ 3𝑛 vertices.
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Figure 4.7: An example with 𝑛 = 2 and 𝑃 is assumed to be 3-symmetric.
The points 𝒗1 and 𝒗2 are the only two vertices of 𝑃 below the 𝑥-axis.

One of these must also be a vertex of the triangle 𝑇.

□

We may now complete the final step, which was to prove the following statement.
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Proposition 4.3.21. Let 𝑃 and 𝑄 be symmetric Fano polygons with non-empty baskets. If
they are mutation-equivalent, then their edge data is equal.

Proof. If 𝑃 and 𝑄 are isomorphic, then their edge data is equal and we are done. So,
let us assume that 𝑃 is not isomorphic to 𝑄. Thus, 𝑃 must have at least one long
edge; otherwise, 𝑃 has no mutations and 𝑃 � 𝑄 – a contradiction. If 𝑃 is centrally
symmetric then, by Proposition 4.3.4, 𝑃 is isomorphic to 𝑄 – a contradiction. Thus,
either 𝑃 is centrally symmetric with two pairs of long edges or 𝑃 is 3-symmetric
with one triple of long edges. The same holds for 𝑄. Applying Proposition 4.3.8
and Proposition 4.3.12, we see that 𝑃 and 𝑄 must either both be centrally symmetric
or both be 3-symmetric; otherwise, the Ehrhart series Ehr𝑃∗(𝑡) and Ehr𝑄∗(𝑡) would
differ – this is a contradiction because the Ehrhart series of the dual polygon is a
mutation-invariant, and 𝑃 and𝑄 are assumed to be mutation-equivalent. Moreover,
by Corollary 4.3.10 and Corollary 4.3.13, we see that the number of edges is fixed,
i.e. |ℰ(𝑃)| = |ℰ(𝑄)|.

So, let’s write ℰ(𝑃) = {𝐻1, 𝐻2, . . . , 𝐻𝑚} × 𝑔 and ℰ(𝑄) =
{
𝐻′

1, 𝐻
′
2, . . . , 𝐻

′
𝑚

}
× 𝑔,

for some integer 𝑚 ≥ 1 and where 𝑔 = 2 if 𝑃 is centrally symmetric and 𝑔 = 3 if 𝑃
is 3-symmetric (see Remark 4.2.13 for notation). The (directed) basket of 𝑃 and 𝑄

can be written ℬ = {𝑆1, 𝑆2, . . . , 𝑆𝑏} × 𝑔. We may insist that ℰ(𝑃) is aligned with ℬ,
i.e. that res(𝐻1) = 𝑆1 and res(𝐻𝑖 𝑗 ) = 𝑆 𝑗 , for 1 = 𝑖1 < 𝑖2 < · · · < 𝑖𝑏 ≤ 𝑚. We may also
insist that ℰ(𝑄) is aligned with ℬ.

The strategy of the remainder of the proof is by induction on the elements of ℰ(𝑃).
In particular, we want to show that 𝐻1 = 𝐻′

1 and that if 𝐻𝑛 = 𝐻′
𝑛 for 1 ≤ 𝑛 ≤ 𝑘,

where 1 ≤ 𝑘 < 𝑚, then 𝐻𝑘+1 = 𝐻′
𝑘+1. Given these two statements, it immediately

follows that ℰ(𝑃) = ℰ(𝑄).
Base case: We first prove that 𝐻1 and 𝐻′

1 coincide. Suppose towards a contradic-
tion that all the edges of 𝑃 are long. If 𝑃 is centrally symmetric, then 𝑃 is isomorphic
to the box with vertices ±(ℎ1, ℎ2) and ±(ℎ1,−ℎ2), for some integers 2 ≤ ℎ1 ≤ ℎ2. By
Corollary 4.3.10, 𝑄 is also a quadrilateral. By Lemma 4.3.5, 𝑄 is isomorphic to the
box with vertices ±(ℎ′1, ℎ

′
2) and ±(ℎ′1,−ℎ

′
2), for some integers 2 ≤ ℎ′1 ≤ ℎ′2. By Propo-

sition 4.3.8, its edges have heights ℎ1 and ℎ2, i.e. ℎ1 = ℎ′1 and ℎ2 = ℎ′2. Thus, 𝑃 � 𝑄,
a contradiction. Otherwise, 𝑃 is 3-symmetric. So, since all its edges are long, it is
isomorphic to the triangle with vertices (−ℎ,−ℎ), (2ℎ,−ℎ), and (−ℎ, 2ℎ). Since 𝑃 is
Fano, its vertices must be primitive. Thus, ℎ = 1, which implies that ℬ = ∅, another
contradiction.

So, we may conclude that there is an edge of 𝑃 which is short. Since the edge
data ℰ(𝑃) is cyclically ordered, we may relabel its elements so that 𝐻1 represents a
short edge; thus, 𝐻1 = res(𝐻1) = 𝑆1. Now, this implies that 𝑆1 has height strictly
greater than the heights of the long edges of 𝑃 and 𝑄. Since res(𝐻′

1) = 𝑆1, it follows
that 𝐻′

1 is also short. Thus, 𝐻1 = 𝐻′
1 = 𝑆1.

Inductive step: Let 1 ≤ 𝑘 < 𝑚 and suppose that 𝐻𝑛 = 𝐻′
𝑛 for all 1 ≤ 𝑛 ≤ 𝑘.

Let 1 ≤ 𝑗 ≤ 𝑏 be the index of the previous R-singularity 𝑆 𝑗 in {res(𝐻1), . . . , res(𝐻𝑘)},
i.e. 𝑖 𝑗 ≤ 𝑘 and either 𝑗 = 𝑏 or 𝑘 < 𝑖 𝑗+1. Consider 𝐻𝑘+1 and 𝐻′

𝑘+1. We split into three
cases: (i) both are short; (ii) both are long; and (iii) one is short and one is long.

Case (i). If both forms represent short edges, then 𝐻𝑘+1 = 𝑆 𝑗+1 and 𝐻′
𝑘+1 = 𝑆 𝑗+1,

i.e. they coincide.



4.3. At most one symmetric 77

Case (ii). Now suppose that 𝐻𝑘+1 and 𝐻′
𝑘+1 both represent long edges. Fix the

edge of 𝑃 and 𝑄 represented by 𝐻𝑘 so that its second vertex is (1, 0). Now, the
primitive inner normal vectors of the next edges of 𝑃 and 𝑄, which are represented
by 𝐻𝑘+1 and 𝐻′

𝑘+1, respectively, are forced to be the same; otherwise, we would
violate Proposition 4.3.8 or Proposition 4.3.12. In order to show that 𝐻𝑘+1 and 𝐻′

𝑘+1
coincide, we show that the next edges have the same length.

Since the edges represented by 𝐻𝑘+1 and 𝐻′
𝑘+1 share a vertex and have the same

primitive inner normal, they must have the same height. Hence, they have the same
number of primitive T-singularities. If they have the same residue, then we are
done. Otherwise, due to the directed basket being a mutation invariant, we must
have that, without loss of generality, 𝐻𝑘+1 has a residue while 𝐻′

𝑘+1 has no residue.
Now, consider the Hermite normal form 𝐻′

𝑘+2 in ℰ(𝑄). 𝐻′
𝑘+2 must represent a long

edge with the same residue as 𝐻𝑘+1. The long edges represented by 𝐻′
𝑘+1 and 𝐻′

𝑘+2
have the same height ℎ. By Lemma 4.3.5 and Lemma 4.3.11, we can transform 𝑄 so
that the common vertex of these long edges is (ℎ, ℎ). Since 𝑄 is Fano, its vertices
must be primitive. Thus, ℎ = 1. But this is a contradiction; for example, the residue
of 𝐻𝑘+1 is now empty. So, 𝐻𝑘+1 = 𝐻′

𝑘+1.
Case (iii). Finally, we suppose that one of 𝐻𝑘+1 and 𝐻′

𝑘+1 is short and the other is
long. Without loss of generality, we may assume that the former is long and the latter
is short. So,𝐻𝑘+1 = 𝑇 represents a pure long edge, i.e. res(𝐻𝑘+1) = ∅, and𝐻′

𝑘+1 = 𝑆 𝑗+1
is short. Now, consider the next edge represented in ℰ(𝑃). There are two subcases:
either (a) 𝐻𝑘+2 = 𝑆 𝑗+1 represents a short edge or (b) 𝐻𝑘+2 = 𝑇′ represents a pure long
edge. We aim to show that both subcases are impossible to achieve.

Subcase (a): As in Figure 4.8, transform 𝑃 so that the edge 𝐸 represented by 𝑇
has inner normal (0, 1)𝑡 . Denote by 𝐹1 and 𝐹2 the edges adjacent to 𝐸 which are
represented by 𝐻𝑘 and 𝑆 𝑗+1, respectively. Let 𝒗0, 𝒗1, 𝒗2, 𝒗3 ∈ 𝑁 be the vertices which
form the edges 𝐹1, 𝐸, and 𝐹2, ordered anticlockwise. Consider the shear 𝐴 which
maps 𝒗1 to 𝒗2. The edge 𝐴𝐹1 is now adjacent to 𝐹2. We may also transform 𝑄

so that its edge represented by 𝑆 𝑗+1 is also 𝐹2. The aim is to show that 𝐴𝐹1 must
be the edge of 𝑄 represented by 𝐻𝑘 . If that is the case then, by convexity, 𝑄 is
contained in the half-space {𝑦 ≥ −ℎ}, i.e. (0, 1)𝑡 ∈ ℎ𝑄∗, where ℎ is the height of 𝐸.
But now, this contradicts Proposition 4.3.8 and Proposition 4.3.12, since (0, 1)𝑡 is not
an inner normal vector to an edge of 𝑄. So, we can conclude that subcase (a) is
impossible to achieve. It remains to show that 𝐴𝐹1 and 𝐹2 are indeed edges of 𝑄.
To do this, we want to apply Lemma 4.3.17. In order to apply it, we must show
its condition (iii) is satisfied, i.e. we want to show that 𝐴𝒗0 satisfies the chain of
inequalities: −ℎ𝐹2 < 𝑢𝐹2(𝐴𝒗0) ≤ 2ℎ𝐹2 .

By the assumption of subcase (a), if 𝑃 is centrally symmetric, it has at least 6
edges and if 𝑃 is 3-symmetric, it has at least 9 edges. So, in order to not contradict
Lemma 4.3.20, it follows that at least one of 𝒗0 and 𝒗3 lies on or below the 𝑥-axis.
Without loss of generality, 𝒗0 lies on or below the 𝑥-axis.

We may now write 𝒗0 = 𝜆𝒗1 − (𝜇, 0), for some 0 ≤ 𝜆 < 1 and 𝜇 > 0. Thus, 𝐴𝒗0 =

𝜆𝒗2 − (𝜇, 0). So, 𝑢𝐹2(𝐴𝒗0) = −𝜆ℎ𝐹2 −𝜇𝑢𝐹2(1, 0). Since 𝑢𝐹2(1, 0) < 0, the first inequality
holds. On the other hand, 𝐴𝒗0 = 𝒗0 + (𝑥, 0) for some 𝑥 ∈ ℤ. Since 𝒗0 lies on
or below the 𝑥-axis, it follows that 𝑥 ≥ 0. Furthermore, by Lemma 4.3.18, we
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Figure 4.8: The situation of subcase (a) in the proof of Proposition 4.3.21.
In this example, 𝐸 has length equal to its height; thus, 𝐴 is the

shear
( 1 −1

0 1
)
.

have 𝑢𝐹2(𝒗0) ≤ 2ℎ𝐹2 . Thus, the second inequality follows. As set out above, this is
now enough to conclude that subcase (a) cannot occur.

Subcase (b): We first note that 𝑃 (and𝑄) must be centrally symmetric, since there
are two long edges between 𝐻1 and 𝐻𝑚 . Thus, it follows that 𝐻𝑘+3 must be short,
i.e. 𝐻𝑘+3 = 𝑆 𝑗+1. As in Figure 4.9, transform 𝑃 so that the edge 𝐸 represented by 𝑇
has inner normal (0, 1)𝑡 and the edge 𝐸′ represented by 𝑇′ has inner normal (−1, 0)𝑡 .
Denote by 𝐹1 and 𝐹2 the edges adjacent to 𝐸 which are represented by 𝐻𝑘 and 𝑆 𝑗+1,
respectively. Let 𝒗0, 𝒗1, . . . , 𝒗4 ∈ 𝑁 be the vertices which form the edges 𝐹1, 𝐸, 𝐸′,
and 𝐹2, ordered anticlockwise.
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Figure 4.9: The situation of subcase (b) in the proof of Proposition 4.3.21.
In this example, 𝐸 and 𝐸′ both have lengths equal to their heights;

thus, 𝐴 =
( 1 −1

0 1
)

and 𝐴′ =
( 1 0

1 1
)
.

Consider the half space ℋ = {(𝑥, 𝑦) ∈ 𝑁ℚ : 𝑥 ≥ 𝑦}. It is clear that 𝒗2 ∈ ℋ . By
assumption of subcase (b), note that 𝑃 has at least 8 vertices. So, in order to not
contradict Lemma 4.3.20, it follows that at least one of 𝒗0 and 𝒗4 lies in ℋ . Without
loss of generality, we may assume that 𝒗0, 𝒗1, 𝒗2, 𝒗3 ∈ ℋ .
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Let 𝐴 and 𝐴′ be the shears which map 𝒗1 to 𝒗2 and 𝒗2 to 𝒗3, respectively. We want
to show that 𝐴′𝐴𝒗0 satisfies the inequalities −ℎ𝐹2 < 𝑢𝐹2(𝐴′𝐴𝒗0) ≤ ℎ𝐹2 . Note that 𝒗0 =

𝜆𝒗1 − (𝜇, 0), for some 0 ≤ 𝜆 < 1 and 𝜇 > 0. Thus, 𝐴′𝐴𝒗0 = 𝜆𝒗3 − (𝜇, 𝑛′𝜇), where 𝑛′
is the number of primitive singularities of 𝐸′. Since both 𝑢𝐹2(1, 0) and 𝑢𝐹2(0, 1) are
strictly negative, the first inequality holds. On the other hand, 𝐴′𝐴𝒗0 = 𝒗0 + (𝑥, 𝑦),
for some 𝑥, 𝑦 ∈ ℤ. Since 𝒗0 lies in ℋ , it follows that 𝑥, 𝑦 ≥ 0. Furthermore, by the
central symmetry of 𝑃, we have 𝑢𝐹2(𝒗0) ≤ ℎ𝐹2 ; thus, the second inequality holds.

Thus, we may apply Lemma 4.3.17 and transform𝑄 so that its edges represented
by 𝐻𝑘 and 𝑆 𝑗+1 are 𝐴′𝐴𝐹1 and 𝐹2. But now, we still have (−1, 0)𝑡 ∈ ℎ′𝑄∗, where ℎ′
is the height of the long edge 𝐸′. But by Proposition 4.3.8, the non-origin lattice
points in ℎ′𝑄∗ must be primitive inner normals to long edges; thus, we reach a
contradiction. □

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.3.1. Let 𝑃 and 𝑄 be two symmetric Fano polygons which are
mutation-equivalent. By Proposition 4.3.16, we may assume that 𝑃 and 𝑄 have
non-empty basket ℬ. By Proposition 4.3.21, we know that their edge data is equal.
Finally, we apply Proposition 4.3.19 and we may conclude that 𝑃 and 𝑄 are isomor-
phic. □

4.4 The behaviour of other Kähler–Einstein polygons
under mutation

In this section, we aim to complete the proof of Theorem 4.1.3. Previously, in §4.3,
we proved that there is at most one symmetric Fano polygon in each mutation-
equivalence class. Equivalently, we proved that if two symmetric Fano polygons
are mutation-equivalent, then they are isomorphic. So, in order to complete the
proof of Theorem 4.1.3, we need to prove that (a) if two Kähler–Einstein Fano trian-
gles are mutation-equivalent, then they are isomorphic and (b) if a symmetric Fano
polygon is mutation-equivalent to a Kähler–Einstein triangle, then they are isomor-
phic. We prove (a) in Proposition 4.4.1. Since the arguments for centrally symmetric
and 3-symmetric polygons will be different, we further split the proof of (b) into
Proposition 4.4.4 and Proposition 4.4.5.

Proposition 4.4.1. Let 𝑃, 𝑄 ⊂ 𝑁ℚ be Kähler–Einstein Fano triangles. Suppose that 𝑃
and 𝑄 are mutation-equivalent. Then 𝑃 is isomorphic to 𝑄.

Before we do the proof of Proposition 4.4.1, we require the following lemma.

Lemma 4.4.2. Let 𝑃 ⊂ 𝑁ℚ be a Kähler–Einstein Fano triangle of index 𝑘. Then 𝑘 is odd.

Proof. By Lemma 4.2.16, we may apply an appropriate transformation so that 𝑃 has
vertices (−𝑘, 𝑎 − 1), (𝑘,−𝑎), and (0, 1), for some integers 𝑎 and 𝑘. Suppose towards
a contradiction that 𝑘 is even. Now, since 2 divides either 𝑎 − 1 or 𝑎, it follows that
either (−𝑘, 𝑎 − 1) or (𝑘,−𝑎) is not primitive. So, 𝑃 has a non-primitive vertex, which
contradicts that 𝑃 is Fano. □
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We may now proceed with the proof.

Proof of Proposition 4.4.1. By Lemma 4.2.16, 𝑃 is isomorphic to a triangle with primi-
tive vertices (−𝑘, 𝑎 − 1), (𝑘,−𝑎), and (0, 1), for some integers 𝑎, 𝑘 ≥ 1. Similarly, 𝑄 is
isomorphic to a triangle with primitive vertices (−𝑘′, 𝑎′ − 1), (𝑘′,−𝑎′), and (0, 1), for
some integers 𝑎′, 𝑘′ ≥ 1. The dual polygons 𝑃∗ and 𝑄∗ have normalised volumes 9/𝑘
and 9/𝑘′, respectively. Since 𝑃 and 𝑄 are mutation-equivalent, these volumes coin-
cide; thus, 𝑘 = 𝑘′. It now remains to show that 𝑎 ≡ 𝑎′ mod 𝑘.

Label the edges of 𝑃 as 𝐸0, 𝐸1, 𝐸2. We can write 𝑘 = ℓ𝑖ℎ𝑖 , where ℓ𝑖 is the length
of 𝐸𝑖 and ℎ𝑖 is its height. We obtain the following system of linear congruences:

𝑎 ≡ −1 mod ℓ0, 𝑎 ≡ 2 mod ℓ1, 2𝑎 ≡ 1 mod ℓ2. (4.3)

Thus, if 𝑚 divides two of the lengths ℓ𝑖 and ℓ 𝑗 for 𝑖 ≠ 𝑗, then 𝑚 must divide 3.
If 𝑃 does not have at least two long edges, then 𝑄 must be isomorphic to 𝑃. So,

we assume otherwise. Thus, without loss of generality, 𝐸0 and 𝐸1 are long. This
implies that ℓ0, ℓ1 ≥

√
𝑘.

If gcd(ℓ0, ℓ1) = 1, then ℓ0ℓ1 divides 𝑘. Since ℓ0ℓ1 ≥ 𝑘, we obtain ℓ0 =
√
𝑘 = ℓ1.

Thus, 𝑘 = 1. But now, there is only one such triangle with index 𝑘 = 1, so 𝑃 and 𝑄
are isomorphic; in particular, 𝑋𝑃 = 𝑋𝑄 = ℙ2.

Now consider the case gcd(ℓ0, ℓ1) = 3. Here, we have ℓ0 = 3ℓ̂0 and ℓ1 = 3ℓ̂1,
where ℓ̂0 and ℓ̂1 are coprime. So, 𝑘 = 3ℓ̂0ℓ̂1 𝑘̂ ≤ 9ℓ̂0ℓ̂1. So, 𝑘̂ ≤ 3. By Lemma 4.4.2, we
have that 𝑘̂ ≠ 2. This leaves two possibilities for 𝑘̂.

If 𝑘̂ = 3, then ℓ0 = ℓ1 =
√
𝑘. Thus, ℓ̂0 = ℓ̂1 = 1, ℓ0 = ℓ1 = 3, and 𝑘 = 9. Up to

isomorphism, there is only one Fano triangle with weights (1, 1, 1) and index 𝑘 = 9.
In fact, this is the triangle 𝑃′ appearing in Example 4.5.9. Therefore, 𝑃 and 𝑄 must
be isomorphic.

If 𝑘̂ = 1, then 𝑘 = 3ℓ̂0ℓ̂1. Since ℓ̂0 and ℓ̂1 are coprime, we may assume without
loss of generality that ℓ̂1 is not divisible by 3. Now, consider the system (4.3). We
obtain 𝑎 ≡ −1 mod 3ℓ̂0 and 𝑎 ≡ 2 mod ℓ̂1. Since 3ℓ̂0 and ℓ̂1 are coprime, we may
apply the Chinese Remainder theorem. We obtain a unique solution for 𝑎 modulo 𝑘,
which determines 𝑃 and 𝑄 up to isomorphism. Thus, 𝑃 and 𝑄 are isomorphic. □

Now that we have shown the triangle/triangle case, it remains to show the
triangle/symmetric case. It will be useful to have the following lemma as it allows
us to verify the case when the basket of R-singularities is empty.

Lemma 4.4.3. Let 𝑃 ⊂ 𝑁ℚ be a Kähler–Einstein Fano triangle. Then 𝑃 is minimal.

Proof. By Lemma 4.2.15, 𝑃 has weights (1, 1, 1). Let 𝒗0, 𝒗1, 𝒗2 be the vertices of 𝑃
and 𝑢0, 𝑢1, 𝑢2 be the vertices of 𝑃∗, ordered so that 𝑢𝑖(𝒗 𝑗) = −1 if and only if 𝑖 ≠ 𝑗. In
order to show minimality of𝑃, it’s enough to show that 𝑢𝑖(𝒗𝑖) ≥ 1, for all 𝑖 = 0, 1, 2. To
do this, we simply rearrange the identity 𝑢𝑖(𝒗0+𝒗1+𝒗2) = 0. We obtain 𝑢𝑖(𝒗𝑖) = 2 ≥ 1,
and so we are done. □

We can now prove the remaining two propositions.
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Proposition 4.4.4. No Kähler–Einstein Fano triangle is mutation-equivalent to a centrally
symmetric Fano polygon.

Proof. Let 𝑃 be a centrally symmetric Fano polygon and 𝑄 be a Kähler–Einstein
triangle. Suppose towards a contradiction that 𝑃 and 𝑄 are mutation-equivalent.
Due to the central symmetry of 𝑃, the number of R-singularities in the basket must
be even. Since𝑄 has three edges, there are at most three R-singularities. Thus, there
are either zero or two R-singularities in the basket.

First suppose that there are no R-singularities in the basket. By Lemma 4.4.3,
the triangle 𝑄 will be minimal. Thus, the triangle 𝑄 appears in the list of [66]. The
centrally symmetric 𝑃 is also minimal and appears in that list. We see that there are
no examples in the same mutation-equivalence class.

Otherwise, there are two copies of the same R-singularity in ℬ. Consider the
edges of the triangle 𝑄. Two of the edges 𝐹1, 𝐹2 host R-singularities and one edge 𝐹0
is a pure T-singularity. It follows from Lemma 4.2.15 that the determinant of each
edge is 𝑘, for some positive integer 𝑘. So, the edges 𝐹1 and 𝐹2 have the same
number 𝑚 ≥ 0 of primitive T-singularities. Now, since 𝑃 is centrally symmetric, it
has an even number 2𝑛 of primitive T-singularities. Thus, the pure edge 𝐹0 of 𝑄
has 2𝑛−2𝑚 primitive T-singularities. Further, its determinant 𝑘must now be divisible
by 2. But this contradicts Lemma 4.4.2. □

Proposition 4.4.5. Let 𝑃 ⊂ 𝑁ℚ be a 3-symmetric Fano polygon and 𝑄 ⊂ 𝑁ℚ be a Käh-
ler–Einstein Fano triangle. Suppose that 𝑃 is mutation-equivalent to 𝑄. Then 𝑃 � 𝑄.

Proof. First, we know that 𝑃 and 𝑄 are minimal. So, if ℬ = ∅, then 𝑃 and 𝑄 must
appear in the list of minimal polygons in Theorem 5.4 of [66]. We see that there is
at most one Kähler–Einstein triangle or 3-symmetric polygon for each number 𝑛 of
primitive T-singularities, which is a mutation-invariant. Therefore, 𝑃 � 𝑄.

Now, we have ℬ ≠ ∅. Due to the symmetry of order 3 of 𝑃, the number of R-
singularities of 𝑃 is a multiple of 3. Further, since𝑄 is a triangle and each edge has at
most one R-singularity, the number of R-singularities of𝑄 is at most 3. Since 𝑃 and𝑄
are mutation-equivalent, they have the same number of R-singularities, which must
be 3. So, each edge of 𝑄 has an R-singularity. Further, these three R-singularities
must be the same; in particular, they have the same height ℎ. Therefore, each edge
of 𝑄 has the same height ℎ. Since each edge of 𝑄 must also be long, we may apply
Lemma 4.2.17. So, we must have 𝑋𝑄 = ℙ2 or 𝑋𝑄 = ℙ2/ℤ3. In either case, 𝑄 now has
no R-singularities, which is a contradiction. □

Now we simply put all these results together to derive the main theorem.

Proof of Theorem 4.1.3. The result straightforwardly follows from Theorem 4.3.1, Propo-
sition 4.4.1, Proposition 4.4.4, and Proposition 4.4.5. □

4.5 Discussion of Kähler–Einstein polygons
Given Conjecture 4.1.2, it would follow that there is at most one Kähler–Einstein Fano
polygon in each mutation-equivalence class. However, in the first part of this section,
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we provide a counterexample to the conjecture. In particular, we show the existence
of a Kähler–Einstein Fano polygon which is neither symmetric nor a triangle. This
is enough to disprove the conjecture.

The second part of this section is dedicated to describing all Kähler–Einstein Fano
quadrilaterals. In particular, we describe how quadrilaterals with barycentre as the
origin must be constrained.

In the final part of this section, we construct a family of Kähler–Einstein Fano
hexagons which are not minimal.

4.5.1 A Kähler–Einstein Fano quadrilateral
So, as stated above, we will prove that the quadrilateral in Proposition 4.1.4 is indeed
Kähler–Einstein and non-symmetric.

Proof of Proposition 4.1.4. Since all of the vertices of 𝑃 are primitive lattice points and
the origin is contained in its strict interior, 𝑃 is Fano. Using Magma [16], we find
that 𝑃 has a trivial automorphism group; thus, 𝑃 is not symmetric. As 𝑃 is clearly
not a triangle, it only remains to show that the barycentre of 𝑃∗ is the origin.

Again using Magma, we compute the dual 𝑃∗ of 𝑃.

𝑃∗ = conv
{

1
3149(1,−28)𝑡 , 1

1739(151, 2)𝑡 , 1
481(−31, 4)𝑡 , 1

871(−43,−2)𝑡
}
⊂ 𝑀ℚ.

Label its vertices as 𝑢1, 𝑢2, 𝑢3, 𝑢4, respectively. Note that these are adjacent and
given in anticlockwise order. To compute the barycentre, we subdivide 𝑃∗ into
two triangles 𝑇1 = conv {𝑢1, 𝑢2, 𝑢3} and 𝑇2 = conv {𝑢3, 𝑢4, 𝑢1}. Let 𝑏1 and 𝑏2 be
the barycentres of 𝑇1 and 𝑇2, respectively. Then, 𝑏1 = 1

1514669(11461, 290)𝑡 and 𝑏2 =
1

1514669(−57305,−1450)𝑡 . The volumes of𝑇1 and𝑇2 are 3240
1514669 and 648

1514669 , respectively.
Thus, the barycentre of 𝑃∗ is 1

Vol(𝑃∗)(Vol(𝑇1)𝑏1 + Vol(𝑇2)𝑏2) = (0, 0)𝑡 .
So,𝑃 is a Kähler–Einstein Fano polygon which is not symmetric and not a triangle.

Its existence thus disproves Conjecture 4.1.2. □

This means that it is still a wide-open question whether there is at most one
Kähler–Einstein polygon per mutation-equivalence class.

Remark 4.5.1. We can ask whether the polygon 𝑃 in the proof of Proposition 4.1.4 is
mutation-equivalent to any other Kähler–Einstein polygon. Since the edges of 𝑃 have
lengths 1, 2, 7, 2 and heights 3149, 871, 481, 1739, respectively, it follows that none
of its edges are long. Thus, the mutation-equivalence class consists only of 𝑃. So, in
this case, 𝑃 is not mutation-equivalent to any other other Kähler–Einstein polygon.

Having this example of a non-symmetric Kähler–Einstein quadrilateral allows
us to test questions regarding barycentric transformations. These transformations
were introduced in [53] as a way to measure how close a polytope is to being
Kähler–Einstein. We recall the definition, specialised to dimension two.
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Definition 4.5.2 ([53, Lemma 2.2]). Let𝑃 be a Fano polygon with vertices𝒗1, 𝒗2, . . . , 𝒗𝑚
written in anticlockwise order. Then the barycentric transformation 𝐵(𝑃) of𝑃 is defined
as

𝐵(𝑃) B conv
{

𝒗12
gcd(𝒗12)

,
𝒗23

gcd(𝒗23)
, . . . ,

𝒗𝑚1
gcd(𝒗𝑚1)

}
,

where 𝒗𝑖 𝑗 = 𝒗𝑖 + 𝒗 𝑗 . We also write 𝐵1(𝑃) B 𝐵(𝑃) and 𝐵𝑘+1(𝑃) B 𝐵𝑘(𝐵(𝑃)), for
integer 𝑘 ≥ 1.

Note that the vertices of 𝐵(𝑃) are guaranteed to be primitive. However, it isn’t
certain that the origin is contained in the strict interior of 𝐵(𝑃). So, the barycentric
transformation of a Fano polygon might not be Fano itself.

Definition 4.5.3 ([53, Definition 2.4]). A Fano polygon 𝑃 is said to be of type 𝐵𝑘
if 𝐵𝑘(𝑃) is also Fano. 𝑃 is of strict type 𝐵𝑘 if 𝑃 is of type 𝐵𝑘 but not of type 𝐵𝑘+1. 𝑃 is
of type 𝐵∞ if 𝐵𝑘(𝑃) is Fano for all integer 𝑘 ≥ 1.

In [53], they expect that all smooth Kähler–Einstein (Fano) polytopes are of
type 𝐵∞. They show that this expectation holds in all dimensions less than 9, except
for possibly one four-dimensional polytope [53, Theorem 1.3]. In two dimensions,
they drop the smooth condition and prove that all Kähler–Einstein polygons are of
type 𝐵1 [53, Theorem 1.6]. They question whether Kähler–Einstein Fano polygons
are all of type 𝐵∞. If so, they also question whether the Kähler–Einstein property
is preserved under barycentric transformation. We answer both questions in the
negative.

Example 4.5.4. We compute iterated barycentric transformations of the polygon 𝑃

from Proposition 4.1.4 to determine its strict type. Consider

𝐵(𝑃) = conv {(10,−163), (17, 70), (2, 225), (−11,−39)} .

It contains the origin in its strict interior, so it is Fano. However, the barycen-
tre of its dual is not the origin; thus, 𝐵(𝑃) is not Kähler–Einstein. Next, 𝐵2(𝑃) =

conv {(9,−31), (19, 295), (−3, 62), (−1,−202)}. Since it still contains the origin in its
strict interior, it is Fano. But now,𝐵3(𝑃) = conv {(7, 66), (16, 357), (−1,−35), (8,−233)}.
This polygon does not contain the origin in its strict interior; thus, 𝐵3(𝑃) is not Fano.
We can conclude that 𝑃 is of strict type 𝐵2.

4.5.2 The weight systems of quadrilaterals with barycentre as the
origin

Proposition 4.5.5. Let𝑃 ⊂ 𝑁ℚ be a Kähler–Einstein quadrilateral. Then its dual polygon𝑃∗

is a quadrilateral with weight system

𝑊 ∗ =

(
𝜆1 𝜆2 0 𝜆4
0 𝜇2 𝜇3 𝜇4

)
,
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for some positive integers 𝜆1,𝜆2,𝜆4, 𝜇2, 𝜇4 and negative integer 𝜇3 which satisfy

(𝜆1 − 𝜆2) 𝑓 · 𝜇2
3 = (𝜇3 − 𝜇2)𝑔 · 𝜆2

1 (4.4)
(𝜆1 − 𝜆4) 𝑓 · 𝜇2

3 = (𝜇3 − 𝜇4)𝑔 · 𝜆2
1, (4.5)

where 𝑓 = 𝜆1 + 𝜆2 + 𝜆4 and 𝑔 = 𝜇2 + 𝜇3 + 𝜇4.

Before we prove Proposition 4.5.5, we must first prove the following lemma about
triangles.

Lemma 4.5.6. Let𝑇 ⊂ 𝑁ℚ be a triangle with vertices 𝒗0, 𝒗1, 𝒗2 and weights (𝜆0,𝜆1,𝜆2), so
that

∑2
𝑖=0 𝜆𝑖𝒗𝑖 = 0. Label the edges of 𝑇 as 𝐸0, 𝐸1, 𝐸2 so that 𝒗𝑖 ∉ 𝐸𝑖 for 𝑖 = 0, 1, 2. Suppose

that the weights are reduced, i.e. gcd(𝜆0,𝜆1,𝜆2) = 1. Then, for all 𝑖 = 0, 1, 2, the volume
of Δ𝐸𝑖 is 𝑘 |𝜆𝑖 |, for some positive 𝑘 ∈ ℚ not depending on 𝑖.

Proof. As in the remark under Definition 2.3 in [27], this result also follows in the
non-integral case using Cramer’s rule. □

We are now ready to prove the main result of this subsection.

Proof of Proposition 4.5.5. Let ℓ = gcd(𝜆1,𝜆2,𝜆4) and 𝑚 = gcd(𝜇2, 𝜇3, 𝜇4). Con-
sider (4.4). Since ℓ divides 𝑓 , we see that ℓ2 divides the left-hand side and the
right-hand side. Further, since 𝑚 divides 𝑔, we see that 𝑚2 also divides both the
left-hand and right-hand sides. The analogous statement holds for (4.5). Thus, we
may divide the 𝜆𝑖 by ℓ and the 𝜇𝑗 by 𝑚. Hence, we may assume without loss of
generality that ℓ = 𝑚 = 1.

Let 𝑢1, 𝑢2, 𝑢3, 𝑢4 ∈ 𝑀ℚ be the vertices of 𝑃∗, given in anticlockwise order and
aligned so that𝑊 ∗(𝑢1, 𝑢2, 𝑢3, 𝑢4) = (0, 0). Then we obtain two triangles𝑇 = conv {𝑢1, 𝑢2, 𝑢4}
and 𝑇′ = conv {𝑢2, 𝑢3, 𝑢4} which partition 𝑃∗. The barycentres of 𝑇 and 𝑇′ are 𝑏 =
1
3(𝑢1 + 𝑢2 + 𝑢4) and 𝑏′ = 1

3(𝑢2 + 𝑢3 + 𝑢4), respectively.
Now, 𝑇 has weights (𝜆1,𝜆2,𝜆4) and 𝑇′ has weights (𝜇2, 𝜇3, 𝜇4). Let the edges of

𝑇 and 𝑇′ be labelled as follows.

𝐸𝑖 = conv {𝑢𝑛 : 𝑛 = 1, 2, 4 and 𝑛 ≠ 𝑖} 𝐸′
𝑗 = conv {𝑢𝑛 : 𝑛 = 2, 3, 4 and 𝑛 ≠ 𝑗} ,

for 𝑖 = 1, 2, 4 and 𝑗 = 2, 3, 4. By Lemma 4.5.6, the triangles Δ𝐸𝑖 have volumes 𝑘𝑇𝜆𝑖 ,
for 𝑖 = 1, 2, 4, and the trianglesΔ𝐸′

𝑖
have volumes 𝑘𝑇′ |𝜇𝑗 |, for 𝑗 = 2, 3, 4, where 𝑘𝑇 , 𝑘𝑇′ ∈

ℚ are positive. But now, Δ𝐸1 = Δ𝐸′3
. In particular, Vol(Δ𝐸1) = Vol(Δ𝐸′3). It follows that

the ratio between 𝑘𝑇 and 𝑘𝑇′ is (−𝜇3 : 𝜆1). Therefore, the ratio between the volumes
of 𝑇 and 𝑇′ is (− 𝑓 𝜇3 : 𝜆1𝑔).

Since the barycentre of 𝑃∗ is 0, it follows that Vol(𝑇)𝑏 +Vol(𝑇′)𝑏′ = 0. Plugging in
our expressions for the volumes and barycentres of 𝑇 and 𝑇′, we obtain that − 𝑓 𝜇3 ·
𝑢1 + (𝜆1𝑔 − 𝑓 𝜇3) · 𝑢2 + 𝜆1𝑔 · 𝑢3 + (𝜆1𝑔 − 𝑓 𝜇3) · 𝑢4 = 0. Equivalently, (− 𝑓 𝜇3,𝜆1𝑔 −
𝑓 𝜇3,𝜆1𝑔,𝜆1𝑔 − 𝑓 𝜇3) is a weight for 𝑃∗. So, it must be expressable as a ℚ-linear
combination of the rows of𝑊 ∗:

(− 𝑓 𝜇3,𝜆1𝑔 − 𝑓 𝜇3,𝜆1𝑔,𝜆1𝑔 − 𝑓 𝜇3) = 𝑎 · (𝜆1,𝜆2, 0,𝜆4) + 𝑏 · (0, 𝜇2, 𝜇3, 𝜇4), (4.6)
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for some 𝑎, 𝑏 ∈ ℚ. Comparing the first coordinates in (4.6) gives 𝑎 = − 𝑓 𝜇3/𝜆1 and
comparing the third coordinates in (4.6) gives 𝑏 = 𝜆1𝑔/𝜇3. Then, obtaining (4.4)
is simply a matter of comparing the second coordinates in (4.6), substituting in the
expressions of 𝑎 and 𝑏, and rearranging. Equation (4.5) is obtained similarly from
comparing the fourth coordinates in (4.6). □

Remark 4.5.7. We can create a nice parameterisation of the weight matrix in Propo-
sition 4.5.5. First, we may assume that each row of the weight matrix is reduced,
i.e. gcd(𝜆1,𝜆2,𝜆4) = 1 and gcd(𝜇2, 𝜇3, 𝜇4) = 1. It follows from Equations (4.4)
and (4.5) that 𝜆2

1 divides 𝑓 · 𝜇2
3 and 𝜇2

3 divides 𝑔 · 𝜆2
1. So, let 𝑎 = gcd(𝜆1, 𝜇3) and let ℓ

and 𝑚 be coprime integers such that 𝜆1 = 𝑎ℓ and 𝜇3 = 𝑎𝑚. Now, let 𝑑 = gcd( 𝑓 , 𝑔)
and let 𝑟 and 𝑠 be coprime integers such that 𝑓 = 𝑑ℓ2𝑠 and 𝑔 = 𝑑𝑚2𝑟. Finally,
let 𝑏 = gcd(𝜆1 −𝜆2, 𝜇3 −𝜇2) and 𝑐 = gcd(𝜆1 −𝜆4, 𝜇3 −𝜇4). We can now express all 𝜆𝑖
and 𝜇𝑗 in terms of the parameters 𝑎, 𝑏, 𝑐, 𝑑, ℓ , 𝑚, 𝑟, 𝑠. The weight matrix looks like
the following.

𝑊 ∗ =

(
𝑎ℓ 𝑎ℓ + 𝑏𝑟 0 𝑎ℓ + 𝑐𝑟
0 𝑎𝑚 + 𝑏𝑠 𝑎𝑚 𝑎𝑚 + 𝑐𝑠

)
.

Using the identities 𝑓 = 𝜆1 + 𝜆2 + 𝜆4 and 𝑔 = 𝜇2 + 𝜇3 + 𝜇4, we eventually obtain
the equations

𝑏 + 𝑐 = −𝑑ℓ𝑚 (4.7)
3𝑎 = 𝑑(𝑚𝑟 + ℓ 𝑠). (4.8)

We can use this parameterisation to search for further examples of non-symmetric
Kähler–Einstein Fano polygons.

Example 4.5.8. Let us fix 𝑎 = 48. By (4.8), 𝑑 divides 144. We choose 𝑑 = 36.
By (4.7), 𝑏 + 𝑐 must be divisible by 36. Choose 𝑏 = 19 and 𝑐 = 17. Referring
back to (4.7), we see that 36 = −36ℓ𝑚. Thus, ℓ = 1 and 𝑚 = −1. Finally, (4.8)
gives 4 = −𝑟 + 𝑠. We may let 𝑟 = 1 and 𝑠 = 5.

This gives the following weight matrix

𝑊 ∗ =

(
48 67 0 65
0 47 −48 37

)
,

which corresponds to a quadrilateral with barycentre zero. Taking the dual polygon
and restricting to the lattice spanned by its vertices, we obtain the Kähler–Einstein
Fano quadrilateral from Proposition 4.1.4.

4.5.3 Non-symmetric Kähler–Einstein polygons coming from sym-
metric polygons

In the previous subsection, we showed one way to construct non-symmetric Käh-
ler–Einstein polygons which are not triangles. By construction, all previous exam-
ples were quadrilaterals. In this subsection, we will construct a different type of
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non-symmetric Kähler–Einstein polygon. We first illustrate the main idea of the
construction with the following example.

Example 4.5.9. Take the triangle 𝑃 with vertices (−1,−1), (1, 0), and (0, 1). This
is Kähler–Einstein and symmetric, and has corresponding toric variety 𝑋𝑃 = ℙ2.
Consider𝑃with respect to the lattice𝑁+1

9(1, 2)ℤ. This is isomorphic to the triangle𝑃′

with vertices (−5, 1), (1,−2), and (4, 1), with respect to 𝑁 , and whose corresponding
toric variety is 𝑋𝑃′ = ℙ2/ℤ9. The weights of 𝑃′ are the same as those of 𝑃, so 𝑃′ is still
Kähler–Einstein. However, the automorphism group of 𝑃′ is now only generated by
a reflection. Thus, 𝑃′ is a Kähler–Einstein triangle which is not symmetric.

Remark 4.5.10. Note that a similar phenomenon was discussed in [54, Example 1.7].
They looked at a triangle 𝑃 with 𝑋𝑃 = ℙ2/ℤ11. In this case, 𝑃 had a trivial automor-
phism group.

We want to find more examples of non-symmetric Kähler–Einstein Fano poly-
gons. To do this, we try to extend what we did in Example 4.5.9 to other symmetric
polygons. In particular, we consider other symmetric polygons with respect to finer
lattices in an attempt to destroy the symmetry but keep the Kähler–Einstein property.
Of course, if a polygon is centrally symmetric with respect to one lattice, it will be
centrally symmetric with respect to any other lattice. Thus, we restrict our attention
to 3-symmetric polygons.

Proposition 4.5.11. Let ℎ, 𝑘 be integers such that ℎ, 𝑘 ≥ 2 and 𝑘 is coprime to ℎ, ℎ − 1,
and 2ℎ − 1. Then the polygon

𝑃ℎ,𝑘 B conv
(
−ℎ𝑘 (1 − ℎ)𝑘 (2ℎ − 1)𝑘 (2ℎ − 1)𝑘 (1 − ℎ)𝑘 −ℎ𝑘
1 − ℎ −ℎ −ℎ 1 − ℎ 2ℎ − 1 2ℎ − 1

)
is a Kähler–Einstein Fano polygon which is not symmetric. Moreover, 𝑃ℎ,𝑘 is of type 𝐵∞. If
we further suppose that 𝑘 ≥ 2ℎ − 1, then 𝑃ℎ,𝑘 is not minimal.

Proof. We first show that the polygon is Kähler–Einstein. The polygon 𝑃ℎ,1 is 3-
symmetric, and thus Kähler–Einstein. The polygon 𝑃ℎ,𝑘 is isomorphic to 𝑃ℎ,1 with
respect to the lattice𝑁+(1/𝑘, 0)ℤ. The weights of a polygon are the same, regardless
of which lattice it is considered on. In particular, 𝑃ℎ,𝑘 has the same weights are 𝑃ℎ,1.
Thus, 𝑃ℎ,𝑘 is also Kähler–Einstein.

Next, given the assumption that 𝑘 is coprime to ℎ, ℎ−1, and 2ℎ−1, it easily follows
that the vertices of 𝑃ℎ,𝑘 are primitive. Thus, since the origin is still contained in the
strict interior, the polygon is Fano. It remains to show that 𝑃ℎ,𝑘 is not symmetric.
To do this, we compare the lengths of its edges. Starting from the bottom-left edge
of 𝑃ℎ,𝑘 and going anticlockwise, the lengths are 1, (3ℎ − 2)𝑘, 1, 3ℎ − 2, 𝑘, and 3ℎ − 2.
Since 𝑘 ≥ 2, the lengths don’t repeat three times. Thus, 𝑃ℎ,𝑘 is not 3-symmetric.
Since it’s clearly not centrally symmetric, we may conclude that the polygon isn’t
symmetric.

Now, we determine the type of 𝑃ℎ,𝑘 . We compute its barycentric transformation
and obtain that 𝐵(𝑃ℎ,𝑘) has vertices ±(𝑘,−2), ±(2𝑘,−1), and ±(𝑘, 1). In particu-
lar, 𝐵(𝑃ℎ,𝑘) is centrally symmetric. Thus, by [53, Theorem 1.6], 𝑃ℎ,𝑘 is of type 𝐵∞.
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Finally, we show that if 𝑘 ≥ 2ℎ − 1, then the polygon is not minimal. The bottom
edge of 𝑃ℎ,𝑘 has length (3ℎ − 2)𝑘 and height ℎ, so it is a long edge. The top edge has
length 𝑘 and height 2ℎ − 1. Since 𝑘 ≥ 2ℎ − 1, by assumption, it follows that it is also
a long edge. Thus, 𝑃ℎ,𝑘 is not minimal. □

So, we have found an infinite number of non-symmetric, non-triangle Käh-
ler–Einstein Fano polygons.
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Chapter 5

Generalised Flatness Constants

This chapter is based on joint work with Giulia Codenotti and Johannes Hofscheier,
which appears in [26].

5.1 Introduction
Let ℝ𝑑 be the Euclidean space equipped with the Euclidean norm | · |. The space of
convex bodies, i.e., non-empty compact convex sets in ℝ𝑑 (note that some authors
define convex bodies to be open, see, for instance, [93, Section 2]), is denoted by 𝒦 𝑑.
Examples of convex bodies are polytopes, convex hulls of finitely many points in ℝ𝑑.
(Lattice) polytopes are studied in a variety of mathematical areas such as algebraic
geometry, commutative algebra, geometry of numbers, combinatorics and statistics.

Here we study the lattice width of convex bodies motivated by questions on
lattice polytopes and symplectic manifolds. For a convex body 𝐾 ⊂ ℝ𝑑, and a linear
form 𝑢 ∈ Hom(ℤ𝑑 ,ℤ) = (ℤ𝑑)∗, the width of 𝐾 along 𝑢 (or with respect to 𝑢) is given by

width𝑢(𝐾) B sup
𝑥,𝑦∈𝐾

|𝑢(𝑥) − 𝑢(𝑦)|.

The lattice width of 𝐾 (or simply width of 𝐾), width(𝐾), is the minimum of its
widths width𝑢(𝐾) along all 𝑢 ∈ (ℤ𝑑)∗ \ {0}. Khinchin’s celebrated flatness theo-
rem [68] guarantees that for every dimension 𝑑 there exists a constant which bounds
the width of convex bodies which are disjoint from the integer lattice ℤ𝑑. This gives
rise to the classical flatness constant

Flt𝑑 = sup
{
width(𝐾) : 𝐾 ∈ 𝒦 𝑑 , 𝐾 ∩ℤ𝑑 = ∅

}
.

It is conjectured that Flt𝑑 is roughly proportional to 𝑑 ([9, last paragraph in Section
8]). To the authors’ knowledge, the best known upper bound at the time of writing
is Flt𝑑 ≤ 𝑂(𝑑4/3 log𝑎 𝑑), where 𝑎 is a constant [8]. Explicit values for Flt𝑑 for low
dimensions are scarce: clearly, Flt1 = 1, and Hurkens has shown that Flt2 = 1+ 2√

3
[52].

However, already Flt3 is not known: in [25, 6] the bounds 2 +
√

2 ≤ Flt3 ≤ 3.972 are
shown and it is conjectured that Flt3 = 2 +

√
2.

In [7], Averkov, Hofscheier, and Nill introduced generalised flatness constants that
provide a unifying approach to several questions on lattice polytopes and symplectic



90 Chapter 5. Generalised Flatness Constants

manifolds. Generalised flatness constants Flt𝐴𝑑 (𝑋) depend on the choice of a ring 𝐴 ∈
{ℤ,ℝ}, and the choice of a fixed bounded subset 𝑋 ⊂ ℝ𝑑 and its 𝐴-unimodular
copies. An 𝐴-unimodular transformation 𝑇 : ℝ𝑑 → ℝ𝑑 maps an 𝑥 ∈ ℝ𝑑 to 𝑀𝑥 + 𝑏, for
some 𝑀 ∈ GL𝑑(ℤ) and 𝑏 ∈ 𝐴𝑑. We say 𝑌 ⊂ ℝ𝑑 is an 𝐴-unimodular copy of 𝑋 ⊂ ℝ𝑑

if 𝑌 = 𝑇(𝑋) for some 𝐴-unimodular transformation 𝑇 : ℝ𝑑 → ℝ𝑑. Then Flt𝐴𝑑 (𝑋)
is the supremum over the widths of convex bodies in ℝ𝑑 that don’t contain an 𝐴-
unimodular copy of 𝑋:

Flt𝐴𝑑 (𝑋) B sup
{
width(𝐾) : 𝐾 ∈ 𝒦 𝑑 , 𝐾 contains no 𝐴-unimodular copy of 𝑋

}
.

By [7, Theorem 2.1], Flt𝐴𝑑 (𝑋) is a well-defined real number. By taking 𝐴 = ℤ and 𝑋 a
lattice point, the usual flatness constant is recovered, i.e., Fltℤ𝑑 ({0}) = Flt𝑑, justifying
the definition of generalised flatness constants. A main result of this work is the
computation of generalised flatness constants in dimension 2 when 𝑋 is the 2-
dimensional standard simplex Δ2 = conv(0, 𝑒1, 𝑒2), where 𝑒1, 𝑒2 denotes the standard
basis of ℤ2.

Theorem 5.1.1. We have Fltℝ2 (Δ2) = 2 and Fltℤ2 (Δ2) = 10
3 .

A direct implication of the main theorem is that 2-dimensional convex bod-
ies 𝐾 ⊂ ℝ2 whose width is larger than 2 contain an ℝ-unimodular copy of Δ2. This
bound is sharp in the sense that a convex body with lattice width 2 contains an ℝ-
unimodular copy of Δ2 (see Proposition 5.2.11). Similarly, any convex body whose
width is larger than 10

3 contains a ℤ-unimodular copy of Δ2. Again this bound is
sharp (in the same sense as above). In particular, a convex body whose width is
at least 10

3 is spanning, i.e., the lattice points contained in the convex body affinely
generate the ambient lattice. Spanning lattice polytopes turn out to have strong
Ehrhart theoretical properties equivalent to ones of IDP polytopes, a much stronger
combinatorial assumption on the polytope (see [50, 51]). The search for an effective
and sufficient spanning test for lattice polytopes was one of the main motivations for
the introduction of generalised flatness constants.

The proof of Theorem 5.1.1 relies on the study of 𝐴-𝑋-free convex sets: if 𝑋 ⊂ ℝ𝑑

is a fixed bounded set, then a convex set 𝐾 ⊂ ℝ𝑑 is called 𝐴-𝑋-free if the relative
interior of 𝐾 contains no 𝐴-unimodular copy of 𝑋. Here, we follow the convention
that the relative interior of a point is the point itself. In Section 5.2, we show that the
flatness constant Flt𝐴𝑑 (𝑋) is equal to the supremum over widths of 𝐴-𝑋-free convex
bodies. A key result in the study of generalised flatness constants is the following
statement.

Theorem 5.1.2. If 𝑋 ⊂ ℝ𝑑 is a full-dimensional polytope, then every inclusion-maximal 𝐴-
𝑋-free convex body 𝐾 ⊂ ℝ𝑑 is a polytope.

Lemma 5.2.3 shows that, for any bounded 𝑋, to determine generalised flatness
constants we can restrict our study to inclusion-maximal 𝐴-𝑋-free convex sets. Pre-
cisely, we show that
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sup

width(𝐾) :

𝐾 is an
inclusion-
maximal
𝐴-𝑋-free
convex body

 ≤ Flt𝐴𝑑 (𝑋) ≤ sup

width(𝐾) :

𝐾 is an
inclusion-
maximal
𝐴-𝑋-free
convex set

 .

It is straightforward to verify that in two dimensions, 𝐴-Δ2-free, inclusion-
maximal 2-dimensional convex sets which are unbounded are strips with ratio-
nal slopes of sufficiently small width (see Proposition 5.3.3). Theorem 5.1.1 then
follows from studying the inclusion-maximal 𝐴-Δ2-free polygons. If 𝐴 = ℝ, a
theoretical argument shows that the width of inclusion-maximal ℝ-Δ2-free con-
vex polygons is bounded by 2. We further show that there are infinite fami-
lies of inclusion-maximal ℝ-Δ2-free convex polygons (see Section 5.5.1). Exam-
ples include the cross-polygon conv(±𝑒1,±𝑒2) and the triangle conv(𝑒1, 𝑒2,−𝑒1 − 𝑒2)
which are both lattice polygons of width exactly 2. If 𝐴 = ℤ, we show that
there is a unique ℤ-Δ2-free polygon which maximises the width, namely the tri-
angle conv(−2𝑒1 + 2𝑒2,

4
3 𝑒1 + 1

3 𝑒2,−1
3 𝑒1 − 4

3 𝑒2), from which the result follows. Note
that this unique maximiser isn’t a lattice polygon.

For both 𝐴 = ℤ and 𝐴 = ℝ, we show that at least one of the 𝐴-Δ2-free polygons
with width equal to Flt𝐴2 (Δ2) is a triangle. The same is true for the usual flatness
constant in the plane, which is uniquely achieved at a triangle [52]. Further, the
conjectured maximiser from [25] in three dimensions is a tetrahedron. It is thus
natural to ask the following question.

Question 5.1.3. Is there always at least one 𝐴-𝑋-free simplex among width maximis-
ers of an 𝐴-generalised flatness constant? If 𝐴 = ℤ, are all maximisers simplices?

A positive answer to these questions would simplify the calculation of explicit
values of the flatness constant greatly, since it would then no longer be necessary to
check the width of the many inclusion-maximal 𝐴-𝑋-free convex bodies that are not
simplices.

We conclude the introduction by relating our results to the computation of the
Gromov width of symplectic manifolds. Let (𝑀, 𝜔) be a 2𝑑-dimensional symplectic
manifold. The Gromov width of 𝑀 (denoted by 𝑐𝐺(𝑀)) is the supremum over capac-
ities 𝜋𝑟2 of balls with radius 𝑟 that can be symplectically embedded in 𝑀 (see [34]).
We use the identification 𝑆1 = ℝ/ℤ following the convention in [71, 74]. We are par-
ticularly interested in the case when 𝑀 is a symplectic toric manifold with moment
polytope Δ, i.e., a compact connected 2𝑑-dimensional symplectic manifold (𝑀, 𝜔)
equipped with an effective Hamiltonian action of a torus 𝑇 � (𝑆1)𝑑 and with a choice
of a corresponding moment map 𝜇 : 𝑀 → 𝔱∗ where 𝔱 denotes the lie algebra of 𝑇 (so
from now on we assume 𝑀 to be toric). The explicit computation of Gromov width
is still wide open; for example, even for symplectic toric manifolds it is not known
how to read off the Gromov width from the moment polytope. Therefore there is a
huge interest in finding effective upper and lower bounds for the Gromov width [4,
31, 61, 67, 74, 71, 77, 76, 91]. In particular, the result in [67, Corollary 11.4] (see
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also [71, 74, 31]) can be restated in terms of generalised flatness constants as follows:
the Gromov width of a symplectic toric manifold with moment polytope 𝑃 ⊂ ℝ𝑑

is at least width(𝑃) · Fltℝ𝑑 (Δ𝑑)−1. Here Δ𝑑 ⊂ ℝ𝑑 denotes the 𝑑-dimensional standard
simplex. Combining this with Theorem 5.1.1 implies a lower bound on the Gromov
width of 4-dimensional symplectic toric manifolds.

Theorem 5.1.4. Let (𝑀, 𝜔) be a 4-dimensional symplectic toric manifold with moment
polygon Δ. Then the Gromov width 𝑐𝐺(𝑀) of 𝑀 accepts the following upper and lower
bound:

width(Δ)
2 ≤ 𝑐𝐺(𝑀) ≤ width(Δ).

The lower bound is a straightforward implication of [67, Corollary 11.4] and
Theorem 5.1.1. The upper bound was conjectured in [7, Conjecture 3.12] and sub-
sequently verified for 4-dimensional symplectic toric manifolds by Chaidez and
Wormleighton [18, Corollary 4.19]. It is known that the upper bound is tight in
the sense that there exist 4-dimensional symplectic toric manifolds whose Gromov
width coincides with the lattice width of their moment polytopes (see, for instance, [7,
Lemma 3.16]). There are also examples known where the Gromov width is strictly
less than the width of the corresponding moment polygon (see, for instance, [55,
Example 5.6]). However, to the authors’ knowledge it is not known if the lower
bound of Theorem 5.1.4 is also tight. That is, is there a 4-dimensional toric symplec-
tic manifold whose Gromov width coincides with half of the width of its moment
polygon?

The chapter is organised as follows. In Section 5.2, we show how to reduce
the calculation of flatness constants to that of inclusion-maximal 𝐴-𝑋-free bodies,
and show some key properties of these bodies. Section 5.3 concerns the study
of Flt𝐴𝑑 (Δ𝑑) in one dimension and begins its study in two dimensions by analysing the
unbounded case. Section 5.4 characterises inclusion-maximal ℤ-Δ𝑑-free polytopes,
leading to a proof of the case 𝐴 = ℤ of Theorem 5.1.1. Section 5.5 proves the
case 𝐴 = ℝ of Theorem 5.1.1.

Computations were carried out using Magma [16], polymake [32], Mathemat-
ica [57], and SymPy [78]. The code can be found at https://github.com/jhofscheier/gen-
flat-const-dim2.

5.2 A general strategy to compute generalised flatness
constants

In this section, we prove foundational observations on generalised flatness constants.
We hope the approach introduced here provides an efficient framework for the study
of generalised flatness constants in any dimensions and for various choices of 𝑋.
At the end of the section we will outline a general strategy for the computation
of generalised flatness constants which we will follow to determine Flt𝐴2 (Δ2) for
both 𝐴 = ℤ and 𝐴 = ℝ.

https://github.com/jhofscheier/gen-flat-const-dim2
https://github.com/jhofscheier/gen-flat-const-dim2
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In our study, we will use the notion of Minkowski addition. It is well-known
that if 𝐴 and 𝐵 are convex, compact, or polytopes, then the Minkowski sum will
have the same properties. Furthermore, Minkowski addition is cancellative on the
set of convex bodies, i.e., if 𝐴, 𝐵, 𝐶 ⊂ ℝ𝑑 are convex bodies, then 𝐴 + 𝐶 = 𝐵 + 𝐶

implies 𝐴 = 𝐵. We will write 𝐵𝑑 ⊂ ℝ𝑑 for the usual 𝑑-dimensional ball in Euclidean
space with radius 1, i.e., the set of all points 𝑥 in ℝ𝑑 whose Euclidean norm is
bounded by 1, i.e., |𝑥 | ≤ 1. Finally, let 𝐵𝑑∞ ⊂ ℝ𝑑 be the (closed) unit ball with respect
to the maximum norm | · |∞. Note 𝐵𝑑∞ = [−1, 1]𝑑 is a polytope.

Remark 5.2.1. The following are elementary but important observations. Their
proofs are straightforward and are left to the reader. Let 𝑋 ⊂ ℝ𝑑 be a bounded set.
Then:

• Flt𝐴𝑑 (𝑋) = Flt𝐴𝑑 (conv(𝑋));

• Flt𝐴𝑑 (𝑋) = Flt𝐴𝑑 (𝑋), where 𝑋 denotes the closure of 𝑋 with respect to the
Euclidean topology.

5.2.1 𝐴-𝑋-free convex bodies
We begin by noticing that generalised flatness constants Flt𝐴𝑑 (𝑋) can equivalently be
described via 𝐴-𝑋-free convex bodies.

Lemma 5.2.2. For a bounded set 𝑋 ⊂ ℝ𝑑, we have:

Flt𝐴𝑑 (𝑋) = sup
{
width(𝐾) : 𝐾 ∈ 𝒦 𝑑 is an 𝐴-𝑋-free convex body

}
.

Proof. The case 𝑋 = ∅ can be straightforwardly verified, so suppose 𝑋 is non-empty.
Since every convex body 𝐾 ⊂ ℝ𝑑 that contains no 𝐴-unimodular copy of 𝑋

is 𝐴-𝑋-free, the inequality “≤” straightforwardly follows.
For the reverse inequality, let 𝐾 ⊂ ℝ𝑑 be an 𝐴-𝑋-free convex body that contains

an 𝐴-unimodular copy of 𝑋. If 𝐾 were just a point, it would follow that 𝑋 is 𝐴-
unimodularly equivalent to 𝐾, so that, by our convention of relative interior of
points, we would get rel(𝐾) = 𝐾 contained an 𝐴-unimodular copy of 𝑋, i.e., 𝐾
is not 𝐴-𝑋-free, a contradiction. Hence, the dimension of 𝐾 is positive. By [92,
Theorem 1.8.16], for any 𝜀 > 0, there exists a polytope 𝑃 ∈ 𝒦 𝑑 such that 𝑃 ⊂ 𝐾 ⊂
𝑃 + 𝜀𝐵𝑑. Since dim(𝐾) ≥ 1, it follows for sufficiently small 𝜀 > 0 that dim(𝑃) ≥ 1
too. By moving the facets of 𝑃 in by another 𝜀′ > 0 (clearly this is done inside the
affine span of 𝑃), we obtain a polytope 𝑃′ ∈ 𝒦 𝑑 whose width can be chosen to be
arbitrarily close to the width of 𝐾 and which doesn’t contain an 𝐴-unimodular copy
of 𝑋. So, Flt𝐴𝑑 (𝑋) ≥ width(𝐾). The statement follows. □

The following lemma seems to be decisive for the explicit computation of gen-
eralised flatness constants in that it reduces the determination of an upper bound
for Flt𝐴𝑑 (𝑋) to studying the width of inclusion-maximal 𝐴-𝑋-free closed convex sets.

Lemma 5.2.3. Let 𝑋 ⊂ ℝ𝑑 be a non-empty bounded subset. Then every 𝐴-𝑋-free convex
body is contained in an inclusion-maximal 𝐴-𝑋-free closed convex set.
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Proof. By Remark 5.2.1, we can assume that 𝑋 is closed and convex. In particular, 𝑋
is compact since it is bounded. Let 𝐾 ∈ 𝒦 𝑑 be an 𝐴-𝑋-free convex body.

Let ℳ be the set of all 𝐴-𝑋-free closed convex sets 𝐶 ⊂ ℝ𝑑 that contain 𝐾 (𝐶
not necessarily bounded). Note ℳ is partially ordered with respect to inclusion.
Our goal is to apply Zorn’s Lemma. Therefore, we need to show that every totally
ordered subset 𝑆 ⊂ ℳ has an upper bound in ℳ. We set 𝐶0 B

⋃
𝐶∈𝑆 𝐶 which is a

closed convex set inℝ𝑑. It remains to verify that𝐶0 is also𝐴-𝑋-free. Assume towards
a contradiction that 𝐶0 contains an 𝐴-unimodular copy of 𝑋 in its relative interior,
say 𝑌 ⊂ rel(𝐶0) where 𝑌 is an 𝐴-unimodular copy of 𝑋. Since rel(𝐶0) ⊂ ⋃

𝐶∈𝑆 𝐶,
it follows 𝑌 ⊂ ⋃

𝐶∈𝑆 𝐶. Consider the “distance” between the boundary 𝜕𝐶0 of 𝐶0
(considered as subset in the affine span aff(𝐶0)) and 𝑌:

𝑑(𝜕𝐶0, 𝑌) B inf {|𝑥 − 𝑦 | : 𝑥 ∈ 𝜕𝐶0, 𝑦 ∈ 𝑌} .

Since 𝜕𝐶0 ∩ 𝑌 = ∅, 𝜕𝐶0 is closed, and 𝑌 is compact, a classical result from point
set topology implies 𝑑(𝜕𝐶0, 𝑌) > 0. There exists an 𝜀 > 0 such that the Minkowski
sum 𝑌 + (𝜀𝐵𝑑∞ ∩ aff(𝐶0)) is contained in the interior int(𝐶0). Then clearly

𝑌 ⊂ 𝑌 +
( 𝜀

2𝐵
𝑑
∞ ∩ aff(𝐶0)

)
⊂ 𝑌 +

(
𝜀𝐵𝑑∞ ∩ aff(𝐶0)

)
⊂ rel(𝐶0) ⊂

⋃
𝐶∈𝑆

𝐶.

Since𝑌+( 𝜀2𝐵𝑑∩aff(𝐶0)) is compact, finitely many translations of 𝜀𝐵𝑑∞∩aff(𝐶0) suffice
to cover 𝑌 + (𝜀𝐵𝑑 ∩ aff(𝐶0)). Note the convex hull of these finitely many translates
yield a polytope with vertices, say 𝑣1, . . . , 𝑣𝑛 . There exist 𝐶𝑖 ∈ 𝑆with 𝑣𝑖 ∈ 𝐶𝑖 . Since 𝑆
is totally ordered, we conclude that there exists a 𝐶 ∈ 𝑆 with 𝑣1, . . . , 𝑣𝑛 ∈ 𝐶, and
thus 𝑌 + ( 𝜀2𝐵𝑑 ∩ aff(𝐶0)) ⊂ 𝐶. Hence, 𝑌 ⊂ rel(𝐶). A contradiction.

By construction 𝐶0 ∈ ℳ is an upper bound of 𝑆. The statement follows by Zorn’s
Lemma. □

Remark 5.2.4. The inclusion-maximal set from Lemma 5.2.3 might be unbounded:
consider for example the rectangle with vertices (±𝑎, 1), (±𝑎, 0), for any large 𝑎 ∈ ℝ.
This is a ℝ-Δ2-free convex body and the only inclusion-maximal ℝ-Δ2-free convex
set containing it is the horizontal strip between height 0 and 1.

By Lemma 5.2.3, every 𝐴-𝑋-free convex body is contained in an inclusion-
maximal closed convex 𝐴-𝑋-free set. Since the width is monotone with respect
to inclusion, we have the following.

sup

width(𝐾) :

𝐾 is an
inclusion-
maximal
𝐴-𝑋-free
convex body

 ≤ Flt𝐴𝑑 (𝑋) ≤ sup

width(𝐾) :

𝐾 is an
inclusion-
maximal
𝐴-𝑋-free
convex set

 . (5.1)

That is, an upper bound on the width of inclusion-maximal 𝐴-𝑋-free closed con-
vex sets 𝐶 ⊂ ℝ𝑑 (including the unbounded ones) gives an upper bound for Flt𝐴𝑑 (𝑋),
while the width of any inclusion-maximal bounded 𝐴-𝑋-free convex set yields a
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lower bound. A strategy to determine the exact value of generalised flatness con-
stants is to compute these upper and lower bounds and show they agree by studying
the explicit values of the width in the two subcases: 1) 𝐶 is unbounded; 2) 𝐶 is a
convex body.

In this work and with regard to the applications of generalised flatness constants
to symplectic geometry, the case when the convex hull conv(𝑋) is full-dimensional
plays a crucial role. In this case, it suffices to consider full-dimensional 𝐴-𝑋-free
convex bodies, as the next lemma shows.

Lemma 5.2.5. Let 𝑋 ⊂ ℝ𝑑 be a bounded subset whose convex hull is full-dimensional. Then
every 𝐴-𝑋-free convex body is contained in a full-dimensional 𝐴-𝑋-free convex body.

Proof. By Remark 5.2.1, we may assume that 𝑋 is a full-dimensional convex body.
Let 𝐾 ⊂ ℝ𝑑 be an 𝐴-𝑋-free convex body of dimension < 𝑑. Then 𝐾 is contained in
an affine hyperplane 𝐻 ⊂ ℝ𝑑. Let 𝑈𝐻 ⊂ ℝ𝑑 be the unique linear subspace parallel
to 𝐻. We first show that it suffices to consider the case dim(𝐾) = 𝑑 − 1.

Suppose dim(𝐾) < 𝑑 − 1. Let 𝐵𝑑−1 ⊂ 𝑈𝐻 be the 𝑑 − 1-dimensional unit ball
containing the origin. Then the Minkowski sum 𝐾 + 𝐵𝑑−1 has dimension 𝑑− 1 and is
contained in 𝐻. Since 𝑋 is full-dimensional, 𝐾 + 𝐵𝑑−1 is 𝐴-𝑋-free (it cannot contain
an 𝐴-unimodular copy of 𝑋).

Hence, we may assume that 𝐾 is 𝑑 − 1-dimensional contained in an affine hyper-
plane 𝐻 ⊂ ℝ𝑑. Clearly, there exists a parallelepiped Π𝑑−1 ⊂ 𝐻 which contains 𝐾.
Let 𝑣 ∈ ℝ𝑑 such that ℝ𝑣 +𝑈𝐻 = ℝ𝑑. Take 𝜀 > 0 such that the volume of the paral-
lelepiped Π𝑑−1 + 𝜀𝑣 is strictly smaller than the volume of 𝑋. Then 𝐾 ⊂ Π𝑑−1 + 𝜀𝑣 is
full-dimensional and 𝐴-𝑋-free (it cannot contain an 𝐴-unimodular copy of 𝑋). □

This guarantees that, whenever we work with a set 𝑋 whose convex hull is full
dimensional, the supremums on the left and right hand side of (5.1) can be taken
over just the full-dimensional sets. A positive answer to the following question would
confirm our suspicion that, once we restrict to full-dimensional sets, the width of
the unbounded sets will always be strictly less than the widths of the bounded ones
and thus that the inequalities in (5.1) above are in fact equalities.

Question 5.2.6. Do full-dimensional unbounded inclusion-maximal 𝐴-𝑋-free sets
always have “small” width, that is, they are never maximisers of width among
all 𝐴-𝑋-free bodies?

Remark 5.2.7. Let us provide more details why the restriction to full-dimensional
inclusion-maximal 𝐴-𝑋-free closed convex sets 𝐶 ⊂ ℝ𝑑 is crucial. Consider the
case that 𝑋 = Δ2. Let 𝑚 ∈ ℝ \ ℚ be an irrational real number. Then, for any
closed interval 𝐼 ⊂ ℝ, we have an 𝐴-Δ2-free convex body {(𝑥, 𝑚 · 𝑥) : 𝑥 ∈ 𝐼} ⊂ ℝ2.
These convex bodies are contained in the inclusion-maximal𝐴-Δ2-free closed convex
set𝐶 = {(𝑥, 𝑚 · 𝑥) : 𝑥 ∈ ℝ} ⊂ ℝ2 (note𝐶 is inclusion-maximal𝐴-𝑋-free as otherwise
it would contain a point outside the line {𝑦 = 𝑚 · 𝑥}, and thus would contain a 2-
dimensional strip with irrational slope; now apply the argument from the proof of
Proposition 5.3.3).

Since 𝑚 is irrational, any 𝑢 ∈ (ℤ2)∗ \ {0} induces a non-trivial linear form on
the line 𝐶 = {𝑦 = 𝑚 · 𝑥}, and thus width𝑢(𝐶) = ∞. It follows that width(𝐶) = ∞,
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yielding the rather unhelpful upper bound Flt𝐴2 (Δ2) ≤ ∞. However, we shall see that
considering full-dimensional inclusion-maximal 𝐴-Δ2-free closed convex sets will
provide exactly the bounds that we need to compute Flt𝐴2 (Δ2).

In dimension 2, the unbounded case is straightforward and will be done in
Section 5.3. The study of inclusion-maximal𝐴-𝑋-free convex bodies is more intricate
and the later sections of the chapter will be concerned with this investigation in
dimension 2.

The following lemma is another important ingredient in the explicit computation
of generalised flatness constants. Its significance lies in Corollary 5.2.10, which
shows that an inclusion-maximal 𝐴-𝑋-free convex body contains an 𝐴-unimodular
copy of 𝑋. That will provide us with tools necessary to study those bodies yielding
the exact numerical value of the respective generalised flatness constant.

Lemma 5.2.8. Let 𝐾, 𝑋 ⊆ ℝ𝑑 be 𝑑-dimensional convex bodies. If 𝐾 does not contain an 𝐴-
unimodular copy of𝑋, there exists 𝜀 > 0 such that𝐾+𝜀𝐵𝑑 does not contain an𝐴-unimodular
copy of 𝑋.

Proof. We split the proof into two cases. Suppose 𝐴 = ℝ. We show the contra-
positive, i.e., if for all (large enough) 𝑛 ∈ ℕ, there exists an ℝ-unimodular trans-
formation 𝑇𝑛 with 𝑇𝑛(𝑋) ⊆ 𝐾 + 1

𝑛𝐵
𝑑, then 𝐾 contains an ℝ-unimodular copy of 𝑋.

We can represent 𝑇𝑛 as a composition of a ℤ-unimodular transformation 𝐴𝑛 and a
translation 𝛿𝑛 ∈ [0, 1]𝑑, i.e. 𝑇𝑛(𝑥) = 𝐴𝑛(𝑥) − 𝛿𝑛 . Since 𝑇𝑛(𝑋) = 𝐴𝑛(𝑋) − 𝛿𝑛 ⊆ 𝐾 + 1

𝑛𝐵
𝑑,

we get

𝐴𝑛(𝑋) ⊆ 𝐾 + 1
𝑛
𝐵𝑑 + 𝛿𝑛 ⊆ 𝐾 + 𝐵𝑑 + [0, 1]𝑑.

Since 𝑋 is full-dimensional, there exists an affine ℤ-basis ℬ = {𝑏0, . . . , 𝑏𝑑} of ℤ𝑑 and
a scaling factor 𝜂 > 0 such that 𝜂ℬ ⊆ 𝑋. As a ℤ-unimodular transformation, 𝐴𝑛 is
uniquely determined by the images of the 𝑏𝑖 . We require that 𝐴𝑛 maps 𝜂ℬ onto an
affine linearly independent subset of 𝜂ℤ𝑑 ∩

(
𝐾 + 𝐵𝑑 + [0, 1]𝑑

)
. Since 𝐾 + 𝐵𝑑 + [0, 1]𝑑

is bounded and 𝜂ℤ𝑑 is discrete, there are only finitely many choices for 𝐴𝑛 . In
particular, by restricting to an appropriate subsequence, we may assume that𝐴 = 𝐴𝑛
for all 𝑛 ∈ ℕ.

Since [0, 1]𝑑 is compact, there exists a convergent subsequence of (𝛿𝑛)𝑛∈ℕ with
limit 𝛿 ∈ [0, 1]𝑑. To keep notation simple, we use the same symbol (𝛿𝑛)𝑛∈ℕ for this
subsequence, i.e. 𝛿𝑛 converges to 𝛿 ∈ [0, 1]𝑑. Let 𝑇 be the ℝ-unimodular trans-
formation obtained by composing the ℤ-unimodular transformation 𝐴 with the
translation 𝛿. We show that 𝑇(𝑋) ⊆ 𝐾.

Suppose 𝑥 ∈ 𝑋. Since 𝐴(𝑥) − 𝛿𝑛 ∈ 𝐾 + 1
𝑛𝐵

𝑑, there exists 𝑧𝑛 ∈ 1
𝑛𝐵

𝑑 such that

𝑦𝑛 B 𝐴(𝑥) − 𝛿𝑛 − 𝑧𝑛 ∈ 𝐾.

As 𝑛 goes to infinity, we get that 𝑦𝑛 → 𝐴(𝑥)− 𝛿 = 𝑇(𝑥). Since 𝐾 is compact, it follows
that 𝑇(𝑥) ∈ 𝐾.

If 𝐴 = ℤ, we repeat the argument above, however now there are no transla-
tions 𝛿𝑛 ∈ [0, 1]𝑑. □
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The proof of Lemma 5.2.8 shows the following result which will be needed below.

Corollary 5.2.9. Let𝐾, 𝑋 ⊆ ℝ𝑑 be 𝑑-dimensional convex bodies. If𝐾 does not contain an𝐴-
translate of 𝑋, then there exists an 𝜀 > 0 such that 𝐾 + 𝜀𝐵𝑑 does not contain an 𝐴-translate
of 𝑋.

Furthermore, the following result follows from Lemma 5.2.8.

Corollary 5.2.10. Let 𝐾, 𝑋 ⊂ ℝ𝑑 be 𝑑-dimensional convex bodies. If 𝐾 is inclusion-
maximal 𝐴-𝑋-free, then 𝐾 contains an 𝐴-unimodular copy of 𝑋.

Proof. Assume towards a contradiction 𝐾 didn’t contain an 𝐴-unimodular copy of 𝑋.
By Lemma 5.2.8, 𝐾 is contained in a strictly bigger convex body 𝐾 ⊊ 𝐾′ ⊂ ℝ𝑑 with the
same property. Since 𝐾′ doesn’t contain an 𝐴-unimodular copy of 𝑋, it is 𝐴-𝑋-free.
A contradiction to 𝐾 being inclusion-maximal. □

By the definition of generalised flatness constants, given a convex body 𝐾 ⊂ ℝ𝑑

with width(𝐾) > Flt𝐴𝑑 (𝑋), there exists an 𝐴-unimodular copy of 𝑋 that is contained
in 𝐾. However, a priori the case of equality width(𝐾) = Flt𝐴𝑑 (𝑋) is unclear, i.e., there
could be such 𝐾 that do not contain an 𝐴-unimodular copy or there could be such 𝐾
that do. Lemma 5.2.8 implies the following complete answer to this question.

Proposition 5.2.11. Let 𝐾, 𝑋 ⊂ ℝ𝑑 be 𝑑-dimensional convex bodies with width(𝐾) =

Flt𝐴𝑑 (𝑋). Then 𝐾 contains an 𝐴-unimodular copy of 𝑋.

Proof. Assume towards a contradiction 𝐾 doesn’t contain an 𝐴-unimodular copy
of 𝑋. By Lemma 5.2.8, there exists 𝜀 > 0 such that 𝐾 + 𝜀𝐵𝑑 also doesn’t contain
an 𝐴-unimodular copy of 𝑋. A contradiction since width(𝐾 + 𝜀𝐵𝑑) > width(𝐾). □

We conclude the section by proving Theorem 5.1.2 for the case𝐴 = ℤ. Indeed, we
show a more general version of Theorem 5.1.2 in that 𝑋 just needs to be a bounded
set. The case 𝐴 = ℝ is more involved and will be treated in Sections 5.2.2 and 5.2.3.

Proposition 5.2.12 (Case 𝐴 = ℤ of Theorem 5.1.2). Let 𝑋 ⊂ ℝ𝑑 be a bounded set. Then
every inclusion-maximal ℤ-𝑋-free convex body is a polytope.

Proof. Let 𝐾 ⊂ ℝ𝑑 be an inclusion-maximalℤ-𝑋-free convex body. There is a positive
integer 𝑁 ∈ ℤ>0 such that 𝐾 is contained in [−𝑁, 𝑁]𝑑. Set

𝐴 B
{
𝑎 ∈ [−𝑁, 𝑁]𝑑 ∩ℤ𝑑 : 𝑎 ∉ rel(𝐾)

}
,

and
Δ B

⋂
𝑎∈𝐴

{
𝐻𝑎 half-spaces such that 𝑎 ∈ 𝜕𝐻𝑎 , 𝐾 ⊂ 𝐻𝑎

}
.

Such choices of half-spaces exist due to the Separation Theorem. Since Δ is a finite
intersection of half-spaces (note |𝐴| < ∞), it’s a polytope. Notice all lattice points ofΔ
are either in rel(𝐾) or in 𝜕Δ. Thus Δ is ℤ-𝑋-free. Since 𝐾 ⊂ Δ, we have that 𝐾 = Δ is
a polytope. □
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5.2.2 Inclusion-maximal ℝ-𝑋-free convex bodies
In this section we are going to prove Theorem 5.1.2 for the case 𝐴 = ℝ.

Proposition 5.2.13 (Case 𝐴 = ℝ of Theorem 5.1.2). Let 𝑋 ⊂ ℝ𝑑 be a polytope. Then
every inclusion-maximal ℝ-𝑋-free convex body is a polytope.

Throughout 𝑋 ⊂ ℝ𝑑 will be a fixed full-dimensional polytope and 𝐾 ⊂ ℝ𝑑 a
convex body. Notice that, by Lemma 5.2.5, we may assume that 𝐾 is full-dimensional
(a crucial assumption as explained in Remark 5.2.7). Then in the definition of ℝ-𝑋-
free “relative interior” can be replaced by just “interior”.

We start by investigating the set of ℝ-unimodular copies 𝑆 of 𝑋 which are con-
tained in 𝐾. In general, this is an infinite set (see Figure 5.1). We will identify

Figure 5.1: A polygon containing ℝ-unimodular copies of Δ2 translated
along a line segment.

two polytopes in this set if one is the translation of the other. The resulting set of
equivalence classes will be denoted by 𝒯𝐾(𝑋).

Lemma 5.2.14. The set 𝒯𝐾(𝑋) of ℝ-translation equivalence classes of ℝ-unimodular copies
of 𝑋 contained in 𝐾 is finite.

Proof. Clearly for every ℝ-unimodular copy 𝑆 of 𝑋 which is contained in 𝐾, there
exists a ℤ-unimodular copy 𝑆′ of 𝑋 such that 𝑆′ ⊂ 𝐾 + [−1, 0]𝑑. Since 𝐾 + [−1, 0]𝑑
contains only finitely many lattice points, it follows that there can only be finitely
many such 𝑆′ contained in 𝐾 + [−1, 0]𝑑. The statement follows. □

In what follows, we will use a complementary operation to Minkowski addition
usually referred to as Minkowski difference. We recall its definition and refer to [92]
for further details and references. For subsets𝐴, 𝐵 ⊂ ℝ𝑑 the Minkowski difference𝐴÷𝐵
is the set of translation vectors that move 𝐵 into 𝐴:

𝐴÷𝐵 = {𝑥 ∈ ℝ𝑑 : 𝐵 + 𝑥 ⊂ 𝐴} =
⋂
𝑏∈𝐵

(𝐴 − 𝑏).

From the last equality, it is clear that the Minkowski difference 𝐴÷𝐵 of two convex
bodies𝐴, 𝐵 inℝ𝑑 is either empty or a are convex body too. Here is a justification why
Minkowski difference can be regarded as a complementary operation to Minkowski
addition.

Lemma 5.2.15 ([92, Lemma 3.1.11]). Let 𝐴, 𝐵 ⊂ ℝ𝑑 be two convex bodies. Then

(𝐴 + 𝐵)÷𝐵 = 𝐴.
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Furthermore, we have
(𝐴÷𝐵) + 𝐵 = 𝐴

if and only if there exists a convex body 𝐶 ⊂ ℝ𝑑 such that 𝐴 = 𝐵 + 𝐶.

From now on, let 𝑆 ⊂ ℝ𝑑 be a fixed ℤ-unimodular copy of 𝑋. We note that for
any 𝛿 ∈ ℝ𝑑, we have

𝐾÷(𝑆 + 𝛿) = (𝐾÷𝑆) − 𝛿.

Furthermore, 𝐾÷𝑆 is not empty if and only if 𝐾 contains a translate of 𝑆. Studying the
Minkowski difference 𝐾÷𝑆 (also called inner parallel body relative to 𝑆) will be key to
proving Proposition 5.2.13. In general, 𝐾÷𝑋 will not be a polytope (see for instance

𝑆

𝐾÷𝑆 0

Figure 5.2: 𝐾÷𝑆 for the unit disc 𝐾 with centre at the origin and 𝑆 =

conv(0, 𝑒1 , 𝑒2) ⊂ ℝ2.

Figure 5.2). However, since 𝑋 is a polytope there is an efficient way to determine the
Minkowski difference 𝐾÷𝑋:

Lemma 5.2.16. Suppose 𝐾÷𝑆 ≠ ∅, i.e., there exists 𝛿 ∈ ℝ𝑑 such that 𝑆 + 𝛿 ⊂ 𝐾.
Let 𝑣1, . . . , 𝑣𝑛 be the vertices of 𝑆 + 𝛿. Then

𝐾÷(𝑆 + 𝛿) =
𝑛⋂
𝑖=1

(𝐾 − 𝑣𝑖).

Proof. Let 𝑣 ∈ 𝐾÷(𝑆 + 𝛿). Then for all 𝑖, we have 𝑣𝑖 + 𝑣 ∈ 𝐾, and thus 𝑣 ∈ 𝐾 − 𝑣𝑖 .
Suppose 𝑣 ∈ 𝐾 − 𝑣𝑖 , i.e. 𝑣𝑖 + 𝑣 ∈ 𝐾, for all 𝑖. Since 𝐾 is convex, it follows

conv(𝑣1 + 𝑣, . . . , 𝑣𝑛 + 𝑣) = conv(𝑣1, . . . , 𝑣𝑛) + 𝑣 = 𝑆 + 𝛿 + 𝑣 ⊂ 𝐾.

Thus 𝑣 ∈ 𝐾÷(𝑆 + 𝛿) and the statement follows. □

The collection of inner parallel bodies 𝐾÷𝑆 forℤ-unimodular copies 𝑆 of𝑋 allows
to characterise when exactly 𝐾 is ℝ-𝑋-free (see the next two statements).

Lemma 5.2.17. Anℝ-translation of aℤ-unimodular copy 𝑆 of 𝑋 is contained in the interior
of 𝐾 if and only if dim(𝐾÷𝑆) = 𝑑.

Proof. Suppose there is a ℤ-unimodular copy 𝑆 of 𝑋 and 𝛿 ∈ ℝ𝑑 such that 𝑆 + 𝛿 is
contained in the interior of 𝐾. Since (𝐾÷(𝑆 + 𝛿)) + 𝛿 = 𝐾÷𝑆, we may replace 𝑆 by
its translate 𝑆 + 𝛿, so that 𝑆 ⊂ 𝐾. We need to show that dim(𝐾÷𝑆) = 𝑑. Consider
small open neighbourhoods 𝐵1, . . . , 𝐵𝑛 around the vertices 𝑣1, . . . , 𝑣𝑛 of 𝑆. Choose 𝐵𝑖
small enough such that it is contained in the interior of 𝐾. Move these neighbour-
hoods to the origin, i.e., consider 𝐵𝑖 − 𝑣𝑖 . The intersection

⋂𝑛
𝑖=1(𝐵𝑖 − 𝑣𝑖) is an open

neighbourhood of the origin which is contained in 𝐾÷𝑆, and thus dim(𝐾÷𝑆) = 𝑑.
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For the reverse direction, suppose𝑆 is aℤ-unimodular copy of𝑋with dim(𝐾÷𝑆) =
𝑑. Like before, we may replace 𝑆 by 𝑆 + 𝛿 for some 𝛿 ∈ ℝ𝑑 such that (after replac-
ing) 𝑆 ⊂ 𝐾. Denote the vertices of 𝑆 by 𝑣1, . . . , 𝑣𝑛 . We claim there is an element 𝑤
in 𝐾÷𝑆 which is not contained in the translates 𝜕𝐾 − 𝑣𝑖 of the boundary of 𝐾 for
all 𝑖 = 1, . . . , 𝑛. In other words, we claim that there is

𝑤 ∈ (𝐾÷𝑆) \
(
𝑛⋃
𝑖=1

𝜕𝐾 − 𝑣𝑖

)
=

(
𝑛⋂
𝑖=1

(𝐾 − 𝑣𝑖)
)
\
(
𝑛⋃
𝑖=1

𝜕𝐾 − 𝑣𝑖

)
where the equality follows by Lemma 5.2.16. Before proving the claim, let us see
how it implies the statement: 𝑤+𝑣𝑖 ∈ 𝐾\𝜕𝐾, and thus conv(𝑣1, . . . , 𝑣𝑛)+𝑤 ⊂ 𝐾\𝜕𝐾,
i.e. 𝑆 + 𝑤 is contained in the interior of 𝐾.

It remains to show the claim. Suppose by contradiction (𝐾÷𝑆) \
(⋃𝑛

𝑖=1 𝜕𝐾 − 𝑣𝑖
)

is
empty, i.e. 𝐾÷𝑆 is contained in the union of the shifted boundaries 𝜕𝐾 − 𝑣𝑖 for 𝑖 =
1, . . . , 𝑛. By our assumption dim(𝐾÷𝑆) = 𝑑, there are linearly independent vec-
tors𝑤1, . . . , 𝑤𝑑 ∈ ℝ𝑑 such that the 𝑑-dimensional simplex Δ B conv(0, 𝑤1, . . . , 𝑤𝑑) is
contained in𝐾÷𝑆. We obtain a contradiction if we apply the 𝑑-dimensional Euclidean
volume to the inclusion Δ ⊂ ⋃𝑛

𝑖=1(𝜕𝐾 − 𝑣𝑖):

0 < Vol(conv(𝑣1, . . . , 𝑣𝑛)) ≤ Vol

(
𝑛⋃
𝑖=1

𝜕𝐾 − 𝑣𝑖

)
≤

𝑛∑
𝑖=1

Vol(𝜕𝐾 − 𝑣𝑖) = 0. □

Corollary 5.2.18. 𝐾 isℝ-𝑋-free if and only if dim(𝐾÷𝑆) < 𝑑 for allℤ-unimodular copies 𝑆
of 𝑋.

Proof. The contrapositive, i.e., 𝐾 ⊂ ℝ𝑑 is not ℝ-𝑋-free if and only if there is some
affineℤ-unimodular copy 𝑆 of𝑋 with dim(𝐾÷𝑆) = 𝑑, straightforwardly follows from
Lemma 5.2.17. □

Fix an inclusion-maximal ℝ-𝑋-free convex body 𝐾 ⊂ ℝ𝑑. Recall that we want to
show that 𝐾 is a polytope. As a first step, we approximated 𝐾 by a polytope 𝑃 ⊂ ℝ𝑑

which contains 𝐾 such that up to real translations 𝐾 and 𝑃 contain the same ℤ-
unimodular copies of 𝑋.

Lemma 5.2.19. For a 𝑑-dimensional convex body 𝐾 ⊂ ℝ𝑑, there exists a 𝑑-dimensional
convex polytope 𝑃 ⊂ ℝ𝑑 which contains 𝐾 such that 𝒯𝐾(𝑋) = 𝒯𝑃(𝑋).

Lemma 5.2.19 follows from the following well-known result (see also [92, Theo-
rem 1.8.16]).

Lemma 5.2.20. If 𝐾 ⊂ ℝ𝑑 is a 𝑑-dimensional convex body and 𝜀 > 0, then there exists a
polytope 𝑃 ⊂ ℝ𝑑 such that 𝐾 ⊂ 𝑃 ⊂ 𝐾 + 𝜀𝐵𝑑.

Proof. Recall the (closed) unit ball 𝐵𝑑∞ with respect to the infinity norm | · |∞ is a
polytope, namely 𝐵𝑑∞ = [−1, 1]𝑑. Since any two norms on ℝ𝑑 are equivalent, there
exists 𝛼 > 0 such that 𝛼𝐵𝑑∞ ⊂ 𝜀𝐵𝑑.
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Since the collection
{
𝑥 + 𝛼𝐵𝑑∞ : 𝑥 ∈ 𝐾

}
covers the compact set 𝐾, already a finite

subset of balls suffices to cover 𝐾. The polytope 𝑃 obtained by taking the convex
hull of these finitely many ∞-balls with radius 𝛼 satisfies the statement, i.e., 𝐾 ⊂ 𝑃 ⊂
𝐾 + 𝜀𝐵𝑑. □

Proof of Lemma 5.2.19. Choose 𝑁 > 0 large enough such that 𝐾 is contained in the
interior of [−𝑁, 𝑁]𝑑. Then 𝒯𝐾(𝑋) ⊂ 𝒯[−𝑁,𝑁]𝑑(𝑋) and this inclusion is strict in gen-
eral. Our strategy is to cut [−𝑁, 𝑁]𝑑 with further half-spaces so that the resulting
polytope 𝑃 satisfies 𝒯𝐾(𝑋) = 𝒯𝑃(𝑋).

Consider aℤ-unimodular copy𝑄 of𝑋 such that [−𝑁, 𝑁]𝑑 contains anℝ-translate
of𝑄 but 𝐾 doesn’t, i.e. [𝑄] ∈ 𝒯[−𝑁,𝑁]𝑑(𝑋)\𝒯𝐾(𝑋). By Corollary 5.2.9, there exists 𝜀𝑄 >

0 such that 𝐾+ 𝜀𝑄𝐵𝑑 does not contain an ℝ-translate of𝑄. Let 𝜀 > 0 be the minimum
of the 𝜀𝑄 over all 𝑄 with [𝑄] ∈ 𝒯[−𝑁,𝑁]𝑑(𝑋) \ 𝒯𝐾(𝑋) (note 𝒯[−𝑁,𝑁]𝑑(𝑋) is finite by
Lemma 5.2.14). If necessary reduce 𝜀 > 0 such that 𝐾 + 𝜀𝐵𝑑 ⊂ [−𝑁, 𝑁]𝑑. By
Lemma 5.2.20, there exists a polytope 𝑃 ⊂ ℝ𝑑 such that 𝐾 ⊂ 𝑃 ⊂ 𝐾 + 𝜀𝐵𝑑. By our
choice of 𝜀, we have that 𝒯𝐾+𝜀𝐵𝑑(𝑋) = 𝒯𝐾(𝑋), and by the monotonicity of 𝒯𝐾(𝑋) with
respect to 𝐾, this polytope satisfies 𝒯𝐾(𝑋) = 𝒯𝑃(𝑋). □

Remark 5.2.21. In Lemma 5.2.19, the polytope 𝑃, which contains 𝐾, isn’t necessar-
ily ℝ-𝑋-free in general (see Figure 5.3). By intersecting 𝑃 with further half-spaces

𝐾+𝜀𝐵2
𝑋+

(
−1
−1

)
[−𝑁,𝑁]2

0

Figure 5.3: Illustration of Lemma 5.2.19. Here, 𝐾 is a quarter of a disc
and 𝑋 = conv(0, 𝑒1 , 𝑒2) ⊂ ℝ2 the standard simplex. The polytope 𝑃

might not be ℝ-X-free.

(e.g., the half-spaces indicated by the dashed lines), we get a new polytope which
is ℝ-𝑋-free. The proof of Proposition 5.2.13 will show this is always true.

The proof of Proposition 5.2.13 will make use of the following theorem, whose
proof we postpone until Section 5.2.3.

Theorem 5.2.22. Let 𝐾1, . . . , 𝐾𝑛 ⊂ ℝ𝑑 be convex bodies such that dim(𝐾) < 𝑑 where 𝐾 B
𝐾1 ∩ . . . ∩ 𝐾𝑛 . Suppose 𝑥 ∈ 𝐾 such that 𝑥 is contained in the boundary of every 𝐾𝑖 for 𝑖 =
1, . . . , 𝑛. Then there are (nonempty) finite collections of closed half-spaces {𝐻+(𝑖 , 𝑗)} 𝑗∈𝐽𝑖
for 𝑖 = 1, . . . , 𝑛 such that the boundary of 𝐻+(𝑖 , 𝑗) is a supporting hyperplane to 𝐾𝑖 at 𝑥,
and

dim ©­«
⋂
𝑗∈𝐽1

𝐻+(1, 𝑗) ∩ . . . ∩
⋂
𝑗∈𝐽𝑛

𝐻+(𝑛, 𝑗)ª®¬ < 𝑑.
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Proof of Proposition 5.2.13. The idea is to construct an ℝ-𝑋-free polytope 𝑃 which
contains 𝐾. Since 𝐾 is inclusion-maximal with respect to this property, it follows
that 𝐾 = 𝑃 is a polytope. Lemma 5.2.19 yields a first approximation 𝑃′ of this
polytope 𝑃 which satisfies 𝒯𝐾(𝑋) = 𝒯𝑃′(𝑋). However, 𝑃′ might not be ℝ-𝑋-free in
general (see Figure 5.3). We claim that 𝑃′ can be cut with further half-spaces such
that the resulting polytope still contains 𝐾 and is ℝ-𝑋-free. We prove this claim by
induction on the number 𝑟 of equivalence classes [𝑄] ∈ 𝒯𝑃′(𝑋) with dim(𝐾÷𝑄) = 𝑑.
By Lemma 5.2.14, the number 𝑟 is finite.

In the base case, i.e. 𝑟 = 0, we have dim(𝑃÷𝑄) < 𝑑 for all [𝑄] ∈ 𝒯𝑃(𝑋), and thus
by Corollary 5.2.18, the polytope 𝑃′ is already ℝ-𝑋-free.

Consider the case 𝑟 ≥ 1. Let𝑄 be aℤ-unimodular copy of𝑋 with dim(𝑃′÷𝑄) = 𝑑.
Note that by construction [𝑄] ∈ 𝒯𝐾(𝑋). We want to intersect 𝑃′ with finitely many
half-spaces, so that the resulting polytope 𝑃′′ contains 𝐾 and dim(𝑃′′÷𝑄) < 𝑑. By
Corollary 5.2.18, dim(𝐾÷𝑄) < 𝑑. Let 𝛿 ∈ 𝐾÷𝑄. If 𝑣1, . . . , 𝑣𝑛 are the vertices of 𝑄 + 𝛿,
then, by Lemma 5.2.16, 𝐾÷(𝑄 + 𝛿) = (𝐾 − 𝑣1) ∩ . . . ∩ (𝐾 − 𝑣𝑛). If the origin 0 is in
the interior of 𝐾 − 𝑣𝑖 , then this convex body does not contribute to the dimension
drop and we omit it. By abuse of notation, let us assume that the origin 0 is
contained in the boundary of 𝐾 − 𝑣𝑖 for 𝑖 = 1, . . . , 𝑛. By Theorem 5.2.22, there exist
(nonempty) finite collections of closed half-spaces {𝐻+(𝑖 , 𝑗)} 𝑗∈𝐽𝑖 for 𝑖 = 1, . . . , 𝑛 such
that the boundary 𝐻(𝑖 , 𝑗) of 𝐻+(𝑖 , 𝑗) is a supporting hyperplane to 𝐾 − 𝑣𝑖 at 0 and
the dimension of the cone 𝐶 B

⋂𝑛
𝑖=1

⋂
𝑗∈𝐽𝑖 𝐻

+(𝑖 , 𝑗) is at most 𝑑 − 1. We define a new
polytope:

𝑃′′ B 𝑃′ ∩
⋂
𝑗∈𝐽1

(𝐻+(1, 𝑗) + 𝑣1) ∩ . . . ∩
⋂
𝑗∈𝐽𝑛

(𝐻+(𝑛, 𝑗) + 𝑣𝑛).

Since𝐻(𝑖 , 𝑗) is a supporting hyperplane to𝐾−𝑣𝑖 at 0, the affine hyperplane𝐻(𝑖 , 𝑗)+𝑣𝑖
is a supporting hyperplane to 𝐾 at 𝑣𝑖 , and thus 𝑃′′ contains 𝐾 as well. Note that𝑄+𝛿
is contained in 𝑃′′, so that

𝑃′′÷(𝑄 + 𝛿) = (𝑃′′ − 𝑣1) ∩ . . . ∩ (𝑃′′ − 𝑣𝑛) ⊂ 𝐶.

Since𝑃′′÷𝑄 is contained in𝐶 and𝐶 is not full-dimensional, it follows that dim(𝑃′′÷𝑄) <
𝑑. As the number of [𝑄′] ∈ 𝒯𝑃′′(𝑋) with dim(𝑃′′÷𝑄′) = 𝑑 is at most 𝑟 − 1, it follows
by the induction hypothesis that we can intersect 𝑃′′ with finitely many further half-
spaces such that the resulting polytope 𝑃 contains 𝐾 and isℝ-𝑋-free. This completes
the proof. □

5.2.3 Intersection of convex bodies
In this section, we prove Theorem 5.2.22 which played a key role in the proof of
Proposition 5.2.13. The proof will be given at the end of the section, after some
preliminary work. The key idea is to reduce the proof of Theorem 5.2.22 to the study
of convex cones. More precisely, we consider the tangent cone to the individual
convex bodies at the given common point. Recall the support cone (sometimes also
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called tangent cone or projection cone) of a convex body 𝐾 ⊂ ℝ𝑑 at a point 𝑥 in 𝐾:

𝑆𝐾(𝑥) = ℝ>0(𝐾 − 𝑥).

The dual notion is the normal cone to 𝐾 at 𝑥:

𝑁𝐾(𝑥) B
{
ℓ ∈ (ℝ𝑑)∗ : ℓ (𝑥′ − 𝑥) ≥ 0 for any 𝑥′ ∈ 𝐾

}
.

It is a well-known fact that the support cone is a closed convex cone whose dual cone
is the normal cone, i.e. 𝑆𝐾(𝑥) = 𝑁𝐾(𝑥)∨. Furthermore, note that the dimension of the
convex body 𝐾 coincides with the dimension of its support cone 𝑆𝐾(𝑥) at any point 𝑥
in 𝐾.

In Theorem 5.2.22, we study an intersection of convex bodies whose dimension
is strictly less than the ambient dimension, and by what we have just said, it suffices
to consider the involved tangent cones. Note that the linear forms defining the half
spaces of Theorem 5.2.22 are elements in the normal cones to the individual convex
bodies. A key step in the proof of Theorem 5.2.22 will be to understand how the
tangent cone to the intersection of the convex bodies relates to the individual tangent
cones. To this end, we recall the following well-known statement which relates the
dual of an intersection of closed convex cones to the individual dual cones.

Proposition 5.2.23. Let 𝐶1, . . . , 𝐶𝑛 ⊂ ℝ𝑑 be closed convex cones. Then we have

(𝐶1 ∩ . . . ∩ 𝐶𝑛)∨ = 𝐶∨
1 + · · · + 𝐶∨

𝑛 .

The following example shows that in general it is necessary to take the closure in
Proposition 5.2.23:

Example 5.2.24. Let 𝐶1 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3 : 𝑥2 + 𝑦2 ≤ 𝑧2, 𝑧 ≥ 0} and 𝐶2 = ℝ≥0(1, 0,−1)
(see Figure 5.4). Then 𝑥𝑡 B (−𝑡 , 1+ 1

𝑡 ,

√
𝑡2 + (1 + 1

𝑡 )2) ∈ 𝐶1 and 𝑦𝑡 B (𝑡 , 0,−𝑡) ∈ 𝐶2. It

𝐶1

𝐶2

Figure 5.4: Illustration of the cones in Example 5.2.24.

is straightforward to verify that lim𝑡→∞(𝑥𝑡 + 𝑦𝑡) = (0, 1, 0) is contained in the closure
of the sum of cones 𝐶1 + 𝐶2, but not in the sum.

Observe also that in this example, the line ℝ(1, 0,−1) has one half-ray 𝜌 =

ℝ>0(−1, 0, 1) contained in 𝐶1 and its other half-ray −𝜌 contained in the other cone 𝐶2.
Waksman and Epelman [104] observed that such a line exists whenever the sum of
two closed convex cones isn’t closed:
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Theorem 5.2.25 ([104, Theorem on p. 95]). Suppose 𝑑 ≥ 3. Let𝐶1, 𝐶2 ⊂ ℝ𝑑 be two closed
convex cones. If the sum 𝐶1 + 𝐶2 is not closed, then there exists a straight line 𝐿 = 𝜌 + (−𝜌)
where 𝜌 = ℝ>0𝑥 for some 0 ≠ 𝑥 ∈ 𝐿 such that 𝜌 ⊂ 𝐶1 and −𝜌 ⊂ 𝐶2.

Remark 5.2.26. Note that if the ambient dimension 𝑑 is less than or equal to 2, then
every closed convex cone is polyhedral. It is a well-known fact that the sum of two
polyhedral cones is always closed. Indeed, if 𝑥1, . . . , 𝑥𝑟 , 𝑦1, . . . , 𝑦𝑠 ∈ ℝ𝑑 (any dimen-
sion 𝑑), then cone(𝑥1, . . . , 𝑥𝑟) + cone(𝑦1, . . . , 𝑦𝑠) = cone(𝑥1, . . . , 𝑥𝑟 , 𝑦1, . . . , 𝑦𝑠), and
thus the sum is closed. In particular, Theorem 5.2.25 is an empty statement for 𝑑 ≤ 2,
and Waksman and Epelman exclude these dimensions from their statement.

Corollary 5.2.27. Suppose 𝑑 ≥ 3. Let 𝐶1, . . . , 𝐶𝑛 ⊂ ℝ𝑑 be closed convex cones. If the
sum 𝐶1+· · ·+𝐶𝑛 is not closed, then there exists a straight line 𝐿 = 𝜌+(−𝜌)where 𝜌 = ℝ>0𝑥

for some 0 ≠ 𝑥 ∈ 𝐿 such that 𝜌 ⊂ 𝐶𝑖 and −𝜌 ⊂ 𝐶1 + · · · + 𝐶𝑖 + · · · + 𝐶𝑛 for some
index 𝑖 = 1, . . . , 𝑛.

Here, the notation 𝐶1 + · · · + 𝐶𝑖 + · · · + 𝐶𝑛 means that we omit the 𝑖-th summand.

Proof. We do induction on 𝑛. The base case 𝑛 = 2 is Theorem 5.2.25. Suppose 𝑛 >
2. If 𝐶2 + · · · + 𝐶𝑛 is not closed, by the induction hypothesis, there is a straight
line 𝐿 = 𝜌 + (−𝜌) where 𝜌 = ℝ>0𝑥 for some 0 ≠ 𝑥 ∈ 𝐿 such that 𝜌 ⊂ 𝐶𝑖 and −𝜌 ⊂
𝐶2 + · · · +𝐶𝑖 + · · · +𝐶𝑛 for some 𝑖 ∈ {2, . . . , 𝑛}. The statement then follows, since 𝐶2 +
· · ·+𝐶𝑖+· · ·+𝐶𝑛 ⊂ 𝐶1+𝐶2+· · ·+𝐶𝑖+· · ·+𝐶𝑛 . If instead𝐶 B 𝐶2+· · ·+𝐶𝑛 is closed, it is
a closed convex cone, and by Theorem 5.2.25, there exists a straight line 𝐿 = 𝜌+ (−𝜌)
where 𝜌 = ℝ>0𝑥 for some 0 ≠ 𝑥 ∈ 𝐿 such that 𝜌 ⊂ 𝐶1 and −𝜌 ⊂ 𝐶2 + · · · + 𝐶𝑛 . □

The following statement will be used in the proof of Theorem 5.2.22.

Lemma 5.2.28. If 𝐶 ⊂ ℝ𝑑 is a closed convex cone, then there are finitely many linear
forms ℓ1, . . . , ℓ𝑛 ∈ 𝐶∨ such that

dim
(
{𝑥 ∈ ℝ𝑑 : ℓ1(𝑥) ≥ 0} ∩ . . . ∩ {𝑥 ∈ ℝ𝑑 : ℓ𝑛(𝑥) ≥ 0}

)
= dim(𝐶).

Proof. Let 𝑒1, . . . , 𝑒𝑟 ∈ 𝐶 be a basis of theℝ-linear span of 𝐶. We extend these linearly
independent vectors to a basis of ℝ𝑑, say 𝑒1, . . . , 𝑒𝑟 , 𝑒𝑟+1, . . . , 𝑒𝑑. Let 𝑓1, . . . , 𝑓𝑑 be the
dual basis of (ℝ𝑑)∗. Then we have ± 𝑓𝑟+1, . . . ,± 𝑓𝑑 ∈ 𝐶∨, and thus

dim

(
𝑑⋂

𝑖=𝑟+1
{𝑥 ∈ ℝ𝑑 : 𝑓𝑖(𝑥) ≥ 0} ∩

𝑑⋂
𝑖=𝑟+1

{𝑥 ∈ ℝ𝑑 : − 𝑓𝑖(𝑥) ≥ 0}
)
= dim(𝐶).

□

We are now ready to prove Theorem 5.2.22.

Proof of Theorem 5.2.22. Note dim(𝐾) = dim(𝑆𝐾(𝑥)). Furthermore, the set of support-
ing hyperplanes of the tangent cone 𝑆𝐾𝑖 (𝑥) at 𝑥 coincides with the set of supporting
hyperplanes of𝐾𝑖 at 𝑥. We continue by investigating the tangent cones𝑆𝐾(𝑥), 𝑆𝐾1(𝑥), . . . , 𝑆𝐾𝑛 (𝑥)
and their relations.
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The following equality is straightforward to verify:

ℝ>0(𝐾 − 𝑥) = ℝ>0 ((𝐾1 ∩ . . . ∩ 𝐾𝑛) − 𝑥) = ℝ>0(𝐾1 − 𝑥) ∩ . . . ∩ℝ>0(𝐾𝑛 − 𝑥).

Since the dimension of the closure of a convex set coincides with the dimension of
the original set, we get

dim(𝑆𝐾(𝑥)) = dim (ℝ>0(𝐾 − 𝑥)) = dim (ℝ>0(𝐾1 − 𝑥) ∩ . . . ∩ℝ>0(𝐾𝑛 − 𝑥)) < 𝑑. (5.2)

We claim that dim(𝑆𝐾1(𝑥)∩ . . .∩𝑆𝐾𝑛 (𝑥)) < 𝑑 as well. Assume towards a contradiction
that the dimension of the intersection of the support cones were 𝑑, i.e., the intersection
of the support cones is full-dimensional. Then the intersection of the support cones
contains an affine basis of ℝ𝑑, and thus a full-dimensional simplex Δ. Let 𝑦 be the
barycentre of Δ. Let Δ′ ⊂ Δ be the simplex obtained by shrinking Δ with respect to
its barycentre, e.g. Δ′ = 1

2(Δ− 𝑦) + 𝑦. Then the smaller simplex Δ′ is contained in the
interior of every tangent cone 𝑆𝐾𝑖 (𝑥) for 𝑖 = 1, . . . , 𝑛, and thus

Δ′ ⊂ ℝ>0(𝐾1 − 𝑥) ∩ . . . ∩ℝ>0(𝐾𝑛 − 𝑥),

which is a contradiction to inequality (5.2).
Hence dim(𝑆𝐾1(𝑥) ∩ . . . ∩ 𝑆𝐾𝑛 (𝑥)) < 𝑑. By Proposition 5.2.23, we have

(𝑆𝐾1(𝑥) ∩ . . . ∩ 𝑆𝐾𝑛 (𝑥))∨ = 𝑁𝐾1(𝑥) + · · · + 𝑁𝐾𝑛 (𝑥).

We distinguish two cases, namely whether 𝑁𝐾1(𝑥) + · · · + 𝑁𝐾𝑛 (𝑥) is closed or not.
Suppose 𝑁𝐾1(𝑥) + · · · + 𝑁𝐾𝑛 (𝑥) is closed. By Lemma 5.2.28, there exist linear

forms ℓ1, . . . , ℓ𝑟 ∈ (𝑆𝐾1(𝑥) ∩ . . . ∩ 𝑆𝐾𝑛 (𝑥))∨ such that

dim({𝑦 ∈ ℝ𝑑 : ℓ1(𝑦) ≥ 0}∩ . . .∩{𝑦 ∈ ℝ𝑑 : ℓ𝑛(𝑦) ≥ 0}) = dim(𝑆𝐾1(𝑥)∩ . . .∩𝑆𝐾𝑛 (𝑥)) < 𝑑.
(5.3)

Since (𝑆𝐾1(𝑥) ∩ . . . ∩ 𝑆𝐾𝑛 (𝑥))∨ = 𝑁𝐾1(𝑥) + · · · + 𝑁𝐾𝑛 (𝑥), every linear form ℓ 𝑗 can be
expresses as a sum ℓ 𝑗 = ℓ1, 𝑗 + · · · + ℓ𝑛,𝑗 for some linear forms ℓ𝑖 , 𝑗 ∈ 𝑁𝐾𝑖 (𝑥). We
define 𝐻+(𝑖 , 𝑗) = {𝑦 ∈ ℝ𝑑 : ℓ𝑖 , 𝑗(𝑦) ≥ 0}. Then the intersection of all these closed
half-spaces is a polyhedral cone 𝐶 whose dual cone is given by 𝐶∨ = cone({ℓ𝑖 , 𝑗 : 𝑖 =
1, . . . , 𝑛; 𝑗 = 1, . . . 𝑟}). The dual cone 𝐶∨ contains the cone 𝐷 B cone(ℓ1, . . . , ℓ𝑟) ⊂
(ℝ𝑑)∗, and thus 𝐶 ⊂ 𝐷∨. Since, by Equation (5.3), dim(𝐷∨) < 𝑑, we are done.

Suppose now 𝑁𝐾1(𝑥) + · · · +𝑁𝐾𝑛 (𝑥) is not closed. Then by Corollary 5.2.27, there
exists a straight line 𝐿 = 𝜌 + (−𝜌) ⊂ (ℝ𝑑)∗ where 𝜌 = ℝ>0ℓ for some 0 ≠ ℓ ∈ 𝐿 such
that 𝜌 ⊂ 𝑁𝐾𝑖 (𝑥) and −𝜌 ⊂ 𝑁𝐾1(𝑥) + · · · + �𝑁𝐾𝑖 (𝑥) + · · · + 𝑁𝐾𝑛 (𝑥) for some index 𝑖 =
1, . . . , 𝑛. There exist ℓ 𝑗 ∈ 𝑁𝐾 𝑗 (𝑥) for 𝑗 ≠ 𝑖 such that −ℓ = ℓ1 + · · · + ℓ̂𝑖 + · · · + ℓ𝑛 .
We define 𝐻+

𝑖
B {𝑦 ∈ ℝ𝑑 : ℓ (𝑦) ≥ 0} and 𝐻+

𝑗
B {𝑦 ∈ ℝ𝑑 : ℓ 𝑗(𝑦) ≥ 0} for 𝑗 ≠ 𝑖.

Let 𝐶 be the intersection of these closed half-spaces. Then the dual cone is given
by 𝐶∨ = cone(ℓ , ℓ1, . . . , ℓ̂𝑖 , . . . , ℓ𝑛) which contains the straight line 𝐿. Thus 𝐶 ⊂ 𝐿∨

where dim(𝐿∨) = 𝑑 − 1. □
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Remark 5.2.29. Note the proof of Theorem 5.2.22 shows that the sets {𝐻+(𝑖 , 𝑗)} 𝑗∈𝐽𝑖
for 𝑖 = 1, . . . , 𝑛 can be chosen such that |𝐽𝑖 | ≤ 2.

5.3 Preliminary observations in dimensions 1 and 2

Let us begin our quest of determining Flt𝐴𝑑 (Δ𝑑) for 𝑑 = 1, 2 and 𝐴 ∈ {ℤ,ℝ}. We first
settle the one-dimensional case. By Remark 5.2.1, the flatness constants of bounded
sets 𝑋 ⊂ ℝ whose convex hull is full-dimensional are completely characterised by
the flatness constants of closed intervals 𝐼 = [𝑥, 𝑦] ⊂ ℝ.

Recall that the floor of a real number 𝑥, ⌊𝑥⌋, is the largest integer which is less
than or equal to 𝑥. Similarly, the ceiling of a real number 𝑥, ⌈𝑥⌉, is the smallest
integer that is greater than or equal to 𝑥.

Theorem 5.3.1. Let 𝐼 = [𝑥, 𝑦] ⊂ ℝ, with 𝑥 ≤ 𝑦. Set 𝛿 B ⌈𝑥 + 𝑦⌉. Then

Fltℤ1 (𝐼) =
{

1 + 2𝑦 − 𝛿 if 𝛿 − (𝑥 + 𝑦) ≤ 1
2 ,

𝛿 − 2𝑥 otherwise.

Proof. Let ℑ be the set of all transformed intervals under ℤ-unimodular transfor-
mations, i.e., ℑ B {𝑇(𝐼) : 𝑇 a ℤ-unimodular transformation}. Note that ℑ comes
equipped with a total ordering, namely [𝑥, 𝑦] < [𝑥′, 𝑦′] if 𝑥 < 𝑥′. In this proof, we
will simply write “𝐼-free” for “ℤ-𝐼-free”.

We call two intervals 𝐽 < 𝐽′ in ℑ successive if for any interval 𝐽′′ ∈ ℑ such
that 𝐽 ≤ 𝐽′′ ≤ 𝐽′ it follows that either 𝐽 = 𝐽′′ or 𝐽′ = 𝐽′′. It is straightforward to
show that the inclusion-maximal 𝐼-free convex bodies are exactly the convex hulls of
unions of two successive intervals in ℑ.

It remains to determine the structure of ℑ with respect to its total order. As ℑ
is the union of 𝐼 + ℤ and −𝐼 + ℤ, there can be at most one translate of −𝐼 between 𝐼
and 𝐼 + 1, say 𝐼 ≤ −𝐼 + 𝛿 < 𝐼 + 1.

Set 𝛿 B ⌈𝑥+ 𝑦⌉. Then it’s clear that 𝑥 ≤ −𝑦+ 𝛿 < 𝑥+1, i.e. that 𝐼 ≤ −𝐼 + 𝛿 < 𝐼 +1.
Now, 𝐼 = −𝐼+ 𝛿 if and only if 𝛿 = 𝑥+ 𝑦. In this case, every maximal 𝐼-free interval

is a translation of 𝐼∪(𝐼+1) = [𝑥, 𝑦+1]. This has width 1+ 𝑦−𝑥, which also coincides
with 1 + 2𝑦 − 𝛿.

Finally, we consider the case 𝐼 ≠ −𝐼 + 𝛿. Here, every maximal 𝐼-free interval is a
translation of either (−𝐼+ 𝛿−1)∪ 𝐼 = [−𝑦+ 𝛿−1, 𝑦] or 𝐼∪(−𝐼+ 𝛿) = [𝑥,−𝑥+ 𝛿]. These
have respective widths 1 + 2𝑦 − 𝛿 and 𝛿 − 2𝑥. Thus, the flatness constant will be the
maximum of the two. Further, it can be seen that the former width is the maximum
of the two if and only if 𝛿 − (𝑥 + 𝑦) ≤ 1

2 .
□

Remark 5.3.2. Note that in the situation of Theorem 5.3.1, we have Fltℝ1 (𝐼) = 𝑦 − 𝑥.
Indeed, the maximal 𝐼-free convex bodies are exactly the translates of 𝐼.

Furthermore, Theorem 5.3.1 shows that in general Fltℤ1 (𝑛𝑋) ≠ 𝑛Fltℤ1 (𝑋) (𝑛 ∈ ℕ).
Indeed, using Theorem 5.3.1, we immediately find that Fltℤ1 ([0, 4

3]) = 2 while 2 ·
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Fltℤ1 ([0, 2
3]) = 8

3 . This answers the question in [7] whether Fltℤ𝑑 (·) is linear with
respect to positive dilations.

This gives a complete answer in 1 dimension for full-dimensional 𝑋 ⊂ ℝ. Let
us now turn to 2 dimensions. Recall from Section 5.2 our general strategy: con-
sidering inclusion-maximal 𝐴-Δ2-free closed convex sets 𝐶, we obtain an upper
bound for Flt𝐴𝑑 (Δ2). Furthermore, recall that since Δ2 is full-dimensional, it suffices
to consider full-dimensional inclusion-maximal 𝐴-Δ2-free closed convex sets 𝐶 (see
Lemma 5.2.5). Here, we will classify the unbounded 𝐶. Their widths will turn out to
be strictly smaller than the maximal width of the bounded 𝐶’s. Hence, the maximal
width of the bounded 𝐶’s will be then equal to the respective flatness constant.

Proposition 5.3.3. Let 𝐴 ∈ {ℝ,ℤ}. Then up to 𝐴-unimodular transformations there
exists exactly one unbounded inclusion-maximal 𝐴-Δ2-free closed convex set 𝐶 ⊂ ℝ2 of
dimension 2, namely

• if 𝐴 = ℤ, then 𝐶 = [−1, 1] ×ℝ; and

• if 𝐴 = ℝ, then 𝐶 = [0, 1] ×ℝ.

In particular, the width is 2 in the first and 1 in the second case.

For the proof of the previous statement, we need to recall the definition of the tail
cone (or recession cone) of a closed convex set 𝐴 ⊂ ℝ𝑑:

tail(𝐴) B
{
𝑣 ∈ ℝ𝑑 : 𝑥 + 𝜆𝑣 ∈ 𝐴 for all 𝑥 ∈ 𝐴 and𝜆 ≥ 0

}
.

Proof. Since 𝐶 ⊂ ℝ2 is an unbounded closed convex set, it follows by [89, Theo-
rem 8.4] that tail(𝐶) ≠ {0}. Then tail(𝐶) is a 1-dimensional closed convex cone.
Hence tail(𝐶) lies on a line 𝑦 = 𝑚 · 𝑥 for a real number 𝑚 ∈ ℝ. We claim 𝑚 ∈ ℚ is
rational.

Assume towards a contradiction that 𝑚 ∈ ℝ \ℚ were irrational. Since 𝐶 is full-
dimensional, it contains a small affine ball 𝑣 + 𝜀𝐵2 for 𝑣 ∈ ℝ2 and 𝜀 > 0. Indeed, by
approximating 𝑣with a rational point and decreasing 𝜀 (if necessary), we may assume
that 𝑣 ∈ ℚ2. Then 𝑣+ 𝜀𝐵2+ tail(𝐶) is contained in 𝐶 where 𝑣+ tail(𝐶) lies on an affine
line parallel to 𝑦 = 𝑚 · 𝑥, say {𝑦 = 𝑚 · 𝑥 + 𝑐} ⊂ ℝ2 for 𝑐 ∈ ℝ. Note (𝑣+ tail(𝐶))∩ℚ2 =

{𝑣} as otherwise 𝑚 would be a rational number (a contradiction). By Kronecker’s
theorem [70] (see also [39, Theorem 438] or [49, Theorem 1]), for every 𝛿, 𝑁 > 0 there
exist integers 𝑥𝛿 , 𝑦𝛿 ∈ ℤ with |𝑥𝛿 | ≥ 𝑁 (where both 𝑥𝛿 > 0 and 𝑥𝛿 < 0 can be chosen)
such that |𝑚 · 𝑥𝛿 + 𝑐 − 𝑦𝛿 | < 𝛿, i.e., (𝑥𝛿 , 𝑦𝛿) comes arbitrarily close to 𝑣 + tail(𝐶).

Let 𝑥, 𝑦, 𝑧 ∈ ℤ2 be three lattice points that were chosen so that 𝑦 lies strictly closer
to 𝑣+tail(𝐶) than 𝑥while 𝑧 lies closer to 𝑣+tail(𝐶) than 𝑦. We may assume that 𝑥, 𝑦, 𝑧
lie in 𝑣 + 𝜀𝐵2 + tail(𝐶), and thus in the interior of 𝐶. It follows that conv(𝑥, 𝑦, 𝑧) is a
lattice triangle contained in the interior of 𝐶. Triangulating this triangle into empty
simplices yields a ℤ-unimodular copy of Δ2 that is contained in the interior of 𝐶. A
contradiction. Note that this solves both cases 𝐴 = ℝ and 𝐴 = ℤ.

Hence 𝑚 ∈ ℚ is rational, and thus up to a ℤ-unimodular transformation, we
have that 𝑣 + tail(𝐶) lies on the line given by 𝑥 = 𝑐 for some 𝑐 ∈ ℝ. Consider the
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𝐹1

𝐹2

𝐹3

𝐹4

Figure 5.5: Facets 𝐹1 , 𝐹2 and 𝐹4 of this ℤ-Δ2-free polygon are locked,
while 𝐹3 is not. Dashed in red are ℤ-unimodular copies of Δ2 that are
locking the respective facets. Note the polygon is indeedℤ-Δ2-free since

all interior lattice points are collinear.

projection 𝜋 : ℝ2 → ℝ; (𝑎, 𝑏) ↦→ 𝑎. Since 𝐶 is convex, the closure of the image 𝜋(𝐶) is
an interval, say 𝐼 = [𝑟, 𝑠] for 𝑟, 𝑠 ∈ ℝ. Note the tail cone tail(𝐶) ensures that for any 𝑢
in 𝐼 there exists an affine ray 𝑤 + tail(𝐶) ⊂ 𝐶 that projects down to 𝑢.

Suppose 𝐴 = ℤ. Then 𝑠 − 𝑟 ≤ 2, as otherwise 𝐼 would contain two integers in its
interior which would imply that 𝐶 contains aℤ-unimodular copy ofΔ2 in its interior.
It straightforwardly follows that (up to a translation by a lattice point)𝐶 = [−1, 1]×ℝ.

Suppose 𝐴 = ℝ. Then 𝑠 − 𝑟 ≤ 1, as otherwise 𝐼 would contain an ℝ-translate of
the interval [0, 1] in its interior which would imply that 𝐶 contains an ℝ-unimodular
copy of Δ2 in its interior. Then it is easy to see that (up to a real translation) 𝐶 =

[0, 1] ×ℝ. □

It remains to study the bounded cases. The remaining sections of this manuscript
will be concerned with this study.

5.4 The ℤ-flatness constant of Δ2

Let 𝐾 ⊂ ℝ𝑑 be a convex body and let 𝑋 ⊂ ℝ𝑑 be an arbitrary bounded set. By
Proposition 5.2.12, inclusion-maximal ℤ-𝑋-free bodies are polytopes (a stronger
version of Theorem 5.1.2 for the case 𝐴 = ℤ). The following definition is the key to
characterising inclusion-maximal ℤ-Δ𝑑-free polytopes.

Definition 5.4.1. A facet 𝐹 of a full-dimensional polytope 𝑃 ⊂ ℝ𝑑 is said to be ℤ-Δ𝑑-
locked if there exists aℤ-unimodular copy𝑇 ofΔ𝑑 contained in 𝑃 such that𝑇∩rel(𝐹) ≠
∅ and 𝑉(𝑇) \ rel(𝐹) ⊂ int(𝑃), where 𝑉(𝑇) denotes the set of vertices of 𝑇. Notice
that 𝑇 gives rise to lattice points in the relative interior of 𝐹, namely 𝑉(𝑇) ∩ rel(𝐹).
Such lattice points are called locking points.

We will say simply locked instead of ℤ-Δ𝑑-locked wherever it is clear from the
context that we are discussing ℤ-Δ𝑑-flatness. See Figure 5.5 for an illustration of
the concepts of “locked facet” and “locking point”. The definition of locked facet is
crafted so that if a point is added beyond any locked facet, the resulting polytope is
no longer a ℤ-Δ𝑑-free polytope. Recall that a point 𝑥 is beyond the facet 𝐹 of a full-
dimensional polytope 𝑃 if it lies in the half-space which is defined by the supporting
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hyperplane of 𝐹 and which does not contain int(𝑃). Furthermore, 𝑥 is beneath 𝐹 if it
lies in the same half-space as 𝑃.

The following proposition shows that being inclusion-maximal among ℤ-Δ𝑑-free
polytopes is equivalent to all facets being locked.

Proposition 5.4.2. Let 𝑃 ⊂ ℝ𝑑 be a ℤ-Δ𝑑-free polytope. Then, 𝑃 is inclusion-maximal if
and only if all its facets are locked.

Proof. Suppose that all facets of 𝑃 are locked. Let 𝐹 be a facet of 𝑃 and 𝑥 ∈ ℝ𝑑 \ 𝑃
be a point beyond 𝐹. Since 𝐹 is locked, there exists a ℤ-unimodular copy 𝑇 of Δ𝑑
contained in 𝑃 such that𝑇∩rel(𝐹) ≠ ∅ and𝑉(𝑇)\rel(𝐹) ⊂ int(𝑃). Let𝑄 = conv(𝑃, 𝑥).
The relative interior of the facet 𝐹 lies in the interior of Q, and thus so does𝑇. Hence 𝑃
is inclusion-maximal with respect to the property of being ℤ-Δ𝑑-free.

We prove the reverse implication by verifying the contrapositive, i.e., if there
exists a facet of 𝑃 that is not locked, then 𝑃 isn’t inclusion-maximal with respect to
the property of being ℤ-Δ𝑑-free. Let 𝐹 be a facet of 𝑃 that is not locked and let 𝑄 be
the polytope obtained from 𝑃 by moving the facet 𝐹 outwards by a small amount,
such that 𝑃 ⊊ 𝑄 but no new lattice points are captured, that is, 𝑃 ∩ℤ𝑑 = 𝑄 ∩ℤ𝑑. In
particular, the set of ℤ-unimodular copies of Δ𝑑 which are contained in 𝑃 coincides
with the set of such copies that are contained in 𝑄. Note however that any lattice
point in the relative interior of the facet 𝐹 of 𝑃 are in the interior of 𝑄. From the
assumption that 𝐹 is not locked we will now deduce that 𝑄 is also a ℤ-Δ𝑑-free
polytope, and thus 𝑃 is not inclusion-maximal.

Let 𝐻 be the supporting hyperplane that defines the facet 𝐹 of 𝑃, and let 𝐻≥0
(resp.𝐻>0) be the closed half-space (resp. open half-space) with boundary equal to𝐻
such that 𝑃 ⊂ 𝐻≥0. Notice 𝑄 ∩ 𝐻≥0 = 𝑃. It remains to show that any ℤ-unimodular
copy 𝑇 of Δ𝑑 that is contained in 𝑄 isn’t contained in the interior of 𝑄. Recall from
above that 𝑇 is also contained in 𝑃. We distinguish two cases:

• If 𝑇 ∩ rel(𝐹) = ∅, then 𝑇 ⊂ 𝑄 ∩𝐻>0 = 𝑃 \ 𝐹. Since 𝑄 ∩𝐻≥0 = 𝑃 and 𝑇 ⊄ int(𝑃),
it straightforwardly follows that 𝑇 ⊄ int(𝑄).

• If 𝑇 ∩ rel(𝐹) ≠ ∅, then 𝑉(𝑇) \ rel(𝐹) ⊄ int(𝑃), i.e., there is another facet 𝐹′ of 𝑃
that contains a vertex of 𝑇. Since 𝐹′ is contained in a facet of 𝑄, it follows
that 𝑇 ⊄ int(𝑄). □

We now focus on dimension 𝑑 = 2, where our goal is to show the following
theorem.

Theorem 5.4.3 (Case 𝐴 = ℤ of Theorem 5.1.1). Fltℤ2 (Δ2) = 10
3 .

By Lemma 5.2.3, to prove the theorem it is enough to show that any inclusion-
maximalℤ-Δ2-free convex set has width at most 10

3 and to provide an example of aℤ-
Δ2-free polygon of that width. Unbounded full-dimensional inclusion-maximal ℤ-
Δ2-free convex sets were studied in Proposition 5.3.3 and have width 1. Thus we are
left with determining the maximum width of inclusion-maximal ℤ-Δ2-free convex
bodies, which are polygons by Theorem 5.1.2. The rest of the section is devoted to
proving that this width is 10

3 .
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Note Proposition 5.4.2 guarantees that any inclusion-maximal ℤ-Δ2-free polygon
contains at least one interior lattice point, since otherwise it is impossible for its facets
to be locked. The following proposition deals with (inclusion-)maximal ℤ-Δ2-free
polygons containing exactly one interior lattice point. The case of polygons whose
interior contains at least two lattice points will be treated afterwards.

Proposition 5.4.4. If 𝑃 ⊂ ℝ2 is a maximal ℤ-Δ2-free polygon with |int(𝑃) ∩ ℤ2 | = 1,
then width(𝑃) ≤ 3.

Proof. Let 𝑃 be an inclusion-maximal ℤ-Δ2-free polygon with exactly one interior
lattice point. By Proposition 5.4.2, each facet 𝐹 of 𝑃 is locked. Since there’s a unique
lattice point in the interior of 𝑃, for each facet 𝐹 there is a ℤ-unimodular copy 𝑇 of Δ2
contained in 𝑃 such that two vertices of 𝑇 are contained in the relative interior of 𝐹
and the third vertex of 𝑇 is in the interior of 𝑃. Up to an appropriate unimodular
transformation, we may assume that there is a facet for which 𝑇 = conv (0, 𝑒1, 𝑒2),
and that 0 is the interior lattice point of 𝑃. By using the fact that 0 is the only interior
lattice point of 𝑃, we can conclude that 𝑃 is disjoint from the following regions (see
Figure 5.6):

𝐶1 The affine cone (−𝑒1 + 𝑒2) + cone(−𝑒1,−𝑒1 + 𝑒2) minus its apex −𝑒1 + 𝑒2 (other-
wise −𝑒1 + 𝑒2 would be contained in the interior of 𝑃. Note that we include the
open half-rays of the affine cone into 𝐶1 because 0 is in the interior of 𝑃 and 𝑒2
is in the relative interior of 𝐹);

𝐶2 The affine cone −𝑒1 + cone(−𝑒1,−𝑒1 − 𝑒2) minus its apex −𝑒1 (otherwise −𝑒1
would be contained in the interior of 𝑃);

𝐶3 The affine cone (−𝑒1 − 𝑒2) + cone(−2𝑒1 − 𝑒2,−𝑒1 − 2𝑒2) minus its apex (−𝑒1 − 𝑒2)
(otherwise −𝑒1 − 𝑒2 would be contained in the interior of 𝑃).

Let 𝐶′
𝑖
be the region obtained from 𝐶𝑖 by reflecting along the line ℝ(𝑒1 + 𝑒2). No-

tice 𝐶3 = 𝐶′
3. Since 0 is the only interior lattice point, it follows from Proposition 5.4.2

that every facet of 𝑃 contains two lattice points in its relative interior. We already
know that {𝑥 + 𝑦 = 1} cuts out a facet of 𝑃. For the remaining facets, the only can-
didates are lattice points disjoint from the regions 𝐶𝑖 , 𝐶′

𝑖
and contained in the open

half-plane {𝑥 + 𝑦 < 1}, i.e.,−𝑒1+𝑒2,−𝑒1,−𝑒1−𝑒2,−𝑒2, 𝑒1−𝑒2, those drawn in Figure 5.6.
It is easy to see that the possibility for 𝑃 to have two other facets each containing two
of these lattice points in the relative interior is if 𝑃 = conv(−𝑒1+2𝑒2,−𝑒1− 𝑒2, 2𝑒1− 𝑒2),
which has width equal to 3. □

Now suppose the polygon 𝑃 contains at least two interior lattice points. Clearly
these interior lattice points are collinear, since any set of non-collinear points contains
a triangle, and any lattice triangle can be triangulated into unimodular ones, and
thus in particular contains a unimodular triangle.

The following theorem shows that polygons with at least two interior lattice points
can have larger width than 3 and the maximum width is achieved by a triangle with
exactly two interior lattice points.
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𝐶1

𝐶′
1

𝐶2

𝐶′
2𝐶3

Figure 5.6: The regions 𝐶𝑖 and 𝐶′
𝑖
which are disjoint from 𝑃.

Theorem 5.4.5. If 𝑃 ⊂ ℝ2 is a ℤ-Δ2-free polygon with |int(𝑃)∩ℤ2 | ≥ 2, then width(𝑃) ≤
10
3 . Equality is only achieved (up toℤ-unimodular transformations) by conv

( 1
3 𝑒1 + 5

3 𝑒2,−4
3 𝑒1 − 5

3 𝑒2, 2𝑒1
)
,

which contains exactly 2 interior lattice points.

In order to prove Theorem 5.4.5, it suffices to study inclusion-maximal ℤ-Δ2-free
polygons which have at least two interior lattice points. Since in Proposition 5.4.4 we
have already found a ℤ-Δ2-free triangle with width equal to 3, to find the polygons
of largest width we can restrict our study to those whose width is greater than 3.
The strategy for the proof is to use Proposition 5.4.2 and to distinguish polygons
according to their locking lattice points.

Thus from now on we let 𝑃 be a maximal ℤ-Δ2-free polygon with at least two
interior lattice points and width strictly greater than 3. Up to an affine unimodular
transformation, we may assume that

• the interior of 𝑃 contains 0 and 𝑒1,

• any lattice point which does not lie on the horizontal axis is not in the interior
of 𝑃, and

• 𝑃 contains a point 𝑝0 = 𝑥𝑒1 + 𝑦𝑒2 with 0 < 𝑥 < 1 and 𝑦 > 3
2 .

Indeed, there is a ℤ-unimodular transformation that maps the lattice segment com-
prised by the interior lattice points of 𝑃 (recall they are collinear) onto a lattice
segment lying on the 𝑥-axis. Since this lattice segment has lattice length at least one,
we can assume that both 0 and 𝑒1 are contained in it. To simplify notation, let us
use the same symbol 𝑃 for the transformed polygon. Since the width of 𝑃 is larger
than 3, it cannot be contained in the strip

{
−3

2 ≤ 𝑦 ≤ 3
2
}
. After possibly flipping

along the 𝑥-axis, this shows that 𝑃 contains a point 𝑝0 whose 𝑦-coordinate is larger
than 3

2 . Note the triangle with vertices 0, 𝑒1 and 𝑝0 intersects the line {𝑦 = 1} in a
segment of length less than 1 which does not contain lattice points (as otherwise
such a lattice point would be in the interior of 𝑃). After applying an appropriate
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horizontal shearing this segment lies in the strip {0 ≤ 𝑥 < 1}, and thus so does 𝑝0.
Recall that a linear unimodular transformation 𝜑 : ℤ2 → ℤ2 of the form

𝜑 (𝜆1𝑏1 + 𝜆2𝑏2) = (𝜆1 + 𝑘𝜆2) 𝑏1 + 𝜆2𝑏2,

for a lattice basis 𝑏1, 𝑏2 ofℤ2 and an integer 𝑘 ∈ ℤ is called a shearing along the lineℝ𝑏1.
Suppose𝑃 has been transformed to satisfy the conditions above. Let us determine

the possible lattice points that can lock a facet of 𝑃. No lattice point on the 𝑥-axis
can lock a facet, since they are collinear with the interior lattice points of 𝑃. Since
the triangle 𝑇 B conv(0, 𝑒1, 𝑝0) is contained in 𝑃, it follows that the affine locally
open rays 𝑒2 +ℝ<0𝑒1 and 𝑒1 + 𝑒2 +ℝ>0𝑒1 are disjoint from 𝑃. Hence the only lattice
points in the upper half-plane {𝑦 > 0} that can be contained in 𝑃 are 𝑒2 and 𝑒1 + 𝑒2
(any other lattice point in {𝑦 > 0} forces 𝑒2 or 𝑒1 + 𝑒2 to be in the interior of 𝑃). Next
we determine which lattice points in the lower half-space {𝑦 < 0} can be contained
in 𝑃. Since 𝑝0 ∈ 𝑃, every lattice point in {𝑦 < 0} which is in the upper closed half-
space given by the line going through the two points 𝑒2, 𝑒1 + 3

2 𝑒2 is disjoint from 𝑃

(otherwise 𝑒2 is in the interior of 𝑃). Using the symmetry induced by reflecting
about the vertical line

{
𝑥 = 1

2
}
, it follows that 𝑃 ∩ {𝑦 < 0} is also disjoint from

the upper closed half-space given by the line through the two points 3
2 𝑒2, 𝑒1 + 𝑒2.

Note the remaining lattice points at height 𝑦 = −1 could be contained in 𝑃: −3𝑒1 −
𝑒2,−2𝑒1 − 𝑒2,−𝑒1 − 𝑒2,−𝑒2, 𝑒1 − 𝑒2, 2𝑒1 − 𝑒2, 3𝑒1 − 𝑒2 or 4𝑒1 − 𝑒2. Let 𝑞𝑘 B 𝑘𝑒1 − 𝑒2
for 𝑘 ∈ {−3,−2,−1}. Since 𝑞𝑘 cannot be an interior lattice point of 𝑃, it follows that 𝑃
is disjoint from the region 𝐶𝑘 which is defined to be 𝜎𝑘 \ {𝑞𝑘} where 𝜎𝑘 is the affine
cone having apex at 𝑞𝑘 and supporting lines going through 𝑞𝑘 and 𝑒1 or 𝑒1 + 3

2 𝑒2
respectively. For 𝑞0 = −𝑒2, the respective region is 𝐶0 = 𝜎0 \ {𝑞0} where 𝜎0 is the
affine cone having apex at 𝑞0 and supporting lines the 𝑦-axis and the line going
through −𝑒2 and 𝑒1 (see Figure 5.7). By using the symmetry induced by reflecting

𝐶−2

Figure 5.7: Possible locking points in the lower half-plane in blue. 𝑃
is disjoint from the red regions as otherwise it would pick up interior

lattice points away from the 𝑥-axis.

about the vertical axis
{
𝑥 = 1

2
}
, it straightforwardly follows that the possible lattice

points that can be contained in 𝑃 and that lie in the lower half-plan {𝑦 < 0} can only
be those from above at height 𝑦 = −1.

These ten lattice points (two at height 𝑦 = 1 and eight at height 𝑦 = −1; shown
in red in Figure 5.8) are therefore the only lattice points away from the 𝑥-axis which



5.4. The ℤ-flatness constant of Δ2 113

can be contained in 𝑃, and thus are the possible locking points. Next we show
that the assumption width(𝑃) > 3 implies that at most four of them can be in 𝑃,
more precisely, at most two of the points at height 𝑦 = −1 can be in 𝑃. Recall our
(additional) assumption that the polygon 𝑃 is inclusion-maximal ℤ-Δ2-free.

Lemma 5.4.6. If 𝑃 ∩ {𝑦 = −1} contains at least 3 lattice points, then width(𝑃) ≤ 3.

In the following, let us denote the basis of (ℤ2)∗ dual to 𝑒1, 𝑒2 by 𝑒∗1, 𝑒
∗
2.

Proof. Suppose 𝑃 contains at least 3 lattice points whose 𝑦-coordinate equals −1.
Then 𝑃 is contained in the half-space {𝑦 ≥ −1}, since any point outside this half-
space would force the middle lattice point to be in the interior of 𝑃, which is not
allowed. In particular, there is a facet 𝐹 supported by {𝑦 = −1}. All other facets
of 𝑃 are locked (see Proposition 5.4.2), and since they cannot be locked by points
on {𝑦 = −1}, they can only be locked by 𝑒2 and 𝑒1 + 𝑒2. Thus 𝑃 is a triangle with
one facet 𝐹, one facet through 𝑒2 and another through 𝑒1 + 𝑒2. The latter two facets
intersect in the vertex 𝑝0 from above.

If 𝑃 is contained within the strip {−1 ≤ 𝑦 ≤ 2}, then width(𝑃) ≤ 3. If not, we
have 𝑝0 ∈ {𝑦 > 2}. Let us consider the facet 𝐹 of length 𝑏 as the base of the triangle 𝑃.
With respect to this base, 𝑃 has height ℎ > 3. The triangle conv(𝑒2, 𝑒1 + 𝑒2, 𝑝0) is
similar to 𝑃 and has base of length 1 and height ℎ − 2. From the assumption ℎ > 3
and the equality (compare with the intercept theorem)

ℎ − 2
1 =

ℎ

𝑏
,

we obtain 𝑏 < 3. Note 𝑏 is the length of the facet 𝐹. Since 𝑝0 lies in {0 < 𝑥 < 1} and
the facets of 𝑃 that intersect at 𝑝0 pass through 𝑒2 and 𝑒1+ 𝑒2 respectively, these facets
must have positive and negative slope respectively. This means that the width of 𝑃
with respect to the linear form 𝑒∗1 is 𝑏, the length of the facet 𝐹, and thus is less than 3.
Hence 𝑃 has width at most 3. □

We have narrowed down the possible lattice points of 𝑃 that lie off the 𝑥-axis:
up to two consecutive points from the set {−3𝑒1 − 𝑒2,−2𝑒1 − 𝑒2,−𝑒1 − 𝑒2,−𝑒2, 𝑒1 −
𝑒2, 2𝑒1 − 𝑒2, 3𝑒1 − 𝑒2, 4𝑒1 − 𝑒2}, and points from {𝑒2, 𝑒1 + 𝑒2} (see the red points in
Figure 5.8). Since 𝑃 is a full dimensional polygon, it has at least three facets, and
since each of these facets are locked, at least three points of the above are contained
in 𝑃. Further, we have observed that we can pick at most four of the above points
(see Lemma 5.4.6), and thus the polygon 𝑃 is either a triangle (containing one lattice
point on 𝑦 = −1 and two on 𝑦 = 1, or vice versa) or a quadrilateral (containing two
lattice points at 𝑦 = 1 and two at 𝑦 = −1).

In the following sections we treat the two cases separately. In fact, we further
subdivide the case where 𝑃 is a quadrilateral into two subcases. The four facets of a
quadrilateral 𝑃 are locked by both lattice points 𝑒2 and 𝑒1 + 𝑒2 on 𝑦 = 1 and by two
consecutive lattice points on 𝑦 = −1. Since four is the maximum number of locking
points the polygons under consideration can have, the relative interior of each facet
of a quadrilateral 𝑃 contains exactly one locking point. The convex hull 𝑃′ of the
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four locking points intersect the 𝑥-axis in a line segment 𝑆 = 𝑃′∩ {𝑦 = 0} of length 1,
which implies that 𝑆 contains a lattice point. Thus 𝑃′ can either be unimodularly
equivalent to a rectangle, if the endpoints of 𝑆 are lattice points, or to a cross-polygon,
if the endpoints of 𝑆 are not lattice points, and therefore 𝑆 contains exactly one lat-
tice point in its interior. Recall that a cross-polygon is ℤ-unimodularly equivalent
to conv(±𝑒1,±𝑒2). Furthermore, the rectangle will always be ℤ-unimodularly equiv-
alent to conv(±𝑒2, 𝑒1± 𝑒2). Figure 5.8 illustrates the possibilities for the convex hull 𝑃′

of the locking points. In what follows, we will often say that “the polygon 𝑃 is

∗ ∗ ∗ ∗

Figure 5.8: The two lattice points required to be in the interior of 𝑃
are denoted by “∗”. The red lattice points are the possible locking
points of 𝑃. Possible convex hulls 𝑃′ of locking points (when 𝑃 is a
quadrilateral) are drawn in blue. The left 𝑃′ is unimodularly equivalent
to a cross-polygon while the right 𝑃′ is unimodularly equivalent to a
rectangle. The red dashed polygons are examples of quadrilaterals

circumscribed around 𝑃′.

circumscribed around 𝑃′”. The precise definition is the following.

Definition 5.4.7. Let 𝑃, 𝑃′ ⊂ ℝ2 be polygons. We say that 𝑃 is circumscribed around 𝑃′

if each vertex of 𝑃′ is contained in a facet of 𝑃, and each facet of 𝑃 contains a vertex
of 𝑃′.

5.4.1 Triangles
We first consider the case where 𝑃 is a triangle. Since all facets of 𝑃 are locked, there
are at least three locking points. Thus, given three lattice points 𝐴, 𝐵 and 𝐶, two on
the line 𝑦 = 1 and one on the line 𝑦 = −1, or vice versa, we want to show that 10

3 is
an upper bound for the width of any ℤ-Δ2-free triangle 𝑃 with facets locked by 𝐴, 𝐵
and 𝐶. We do not require that the points 𝐴, 𝐵 and 𝐶 are the only locking points: a
facet of 𝑃 might contain another lattice point in its interior.

There are 22 possible triples (𝐴, 𝐵, 𝐶): 8 have the two lattice points on the line 𝑦 = 1
and one on 𝑦 = −1, while 14 have one lattice point on 𝑦 = 1 and two consecutive
ones on 𝑦 = −1. Reflecting along the line 𝑥 = 1

2 yields the same result, so only 11
triples need to be checked. In Table 5.1 (below), we record these 11 triples. The
cases 8–11 are not admissible: 𝑃 is assumed to contain a point 𝑝0 in

{
𝑦 > 3

2
}
, and

thus two points of the triple (𝐴, 𝐵, 𝐶) need to lock the two facets through this point.
However, in cases 8–11 this is impossible while also guaranteeing that 0 and 𝑒1 are in
the interior of 𝑃. For the remaining cases, we relax our assumptions and only require
that the facets of 𝑃 are locked by the triple (𝐴, 𝐵, 𝐶), 𝑃 contains 0, 𝑒1 and it does not
contain any lattice points away from the 𝑥-axis in its interior. That is, we forget the
requirement that 𝑃 contains a point 𝑝0 = 𝑥𝑒1 + 𝑦𝑒2 with 0 < 𝑥 < 1 and 𝑦 > 3

2 , and we
allow 0, 𝑒1 to lie in the boundary of 𝑃. Note this relaxation is possible as long as 10

3



5.4. The ℤ-flatness constant of Δ2 115

is an upper bound for any 𝑃 satisfying the relaxed conditions. Our computations
show that this is the case. This relaxation comes with two advantages, namely
1) the constraints on the polygon 𝑃 are simplified; 2) it allows further symmetry
(unimodular transformations fixing the 𝑥-axis, such as reflection about or shearing
along the 𝑥-axis) resulting into a reduction of cases. In particular, the second point
allows us to treat the following pairs of cases as being equivalent: 1 ∼ 7, 2 ∼ 6,
and 3 ∼ 5. Finally, because of this relaxation, Table 5.1 includes upper bounds that
are smaller than 3: in these cases, the largest width in the relaxed conditions was
only achieved by a triangle 𝑃 with 𝑒1 on the boundary.

In order to bound the width of polygons whose facets are locked by a fixed
triple (𝐴, 𝐵, 𝐶), we employ a computer assisted strategy together with an approach
that Hurkens has used to compute the classical flatness constant in 2 dimensions [52].
Let 𝑋,𝑌 and 𝑍 be the vertices of the triangle 𝑃. We consider 𝐴, 𝐵, 𝐶, 𝑋, 𝑌, 𝑍 as row
vectors and write: 

𝐴

𝐵

𝐶

 =


0 𝜆 𝜆̄

𝜇̄ 0 𝜇

𝜈 𝜈̄ 0



𝑋

𝑌

𝑍


for some 𝜆, 𝜇, 𝜈 ∈ [0, 1], with 𝜆̄ + 𝜆 = 𝜇̄ + 𝜇 = 𝜈̄ + 𝜈 = 1. Inverting the matrix, we
obtain 

𝑋

𝑌

𝑍

 =
1

𝜆𝜇𝜈 + 𝜆̄𝜇̄𝜈̄


−𝜇𝜈̄ 𝜆̄𝜈̄ 𝜆𝜇

𝜇𝜈 −𝜆̄𝜈 𝜆̄𝜇̄

𝜇̄𝜈̄ 𝜆𝜈 −𝜆𝜇̄



𝐴

𝐵

𝐶

 .

Since 𝐴, 𝐵 and 𝐶 are fixed, these are formulas for 𝑋,𝑌 and 𝑍 in terms of the pa-
rameters 𝜆, 𝜇, and 𝜈. In fact, the coordinates of the pairwise differences of the
vertices 𝑋, 𝑌 and 𝑍 are rational functions with a linear numerator and denominator
equal to 𝜆𝜇𝜈 + 𝜆̄𝜇̄𝜈̄:

𝑋 − 𝑌
𝑌 − 𝑍
𝑍 − 𝑋

 =
1

𝜆𝜇𝜈 + 𝜆̄𝜇̄𝜈̄


−𝜇 𝜆̄ −1 + 𝜆 + 𝜇

−1 + 𝜇 + 𝜈 −𝜈 𝜇̄

𝜈̄ −1 + 𝜆 + 𝜈 −𝜆



𝐴

𝐵

𝐶

 . (5.4)

Thus the slopes of the facets of 𝑃 are rational functions with linear numerator and
linear denominator in terms of the parameters 𝜆, 𝜇, and 𝜈. The conditions 0, 𝑒1 ∈ 𝑃
and that the interior int(𝑃) of 𝑃 is disjoint from the lattice points off the 𝑥-axis
constrain the possible slopes. In terms of the parameters𝜆,𝜇, and 𝜈, these constraints
are linear. We thus obtain a polytope 𝑄 ⊂ [0, 1]3 of admissible 𝜆, 𝜇, and 𝜈.

Next, we express the width of 𝑃 in a chosen direction in terms of the parame-
ters 𝜆, 𝜇, and 𝜈. Clearly, for a fixed direction, the width can be achieved on any
pair of vertices depending on 𝜆, 𝜇, and 𝜈. Wherever it is achieved by the same two
vertices, the width is a linear function (in 𝜆, 𝜇, and 𝜈) divided by 𝛿 := 𝜆𝜇𝜈 + 𝜆̄𝜇̄𝜈̄.
Our strategy includes choosing directions “ad hoc” such that:

1) The width in one such direction is achieved on the same pair of vertices for all
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parameters 𝜆, 𝜇, 𝜈 ∈ 𝑄, so that the width of 𝑃 accepts an upper bound of the
form

min {ℓ1(𝜆, 𝜇, 𝜈), . . . , ℓ𝑟(𝜆, 𝜇, 𝜈)}
𝛿

where the ℓ𝑖’s are linear forms in terms of 𝜆, 𝜇, and 𝜈.

2) The maximum over 𝑄 of this function is at most 10
3 . The actual computations

are carried out with polymake [32] and Mathematica [57].

For the cases where the upper bound of 10
3 is achieved, we determine the respec-

tive extremal points (𝜆, 𝜇, 𝜈) ∈ 𝑄 and show that these parameters correspond to
triangles 𝑃 which are unimodularly equivalent to conv

( 1
3 𝑒1 + 5

3 𝑒2,−4
3 𝑒1 − 5

3 𝑒2, 2𝑒1
)
.

conv(0, 𝑒1, 𝐴, 𝐵, 𝐶) width width
directions

vertices of maximiser

1 ∗ ∗ ≤ 10
3 𝑒∗1, 𝑒

∗
2, 𝑒

∗
1 − 𝑒

∗
2

1
3

[
−4 1 6
−5 5 0

]
2 ∗ ∗ ≤ 2√

7−2
𝑒∗1, 𝑒

∗
2, 𝑒

∗
1 − 𝑒

∗
2

1
3
√

7

[
−6−3

√
7 8+

√
7 1+2

√
7

−9 −2−
√

7 5+4
√

7

]

3 ∗ ∗ < 10
3 𝑒∗2, 𝑒

∗
1 − 𝑒

∗
2

1
3

[
−12 3 3
−5 5 0

]
4 ∗ ∗ < 3 𝑒∗2

1
2

[
−10 2 2
−3 3 0

]
Equivalent cases

5
∗ ∗

equivalent to
case 3

6
∗ ∗

equivalent to
case 2

7
∗ ∗

equivalent to
case 1

Not admissible triples (𝐴, 𝐵, 𝐶)

8 ∗ ∗ 9 ∗ ∗ 10 ∗ ∗ 11 ∗ ∗

Table 5.1: Up to symmetry, all possible triples of locking points (𝐴, 𝐵, 𝐶);
we list the largest possible width a triangle circumscribed around them
can have, the directions in which this width is achieved, and the vertices

of the triangle of largest width.

To illustrate our strategy, let us work out the details for one choice of locking
points, namely (𝐴, 𝐵, 𝐶) = (𝑒1 + 𝑒2,−𝑒2, 𝑒2) (case 1 in Table 5.1). The other cases 2–4
work similarly. By (5.4), we have

𝑋−𝑌 =

(
−𝜇

𝛿
,
−2 + 2𝜆

𝛿

)
, 𝑌−𝑍 =

(−1 + 𝜇 + 𝜈

𝛿
,

2𝜈
𝛿

)
, 𝑍−𝑋 =

(
1 − 𝜈
𝛿

,
2 − 2𝜆 − 2𝜈

𝛿

)
.
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𝑍

𝑌

𝑋

𝐴

𝐵

𝐶

∗ ∗

Figure 5.9: A triangle 𝑃 (in red) with locking points (𝐴, 𝐵, 𝐶) =

(𝑒1 + 𝑒2 ,−𝑒2 , 𝑒2). This is the unique ℤ-Δ2-free triangle of width 10
3 .

First we determine the polytope𝑄 of admissible parameters. The slopes𝑚𝑋𝑌 ,𝑚𝑌𝑍
and 𝑚𝑍𝑋 of the facets of 𝑃 through {𝑋,𝑌}, {𝑌, 𝑍} and {𝑍, 𝑋} respectively can be
expressed in terms of 𝜆, 𝜇, and 𝜈:

𝑚𝑋𝑌 =
2 − 2𝜆

𝜇
, 𝑚𝑌𝑍 =

2𝜈
−1 + 𝜇 + 𝜈

, 𝑚𝑍𝑋 =
2 − 2𝜆 − 2𝜈

1 − 𝜈
.

The position of the vertices𝑋,𝑌, and𝑍 of 𝑃 is constrained by the two assumptions
that 𝑃 contains 0, 𝑒1 and that no other lattice point away from the 𝑥-axis is in the
interior of𝑃. Since 0 ∈ 𝑃, we have𝑚𝑋𝑌 ≥ 0, while 𝑒1 ∈ 𝑃 yields𝑚𝑌𝑍 ≤ 0 and𝑚𝑍𝑋 ≤ 1.
Since 𝑒1 − 𝑒2 is not in the interior of 𝑃, we have 𝑚𝑍𝑋 ≥ 0. Similarly, since −𝑒1 − 𝑒2 is
not in the interior of 𝑃, we have 𝑚𝑋𝑌 ≥ 2. In a similar way, any further lattice point
off the 𝑥-axis would give us other constraints. Many will be redundant, but some
might further restrict the polytope 𝑄 of admissible parameters. However, we do not
need all constraints and we can stop once we have enough to obtain an upper bound
not exceeding 10

3 . In this case, the following constraints on the slopes are enough:

𝑚𝑋𝑌 ≥ 2, 𝑚𝑌𝑍 ≤ 0, 0 ≤ 𝑚𝑍𝑋 ≤ 1.

Arithmetic manipulation of these inequalities yields constraints on the parame-
ters 𝜆, 𝜇, and 𝜈 which define the polytope of admissible parameters

𝑄 =
{
(𝜆, 𝜇, 𝜈) ∈ [0, 1]3 : 1 − 𝜆 − 𝜇 ≥ 0, 1 − 𝜇 − 𝜈 ≥ 0, 1 − 𝜆 − 𝜈 ≥ 0,−1 + 2𝜆 + 𝜈 ≥ 0

}
.

We now determine the widths of 𝑃 in the directions 𝑒∗1, 𝑒∗2, and 𝑒∗1 − 𝑒∗2. On 𝑄,
these are achieved at 𝑍 − 𝑋, 𝑌 − 𝑋, and 𝑍 − 𝑌 respectively:

width𝑒∗1(𝑃) = 𝑒∗1(𝑍 − 𝑋) = 1 − 𝜈
𝛿

width𝑒∗2(𝑃) = 𝑒∗2(𝑌 − 𝑋) = 2 − 2𝜆
𝛿

width𝑒∗1−𝑒∗2(𝑃) = (𝑒∗1 − 𝑒
∗
2)(𝑍 − 𝑌) =

1 − 𝜇 + 𝜈

𝛿
.
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We thus obtain

width(𝑃) ≤ min
{
width𝑒∗1(𝑃),width𝑒∗2(𝑃),width𝑒∗1−𝑒∗2(𝑃)

}
=

min {1 − 𝜈, 2 − 2𝜆, 1 − 𝜇 + 𝜈}
𝛿

C
𝑓 (𝜆, 𝜇, 𝜈)

𝛿
.

We denote the numerator of the last expression 𝑓 (𝜆, 𝜇, 𝜈). To show that any
admissible triangle 𝑃 has width at most 10

3 , it suffices to verify

max
(𝜆,𝜇,𝜈)∈𝑄

𝑓 (𝜆, 𝜇, 𝜈) ≤ 10
3 .

To do so, we note that 𝑓 (𝜆, 𝜇, 𝜈) is a tropical polynomial, and using polymake, we
calculate its regions of linearity, which when intersected with 𝑄 gives polytopes 𝑄𝑖

over which 𝑓 coincides with a linear function 𝑓𝑖 (for further details on tropical
geometry, we refer to [59]). Using Mathematica [57], for each 𝑖, we compute the
maximum of the rational function 𝑓𝑖

𝛿 over the region𝑄𝑖 . In this way, we verify that in
this case there is exactly one point in𝑄 at which the maximum 10

3 is achieved, namely
at (𝜆, 𝜇, 𝜈) =

( 2
5 ,

1
5 ,

4
5
)
. For these values, the corresponding triangle 𝑃 is exactly the

triangle depicted in Figure 5.9, which will turn out to be the only ℤ-Δ2-free polygon
of width 10

3 , as stated in Proposition 5.4.2.

5.4.2 Quadrilateral circumscribed around a rectangle
Next, we consider the case where 𝑃 is a quadrilateral and the convex hull of its
locking points 𝑃′ is ℤ-unimodularly equivalent to a lattice rectangle with area equal
to two. Then, we can assume that 𝑃′ = conv(±𝑒2, 𝑒1 ± 𝑒2).

First, observe that the vertices of 𝑃 are in the vertical strip 0 < 𝑥 < 1 or in the
horizontal strip −1 < 𝑦 < 1. Indeed, any point strictly outside of both strips forces
one of the locking points to be in the interior of 𝑃, a contradiction. Furthermore, a
vertex on the boundary of a strip forces two facets to coincide, and thus 𝑃 to be a
triangle, a case which was dealt with already in Section 5.4.1. Thus, one vertex of 𝑃
lies in each of the four connected components of the union of the two strips minus
the rectangle 𝑃′.

Note two vertices of 𝑃 in, say, the horizontal strip, one on each side of 𝑃′, com-
pletely determine 𝑃. Let us denote those two vertices by−𝜅𝑒1+𝜆𝑒2 and (𝜇+1)𝑒1+𝜈𝑒2,
with 𝜅, 𝜇 > 0 and −1 < 𝜆, 𝜈 < 1. Then the lines supporting the edges of 𝑃 are

𝑦 =
1 − 𝜆
𝜅

𝑥+1, 𝑦 = −1 + 𝜆
𝜅

𝑥−1, 𝑦 = −1 − 𝜈
𝜇

𝑥+1 − 𝜈
𝜇

+1, 𝑦 =
1 + 𝜈
𝜇

𝑥−1 + 𝜈
𝜇

−1
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and thus the two remaining vertices of 𝑃 are given by(
(1 − 𝜈)𝜅

(1 − 𝜈)𝜅 + (1 − 𝜆)𝜇 ,
(1 − 𝜈)(1 − 𝜆)

(1 − 𝜈)𝜅 + (1 − 𝜆)𝜇 + 1
)

and(
(1 + 𝜈)𝜅

(1 + 𝜈)𝜅 + (1 + 𝜆)𝜇 ,
−(1 + 𝜈)(1 + 𝜆)

(1 + 𝜈)𝜅 + (1 + 𝜆)𝜇 − 1
)
.

(5.5)

Clearly the width in the horizontal direction is widthℎ = 𝜅 + 𝜇 + 1, while from
the previous formulae we obtain the width in the vertical direction: width𝑣 = 2 +

(1+𝜆)(1+𝜈)
(1+𝜆)𝜇+(1+𝜈)𝜅 + (1−𝜆)(1−𝜈)

(1−𝜆)𝜇+(1−𝜈)𝜅 .
We first show if 𝜅, 𝜇 and 𝜆 are fixed, the maximum vertical width is attained

for 𝜈 = 𝜆. To that end compute the partial derivative of width𝑣 with respect to 𝜈:

𝜕

𝜕𝜈
width𝑣 = −

4𝜅𝜇 · (𝜆 − 𝜈) · (𝜅(𝜆𝜈 − 1) + 𝜇(𝜆2 − 1))
((1 − 𝜈)𝜅 + (1 − 𝜆)𝜇)2 · ((1 + 𝜈)𝜅 + (1 + 𝜆)𝜇)2 .

It is straightforward to verify that on our domain 𝜅, 𝜇 > 0 and −1 < 𝜆, 𝜈 < 1 this
partial derivative only vanishes at 𝜈 = 𝜆. It is easy to check that this is indeed a
maximum.

We can thus focus on the case where 𝑃 has two horizontally aligned vertices (𝜅,𝜆)
and (𝜇,𝜆). From Formulae (5.5), it readily follows that the top and bottom vertices
are vertically aligned (see Figure 5.10). Let 𝜁+1 be the 𝑦-coordinate of the top vertex

Figure 5.10: The maximum width in the vertical direction is achieved
when the vertices of the circumscribed quadrilateral are horizontally

and vertically aligned.

of 𝑃 and −𝜉 − 1 be that of the bottom vertex. We calculate the area 𝐴 of 𝑃 in two
different ways. Since the diagonals of 𝑃 are orthogonal, we have 𝐴 =

(𝜅+𝜇+1)(𝜁+𝜉+2)
2

where 𝜅 + 𝜇 + 1 respectively 𝜁 + 𝜉 + 2 are the lengths of the horizontal and vertical
diagonal. On the other hand, 𝑃 can be decomposed into the union of 𝑃′ and four
triangles, each sharing an edge with 𝑃′ and a vertex with 𝑃. The sum of the areas
of these pieces gives 𝐴 = 2 + 𝜅 + 𝜇 + 𝜁+𝜉

2 . These two expressions for the area 𝐴 of 𝑃
yield the equation (𝜅 + 𝜇)(𝜁 + 𝜉) = 2. Thus if 𝜅 + 𝜇 > 2 then 𝜁 + 𝜉 < 1. We conclude
by observing that 𝜅+𝜇 > 2 is equivalent to the horizontal width being greater than 3
and 𝜁 + 𝜉 > 1 is equivalent to the vertical width being greater than 3. Since these
conditions cannot happen at the same time, the width of 𝑃 is at most 3.
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5.4.3 Quadrilateral circumscribed around a cross-polygon
Let ^2 ⊂ ℝ2 be the 2-dimensional cross-polygon, i.e., ^2 = conv(±𝑒1,±𝑒2) ⊂ ℝ2.
Here we are going to bound the width of inclusion-maximal ℤ-Δ2-free quadrilater-
als 𝑃 circumscribed around ^2. As above, it suffices to consider such quadrilaterals
whose width is greater than 3. We begin with some preliminary observations.

Switching to the 2-dimensional lattice generated by 𝑓1 B (1, 1) and 𝑓2 B (1,−1)
results in more manageable equations for the widths of 𝑃. Let us denote the basis
dual to the basis 𝑓1, 𝑓2 of the new lattice by 𝑓 ∗1 , 𝑓

∗
2 . Explicitly, 𝑓 ∗1 = 1

2(𝑒∗1 + 𝑒
∗
2) and 𝑓 ∗2 =

1
2(𝑒∗1 − 𝑒∗2). In this lattice, the cross-polygon which 𝑃 is circumscribed around has
vertices ± 𝑓1 and ± 𝑓2.

Notice that 𝑃 has a vertex in each of the four following regions

±
{
(𝑥, 𝑦) ∈ ℝ2 : − 1 < 𝑥 < 1, 𝑦 > 1

}
and ±

{
(𝑥, 𝑦) ∈ ℝ2 : 𝑥 > 1, −1 < 𝑦 < 1

}
,

which we will refer to as the top, bottom, right, and left regions, respectively. We
label the vertices of 𝑃 in the top and bottom regions as 𝑍 = (𝜅,𝜆), 𝑊 = (𝜇, 𝜈),
respectively, where −1 < 𝜅, 𝜇 < 1 and 𝜆,−𝜈 > 1. The vertices in the right and left
region are labeled 𝑌, 𝑋 respectively. Note that 𝑃 is completely determined by the
parameters 𝜅,𝜆, 𝜇, 𝜈 defining 𝑍 and𝑊 .

By Proposition 5.4.4, 𝑃 contains at least two interior lattice points since its width
is assumed to be greater than 3. Clearly, 0 is one interior lattice point of 𝑃. The
second interior point could be either ±(2, 0) or ±(0, 2). By symmetry, we may assume
without loss of generality that (0, 2) is the other interior point. This implies 𝜆 > 2
and that the top vertex 𝑍 of 𝑃 is extremal in the sense that the width with respect to
the directions 𝑓 ∗1 and 𝑓 ∗2 , i.e., width 𝑓 ∗

𝑖
(𝑃), is attained at 𝑍. We can express the left and

𝐴
𝐶

𝐵
𝐷

∗

∗ 𝐻1

𝐻2

𝑍

𝑍′

𝐽

𝑉1

𝑉2

𝑊

𝑊̃

∗

∗

Figure 5.11: (left) The cross-polygon in the transformed lattice. The top
vertex 𝑍 belongs to the dark grey region. The bottom vertex𝑊 belongs
to one of the four light grey subregions, labelled 𝐴, 𝐵, 𝐶, 𝐷. (right) The

case where𝑊 is in subregion 𝐶.
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right vertices of 𝑃 in terms of the parameters 𝜅,𝜆, 𝜇, 𝜈 as follows:

𝑋 = − 𝑓2 −
2

𝜆−1
𝜅+1 − 𝜈+1

𝜇+1

(
1, 𝜆 − 1

𝜅 + 1

)
, 𝑌 = 𝑓2 +

2
𝜈+1
𝜇−1 − 𝜆−1

𝜅−1

(
1, 𝜈 + 1

𝜇 − 1

)
.

The width with respect to the horizontal functional 𝑓 ∗1 + 𝑓 ∗2 is achieved at 𝑋 and 𝑌
and can thus be expressed as follows.

𝑤0 B width 𝑓 ∗1+ 𝑓
∗
2
(𝑃) =

(
𝑓 ∗1 + 𝑓 ∗2

)
(𝑌 − 𝑋) = 2 + 2

𝜈+1
𝜇−1 − 𝜆−1

𝜅−1
+ 2

𝜆−1
𝜅+1 − 𝜈+1

𝜇+1
.

We are now ready to prove the following.

Proposition 5.4.8. Let 𝑃 be a maximal ℤ-Δ2-free quadrilateral circumscribed around a
cross-polygon. Then width(𝑃) < 10

3 .

Proof. We have four cases depending on which subregion the bottom vertex 𝑊 lies
in; these subregions are denoted by 𝐴, 𝐵, 𝐶 and 𝐷 in the left part of Figure 5.11.
Since the setup is symmetric about the 𝑦-axis, it suffices to consider the cases 𝐴, 𝐵,
and 𝐶 as case 𝐷 is equivalent to case 𝐶.

Let’s start with case 𝐴. It turns out that it is enough to find the largest possible
width of 𝑃 with respect to the directions 𝑓 ∗1 , 𝑓 ∗2 , and 𝑓 ∗1 + 𝑓 ∗2 . Notice that the bottom
vertex 𝑊 of 𝑃 is not extremal with respect to any of those three width directions.
Moving 𝑊 upwards increases all three of those widths. Thus, we may move 𝑊 to
the line 𝑦 = −1, in which case 𝑃 degenerates to a triangle. We can consider this
triangle to be circumscribed around the three points 𝑓1, 𝑓2, and − 𝑓2, and thus it can
be regarded as circumscribed around case 1 from Table 5.1 (one needs to apply a
shearing to arrive at case 1), which has width less than or equal to 10

3 with respect to
those same three width directions. Hence, width(𝑃) < 10

3 .
Let’s now deal with case 𝐵. Here, the widths with respect to 𝑓 ∗1 and 𝑓 ∗2 are

achieved at the vertices 𝑍 and𝑊 :

𝑤1 B width 𝑓 ∗1
(𝑃) = 𝑓 ∗1 (𝑍 −𝑊) =

𝜅 − 𝜇

2 + 𝜆 − 𝜈
2 ,

𝑤2 B width 𝑓 ∗2
(𝑃) = 𝑓 ∗2 (𝑊 − 𝑍) =

𝜇 − 𝜅

2 + 𝜆 − 𝜈
2 .

The partial derivative of 𝑤1 with respect to 𝜇 is

𝜕𝑤0
𝜕𝜇

=
8(𝜅 − 𝜇)(𝜈 + 1)(𝜆 − 1)

(
(𝜆 − 1)(𝜅𝜇 − 1) − (𝜈 + 1)

(
𝜅2 + 1

) )( (𝜆−1
𝜅+1 (𝜇 + 1) − (𝜈 + 1)

) (
𝜈 + 1 − 𝜆−1

𝜅−1 (𝜇 − 1)
)
(𝜅2 − 1)

)2 . (5.6)

Within our constraints −1 < 𝜅, 𝜇 < 1, 𝜆 > 2, and 𝜈 < −1, the above expression
vanishes if and only if 𝜅 = 𝜇; it is positive for 𝜇 < 𝜅 and negative for 𝜇 > 𝜅.
Thus,𝑤0 is maximal along 𝜅 = 𝜇, where it is equal to 2+ 4

𝜆−𝜈−2 . By looking at the first
summands of𝑤1 and𝑤2, it can be seen that min{𝑤1, 𝑤2} is also maximal along 𝜅 = 𝜇.
We obtain width(𝑃) ≤ min{2 + 4

𝜆−𝜈−2 ,
𝜆−𝜈

2 }. Since 2 + 4
𝜆−𝜈−2 decreases when 𝜆−𝜈

2
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increases, and vice versa, the maximum is achieved when those expressions coincide,
which occurs at 𝜈 = 𝜆 − 6. Hence, width(𝑃) ≤ 3.

Finally, we deal with case 𝐶; see the right part of Figure 5.11. The width with
respect to 𝑓 ∗1 is achieved at 𝑍 and 𝑋, while the width with respect to 𝑓 ∗2 is achieved
at 𝑊 and 𝑍. Assume towards a contradiction that the widths with respect to the
directions 𝑓 ∗1 + 𝑓 ∗2 , 𝑓 ∗1 , and 𝑓 ∗2 are greater than or equal to 10

3 , i.e., 𝑤0, 𝑤1, 𝑤2 ≥ 10
3 .

Let 𝑍′ B 𝑍 −
(
0, 20

3
)

so that

𝑓 ∗1 (𝑍 − 𝑍′) = 𝑓 ∗1

(
0, 20

3

)
=

10
3 and 𝑓 ∗2 (𝑍′ − 𝑍) = 𝑓 ∗2

(
−

(
0, 20

3

))
=

10
3 .

Since 𝑤1 (resp. 𝑤2) is assumed to be at least 10
3 , there is a point of 𝑃 below the

line 𝐻1 (resp. 𝐻2) passing through 𝑍′ with slope −1 (resp. 1). In particular, vertex 𝑋
is below the line 𝐻1 and vertex 𝑊 is below the line 𝐻2, since they are the vertices
maximising the width along the respective directions.

We will use the following inequalities:

𝜆 ≤ 4 and 𝜅 ≥ 0. (5.7)

We first prove 𝜆 ≤ 4. An upper bound for 𝑤0 is given by the width with
respect to 𝑓 ∗1 + 𝑓 ∗2 of the triangle 𝑇 circumscribed around the cross-polygon with
vertex 𝑍 and opposite edge supported by the line 𝑦 = −1. The bottom vertices of 𝑇
are 𝑉1 B (−1 − 2(𝜅+1)

𝜆−1 ,−1) and 𝑉2 B (1 − 2(𝜅−1)
𝜆−1 ,−1). Thus, width 𝑓 ∗1+ 𝑓

∗
2
(𝑇) = 2 + 4

𝜆−1 .
Since by assumption 𝑤0 ≥ 10

3 , so is this larger width. We obtain 𝜆 ≤ 4.
To prove that 𝜅 ≥ 0, consider the bottom-left vertex 𝑉1 of the triangle 𝑇 defined

in the previous paragraph. Since the vertex 𝑋 of 𝑃 lies below 𝐻1, so does 𝑉1, and
thus−2− 2(𝜅+1)

𝜆−1 ≤ 𝜅+𝜆− 20
3 , which is equivalent to 20

3 +𝜅− 17
3 𝜆+𝜅𝜆+𝜆2 ≥ 0. Consider

the left side of the previous inequality as a family of functions 𝑓𝜅 : [2, 4] → ℝ on the
closed interval [2, 4] for parameters𝜅 ∈ [−1, 1]. Observe that𝜅 ∈ [−1, 1] is admissible
if and only if there exists 𝜆 ∈ [2, 4] such that 𝑓𝜅(𝜆) ≥ 0 (we include the case 𝜆 = 2).
Then 𝜅 ∈ [−1, 1] is admissible if the maximum of 𝑓𝜅 on [2, 4] is non-negative. It is
straightforward to show

max
𝜆∈[2,4]

𝑓𝜅(𝜆) =
{

5𝜅 𝜅 > −1
3

3𝜅 − 2
3 otherwise

at 𝜆 =

{
4 𝜅 > −1

3
2 otherwise

Hence, 𝜅 ≥ 0 are the only admissible parameters.
Next, we aim to bound 𝑤0 from above by considering a different quadrilateral 𝑃

circumscribed around the cross-polygon, with top vertex 𝑍 and bottom vertex 𝑊̃ B
(𝜅,𝜆 − 𝜅 − 17

3 ) (note that the inequalities from (5.7) guarantee that 𝜆 − 𝜅 − 17
3 < −1).

It is straightforward to compute that 𝑤0 B width 𝑓 ∗1+ 𝑓
∗
2
(𝑃) = 2+ 4

𝜅+ 11
3

. Since 𝜅 ≥ 0, we

get that 𝑤0 ≤ 2 + 12
11 < 10

3 .
To reach a contradiction, we show that 𝑤0 ≤ 𝑤0. Consider the partial derivatives

of 𝑤0 with respect to 𝜇 and 𝜈, the coordinates of the vertex 𝑊 . The first was
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already computed in Equation (5.6), and we observed that the maximum is achieved
along 𝜇 = 𝜅. The second is computed here.

𝜕𝑤0
𝜕𝜈

=
2

(1 − 𝜇)
(
𝜈+1
𝜇−1 − 𝜆−1

𝜅−1

)2 + 2

(1 + 𝜇)
(
𝜆−1
𝜅+1 − 𝜈+1

𝜇+1

)2 (5.8)

Since −1 < 𝜇 < 1, Equation (5.8) shows that 𝜕𝑤0
𝜕𝜈 > 0. Now, consider the in-

tersection point 𝐽 of the lines 𝐻2 and {𝑥 = 1}. It’s straightforward to compute 𝐽 =
(1,𝜆 − 𝜅 − 17

3 ). The point 𝐽 has largest 𝑦-coordinate of all points in 𝐶 on or below 𝐻2
(see Figure 5.11). Thus, 𝜈 ≤ 𝜆 − 𝜅 − 17

3 . So, moving 𝑊 horizontally to the line 𝑥 = 𝜅
and then vertically to the line 𝑦 = 𝜆−𝜅− 17

3 increases the width𝑤0, and thus𝑤0 ≤ 𝑤0.
Combined with 𝑤0 < 10

3 , we get that width(𝑃) ≤ 𝑤0 < 10
3 , a contradiction. □

This concludes the proof of Theorem 5.4.3.

5.5 The ℝ-flatness constant of Δ2

This section focuses on theℝ-flatness constant. The first goal is to prove the following
theorem (case 𝐴 = ℝ of Theorem 5.1.1).

Theorem 5.5.1 (Case 𝐴 = ℝ of Theorem 5.1.1). Fltℝ2 (Δ2) = 2.

It is straightforward to verify that the cross-polygon^2 B conv(±𝑒1,±𝑒2) isℝ-Δ2-
free and has width 2, and hence Fltℝ2 (Δ2) ≥ 2. To prove Theorem 5.5.1, we thus need
to bound the ℝ-flatness constant of Δ2 from above by 2. By Lemmas 5.2.5 and 5.2.3,
it suffices to bound the lattice width of inclusion-maximal ℝ-Δ2-free closed convex
sets 𝐶 by 2. By Proposition 5.3.3, if 𝐶 is unbounded, its lattice width is bounded by 1.
Hence, it remains to study the width of the bounded𝐶’s which, by Theorem 5.1.2, are
polygons. Our strategy is to show that any polygon 𝑃 ⊂ ℝ2 with width greater than
2 is not ℝ-Δ2-free. A key ingredient in the proof is the notion of rational diameter:

Definition 5.5.2. Let 𝐾 ⊂ ℝ𝑑 be a convex body. The rational diameter of 𝐾 is the largest
dilation of an ℝ-unimodular copy of the unit segment [0, 1] which is contained in 𝐾,
i.e.

𝑙(𝐾) B max
{
𝑙 ∈ ℝ≥0 : 𝑙𝑆 ⊆ 𝐾 for some ℝ-unimodular copy 𝑆 of [0, 1]

}
.

Notation 5.5.3. In what follows, we will always assume that the rational diameter of𝑃
is achieved with a horizontal line segment. This we can do without loss of generality,
because, were this not the case, we could apply an ℝ-unimodular transformation
mapping the rational diameter into a horizontal segment. We thus use the following
shorthand notation for horizontal line segments 𝑆 ⊂ ℝ𝑑: [𝑥, 𝑦] B conv(𝑥𝑒1, 𝑦𝑒1).

The following lemma shows that for polygons the width is bounded from above
by twice the rational diameter, i.e., width(𝑃) ≤ 2𝑙 where 𝑙 is the rational diameter
of 𝑃.
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Lemma 5.5.4. Let 𝑃 ⊂ ℝ2 be a polygon with rational diameter 𝑙 = 1 + 2𝑎 > 0 (that
is, 𝑎 > −1

2 ), achieved with 𝑆 = [−𝑎, 1 + 𝑎] ⊆ 𝑃. Then 𝑃 ⊂
{
(𝑥, 𝑦) ∈ ℝ2 : − 𝑙 ≤ 𝑦 ≤ 𝑙

}
.

Proof. The affine line {𝑦 = 𝑙} is covered by segments 𝑆𝑏 B 𝑆 + (𝑙𝑏, 𝑙) for 𝑏 ∈ ℤ.
First, notice that we must have (𝑥, 𝑙) ∉ int(𝑃) for all (𝑥, 𝑙) ∈ 𝑆0, as otherwise the line
segment with end points (𝑥, 0) and (𝑥, 𝑙) could be extended upwards and still be
contained in 𝑃, contradicting that 𝑙 is maximal. Now, the same argument holds for
the points in the segments 𝑆𝑏 for any 𝑏 ∈ ℤ by applying an appropriate unimodular
transformation (a shearing). Since the segments 𝑆𝑏 cover the horizontal line at
height 𝑙, all points (𝑥, 𝑙) with 𝑥 ∈ ℝ must be disjoint from int(𝑃). Applying a
reflection about the 𝑥-axis gives us that all (𝑥,−𝑙) with 𝑥 ∈ ℝ must be disjoint
from int(𝑃). Thus, 𝑃 ⊂

{
(𝑥, 𝑦) ∈ ℝ2 : − 𝑙 ≤ 𝑦 ≤ 𝑙

}
as desired. □

Recall that for the proof of Theorem 5.5.1 we are only interested in polygons of
width strictly larger than 2. Lemma 5.5.4 shows that we then only need to consider
polygons with rational diameter 𝑙 > 1. The following lemma will allow us to also
bound the rational diameter from above.

Lemma 5.5.5. Let 𝑃 ⊂ ℝ2 be an ℝ-Δ2-free polygon with rational diameter 𝑙 = 1 +
2𝑎 > 1 (that is, 𝑎 > 0), achieved with 𝑆 = [−𝑎, 1 + 𝑎] ⊆ 𝑃. Then int(𝑃) is disjoint
from the segments [−𝑎, 𝑎] + (𝑏,±1), for all 𝑏 ∈ ℤ. In particular, if 𝑎 ≥ 1

2 then 𝑃 ⊂{
(𝑥, 𝑦) ∈ ℝ2 : − 1 ≤ 𝑦 ≤ 1

}
and width(𝑃) ≤ 2.

(𝑥+2,1)

Δ

Figure 5.12: Forbidden segments from Lemma 5.5.5.

Proof. Consider the point (𝑥 + 𝑏, 1), for some −𝑎 < 𝑥 < 𝑎 and 𝑏 ∈ ℤ. The convex hull
of this point and the points (𝑥, 0), (𝑥 + 1, 0) ∈ 𝑃 is an ℝ-unimodular copy Δ of Δ2. If
the point (𝑥+ 𝑏, 1) were contained in the interior of 𝑃, the Minkowski difference 𝑃÷Δ
would be 2-dimensional. By Corollary 5.2.18, this contradicts 𝑃 being ℝ-Δ2-free.
Therefore, (𝑥 + 𝑏, 1) ∉ int(𝑃), for all 𝑥 + 𝑏 ∈ int([−𝑎, 𝑎]) + ℤ. The same argument
holds for all points (𝑥 + 𝑏,−1). Thus, int(𝑃) is disjoint from the interiors of all
segments [−𝑎, 𝑎] + (𝑏,±1).

In fact, int(𝑃) is disjoint from not just the interior, but from the whole seg-
ment [−𝑎, 𝑎] + (𝑏,±1) for all 𝑏 ∈ ℤ: suppose otherwise that one of the endpoints is
contained in the interior of 𝑃. Then, there exists an open ball around that endpoint
which is contained in the interior of 𝑃. This yields a contradiction, as the interiors
of the segments must be disjoint from int(𝑃).
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Suppose 𝑙 ≥ 2, that is, 𝑎 ≥ 1
2 . Then the interior of 𝑃 is disjoint from all points (𝑥 +

𝑏,±1) with −1
2 ≤ 𝑥 ≤ 1

2 and 𝑏 ∈ ℤ, which cover the entire horizontal lines at height 1
and −1. Thus 𝑃 must be contained in the strip

{
(𝑥, 𝑦) ∈ ℝ2 : − 1 ≤ 𝑦 ≤ 1

}
, which

has width 2. □

We are now ready to prove Theorem 5.5.1. We use the bounds on the lattice
diameter from the previous lemmas and the lower bound on the width to show that
certain areas of the plane are disjoint from the polygon 𝑃. Eventually this allows us
to bound the polygon so tightly that we reach a contradiction.

Proof of Theorem 5.5.1. Let 𝑃 ⊂ ℝ2 be an ℝ-Δ2-free polygon, with rational diameter 𝑙
and assume towards a contradiction that width(𝑃) > 2. We may assume without loss
of generality that the rational diameter is achieved with 𝑆 = [−𝑎, 1 + 𝑎], where 𝑙 =
1 + 2𝑎. By Lemma 5.5.4, we have 𝑃 ⊂

{
(𝑥, 𝑦) ∈ ℝ2 : − 𝑙 ≤ 𝑦 ≤ 𝑙

}
, and thus 2𝑙 ≥

width(𝑃) > 2, that is, 𝑙 > 1, i.e. 𝑎 > 0. By Lemma 5.5.5, int(𝑃) is disjoint from all
segments [−𝑎, 𝑎] + (𝑏,±1) with 𝑏 ∈ ℤ, and, since width(𝑃) > 2, it follows that 𝑎 < 1

2 .
Since width(𝑃) > 2, there exists a point (𝑟, 𝑠) ∈ 𝑃 with either 1 < 𝑠 ≤ 𝑙 or −𝑙 ≤

𝑠 < 1. Due to the symmetry about the 𝑥-axis, we may assume that 1 < 𝑠 ≤ 𝑙. We
may also assume that (𝑟, 𝑠) is the point of 𝑃 with largest 𝑦-coordinate. Furthermore,
we may assume that 𝑎 ≤ 𝑟 ≤ 1 − 𝑎; otherwise, we apply a shearing so that the 𝑥-
coordinate of our point would satisfy this condition. Let 𝐿1 be the line through

(𝑟,𝑠)

(𝑟,𝑠−𝑙)

𝐶1 𝐶2

𝐶3

Figure 5.13: Regions 𝐶1, 𝐶2, 𝐶3 from Claims 1 and 2.

the points (𝑟, 𝑠) and (1 + 𝑎, 0), and 𝐿2 the line through (𝑟, 𝑠) and (−𝑎, 0). We define
affine pointed cones 𝐶1 and 𝐶2 with apex in (−𝑎, 0) respectively in (1 + 𝑎, 0), and
rays bounding them above and below, parallel to 𝐿1 and 𝐿2 for 𝐶1, respectively 𝐿2
and 𝐿1 for 𝐶2. Precisely, 𝐶1 B (−𝑎, 0) + cone((𝑟 − 1 − 𝑎, 𝑠), (−𝑟 − 𝑎,−𝑠)) and 𝐶2 B
(1 + 𝑎, 0) + cone((𝑟 + 𝑎, 𝑠), (−𝑟 + 1 + 𝑎,−𝑠)).
Claim 1. The regions 𝐶1 and 𝐶2 are disjoint from int(𝑃).

Proof of Claim 1. The arguments for the affine cones 𝐶1 and 𝐶2 are the same, so we
conduct the proof for 𝐶1.

Since the rational diameter is achieved at 𝑆 B [−𝑎, 1 + 𝑎], no other point on the
horizontal axis can be in 𝑃. If a point (𝑥, 𝑦) in the interior of 𝐶1 with 𝑦 < 0 were
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in 𝑃, the segment connecting it to (𝑟, 𝑠) would also be in 𝑃, which is a contradiction
as this segment intersects the horizontal axis outside of 𝑆.

Suppose now that a point (𝑥, 𝑦) in the interior of 𝐶1 with 0 < 𝑦 < 1 were in 𝑃. The
horizontal segment 𝑆′ with an endpoint in (𝑥, 𝑦) and one in 𝐿1 would then also be
in 𝑃. Since 𝑆′ intersects the boundary ray of 𝐶1 parallel to 𝐿1 in an interior point, 𝑆′
strictly contains a segment congruent to 𝑆. Since 𝑆′ has lattice length strictly larger
than 𝑙, we obtain a contradiction to 𝑙 being the rational diameter of 𝑃.

Finally, no point (𝑥, 𝑦) ∈ 𝐶1 with 𝑦 ≥ 1 can be in𝑃 because it would force𝑃 to con-
tain the lattice point (0, 1) in its interior, and thus a small translate of conv((0, 0), (0, 1), (1, 0, ))
would be contained in the interior of 𝑃, a contradiction to the hypothesis that 𝑃 is ℝ-
Δ2-free.

These three cases together show that no point in the interior of 𝐶1 can be in 𝑃,
which is equivalent to our claim that 𝐶1 is disjoint from the interior of 𝑃. □

Let 𝐶3 B (𝑟, 𝑠− 𝑙)+cone((𝑟−1− 𝑎, 𝑠− 𝑙), (𝑟+ 𝑎, 𝑠− 𝑙)) be the affine cone with apex
in (𝑟, 𝑠 − 𝑙), and two boundary rays lying on the two lines passing through (𝑟, 𝑠 − 𝑙)
and the two endpoints of 𝑆 respectively.
Claim 2. The region 𝐶3 is disjoint from int(𝑃).

Proof of Claim 2. Observe that the point 𝑞 B (𝑟, 𝑠−1−2𝑎) cannot be in int(𝑃), because
if any point 𝑞′ vertically below 𝑞 were in 𝑃, the segment with endpoints 𝑞′ and (𝑟, 𝑠)
would have lattice length strictly larger than 𝑆, a contradiction.

If any point 𝑝 ∈ int(𝐶3) were also in 𝑃, the triangle conv(𝑝, (−𝑎, 0), (1 + 𝑎, 0))
would be in 𝑃. However, this triangle contains 𝑞 in its interior, a contradiction. □

Recall 𝑠 is assumed to have the largest 𝑦-coordinate of all points of 𝑃. Let 𝐿5 be
the line parallel to the 𝑥-axis and going through the point (0, 𝑠−2). Since 𝑃 has width
greater than 2, 𝑃 intersects 𝐿5 in a line segment [𝑎, 𝑏] of positive length which by the
previous claims is not in int(𝐶𝑖) for 𝑖 = 1, 2, 3. By symmetry, we may assume [𝑎, 𝑏]
lies between 𝐶1 and 𝐶3. Furthermore, suppose 𝑎 is to the left of 𝑏.

The key idea of the proof is to consider the family of quadrilaterals (see also
Figure 5.14)

𝑄𝑥 B conv((−𝑎, 0), (1+𝑎, 0), (𝑟, 𝑠), (𝑥, 𝑠−2)) for (𝑥, 𝑠 − 2) ∈ ℝ2 between 𝐶1 and 𝐶3.

Note 𝑥 is the only free parameter of this family. We think of the elements of this
family to be quadrilaterals where the bottom vertex can move. Indeed,𝑄𝑥′ is obtained
from 𝑄𝑥 via a piecewise linear transformation 𝜓𝑥′−𝑥 : ℝ2 → ℝ2 which is given as
follows: below the 𝑥-axis, apply the shearing which maps (𝑥, 𝑠 − 2) to (𝑥′, 𝑠 − 2);
above, apply the identity. We want to show that every 𝑄𝑥 of this family contains
an ℝ-translation of Δ̃ B conv(0,−𝑒1, 𝑒2). We do this in two stages: 1) show if 𝑄𝑥′ is
obtained from 𝑄𝑥 by moving the bottom vertex further to the left and 𝑄𝑥 contains
an ℝ-translation of Δ̃, then 𝑄𝑥′ does so as well; 2) show that the quadrilateral 𝑄𝑥̄ for
the largest possible 𝑥̄ contains an ℝ-translation of Δ̃.

Granting this statement for a moment, let us complete the proof of Theorem 5.5.1.
There is an 𝑥 ∈ ℝ such that 𝑄𝑥 = conv((−𝑎, 0), (1 + 𝑎, 0), (𝑟, 𝑠), 𝑏). Suppose Δ is
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an ℝ-translation of Δ̃ that is contained in 𝑄𝑥 . Our goal is to show that 𝑃𝑥÷Δ is 2-
dimensional where 𝑃𝑥 is the pentagon conv(𝑄𝑥 , 𝑎).

Consider the horizontal line segment 𝐵 which forms the base of Δ. Note that 𝐵
lies below the 𝑥-axis: otherwise, the vertex 𝑣 of Δ which is a translation of 𝑒2 would
have 𝑦-coordinate at least 1, which forces its 𝑥-coordinate to be less than 1 − 𝑎;
this in turn forces the vertex of Δ corresponding to −𝑒1 to have 𝑥-coordinate less
than −𝑎, which is a contradiction since no such point lies in 𝑄𝑥 . Thus, if Δ intersects
the boundary of the pentagon 𝑃𝑥 , then it does it in a single point that is contained
in the interior of the respective facet of 𝑃𝑥 . Since the vertex of Δ corresponding
to −𝑒1 lies in the interior of 𝑃𝑥 , it follows that at most two vertices of Δ lie on
the boundary of 𝑃𝑥 . With Lemma 5.2.16 it’s straightforward to show that 𝑃𝑥÷Δ is 2-
dimensional. By Corollary 5.2.18, it follows that𝑃𝑥 isn’tℝ-Δ2-free. A contradiction to
the assumption width(𝑃) > 2. Therefore, an ℝ-Δ2-free polygon 𝑃 has width(𝑃) ≤ 2.
Thus, Fltℝ2 (Δ2) = 2.

It remains to prove the two claims from above.

Claim 3. Suppose𝑄𝑥 contains a translation Δ of Δ̃. Then𝑄𝑥′ also contains a translation Δ′

of Δ̃, for 𝑥′ ≤ 𝑥 and (𝑥′, 𝑠 − 2) ∉ 𝐶𝑖 for all 𝑖 = 1, 2, 3.

Proof of Claim 3. Consider the horizontal line segment 𝐵 which forms the base of Δ.
With the same argument as above, it follows that 𝐵 lies below the 𝑥-axis.

Let 𝑥′ ≤ 𝑥. Clearly, the image of 𝐵 under the transformation 𝜓𝑥′−𝑥 is the
segment 𝐵′ B 𝐵 + (𝑥′ − 𝑥, 0), which is thus contained in 𝑄𝑥′. In order to show
that Δ′ B Δ+(𝑥′−𝑥, 0) is contained in𝑄𝑥′, it remains to prove that 𝑣′ B 𝑣+(𝑥′−𝑥, 0)
is contained in 𝑄𝑥′. Note 𝑣′ and 𝑣 are both above the 𝑥-axis. Since 𝑄𝑥 and 𝑄𝑥′ co-
incide above the 𝑥 axis, 𝑣 lies in both. Since 𝑣′ lies to the left of 𝑣, it must also lie to
the left of 𝐿1. Since 𝐿2, the line through (−𝑎, 0) and (𝑟, 𝑠), has slope greater than or
equal to 1, 𝑣′ must be to the right of it; otherwise, the left vertex of 𝐵′, which lies on
the line through 𝑣′ with slope 1, would also be to the left of 𝐿2, and thus contained
in 𝐶1, a contradiction. Thus Δ′ is contained in 𝑄𝑥′. □

We now want to show that, letting (𝑥̄ , 𝑠−2)be the right-most point between int(𝐶1)
and int(𝐶3),𝑄𝑥̄ contains anℝ-translation of Δ̃. Explicitly we have 𝑥̄ =

𝑟(𝑠−2)+(1+𝑎)(1−2𝑎)
𝑠−1−2𝑎 .

Let 𝐿1, 𝐿2, 𝐿3, 𝐿4 be the lines defining the boundary of 𝑄𝑥̄ : 𝐿1 is the line through the
points (𝑟, 𝑠) and (1+ 𝑎, 0), and the others are chosen to lie in counterclockwise order
along the boundary of 𝑄𝑥̄ . Explicitly,

𝐿1 = {(1 + 𝑎, 0) + 𝑡1(𝑟 − 1 − 𝑎, 𝑠) : 𝑡1 ∈ ℝ} ,
𝐿3 = {(𝑥̄ , 𝑠 − 2) + 𝑡3(−𝑎 − 𝑥̄ , 2 − 𝑠) : 𝑡3 ∈ ℝ} ,
𝐿4 = {(1 + 𝑎, 0) + 𝑡4(𝑟 − 1 − 𝑎, 𝑠 − 1 − 2𝑎) : 𝑡4 ∈ ℝ}

=
{
(𝑥̄ , 𝑠 − 2) + 𝑡′4(1 + 𝑎 − 𝑥̄ , 2 − 𝑠) : 𝑡′4 ∈ ℝ

}
.

The lines 𝐿1 − 𝑒2 and 𝐿4 intersect at 𝑡1 = 𝑡4 = 1
1+2𝑎 in the point 𝛽 = (𝛽1, 𝛽2) =

(1 + 𝑎 + 𝑟−1−𝑎
1+2𝑎 ,

𝑠−1−2𝑎
1+2𝑎 ). Both the points 𝛽 and 𝛽 + 𝑒2 are in 𝑄𝑥̄ . The intersection

between 𝐿4 and 𝐿3 + 𝑒1, obtained at 𝑡3 = 𝑡′4 = 1
1+2𝑎 , is the point 𝛼 = (𝛼1, 𝛼2) =
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𝐿1

𝐿4

𝐿3
𝑄𝑥̄

(𝑥̄ ,𝑠−2)

𝛼+Δ̃

(𝑟,𝑠)

𝛽
𝛼

Figure 5.14: The quadrilateral 𝑄𝑥̄ and the lines 𝐿1 , 𝐿3 , 𝐿4.

(𝑥̄ + 1+𝑎−𝑥̄
1+2𝑎 ,

(𝑠−2)2𝑎
1+2𝑎 ); and both 𝛼 and 𝛼 − 𝑒1 are in 𝑄𝑥̄ . Since 𝑠 > 1 and 0 < 𝑎 < 1

2 , we
have 𝛽2 − 𝛼2 =

(𝑠−1)(1−2𝑎)
1+2𝑎 > 0, or equivalently 𝛼2 ≤ 𝛽2. Hence 𝛼 + Δ̃ and 𝛽 + Δ̃ are

both contained in 𝑄𝑥̄ (recall Δ̃ B conv(0,−𝑒1, 𝑒2)). □

5.5.1 Inclusion-maximal ℝ-Δ2-free convex bodies in dimension 2
In the previous section, we have established the maximum width ofℝ-Δ2-free convex
bodies. We now devote our attention to inclusion-maximal ℝ-Δ2-free convex bodies.
We have seen in Theorem 5.1.2 that inclusion-maximal ℝ-Δ2-free convex bodies are
in fact always polytopes. It would be interesting to have a complete characterisation
of these polytopes, in analogy to the classification of maximal hollow 2-bodies of
Hurkens [52]. Note that hollow convex bodies are ℤ-{0}-free convex bodies.

Here, we will see that the situation for ℝ-Δ2-free bodies is more intricate than for
hollow ones. We construct infinite families ofℝ-Δ2-free bodies but cannot classify all
such bodies. It might thus be of particular interest to investigate the special class of
those inclusion-maximal ℝ-Δ2-free polygons which achieve the maximum width 2.
Of these, we only know two examples (up to ℝ-unimodular equivalence): the cross-
polygon conv(±𝑒1,±𝑒2) and the triangle conv(𝑒1, 𝑒2,−𝑒1 − 𝑒2), see Figure 5.15.

Figure 5.15: Maximal ℝ-Δ2-free polygons of width 2, with inscribed ℝ-
unimodular triangles.

To discuss examples of maximal ℝ-Δ2-free polygons, we need the notion of locked
facet. A facet 𝐹 of a polygon 𝑃 defines two half-planes, whose boundary is the affine
line spanned by the facet 𝐹. We say that a point 𝑥 is beyond the facet 𝐹 of 𝑃 if it lies
in the half-plane defined by 𝐹 which does not contain the interior int(𝑃), while 𝑥 is
beneath 𝐹 if it lies in the same half-plane as 𝑃.
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Definition 5.5.6. A facet 𝐹 of an ℝ-Δ2-free polygon 𝑃 is locked if for any 𝑥 ∈ ℝ2

beyond 𝐹, an ℝ-unimodular copy of Δ2 is contained in the interior of conv(𝑃, 𝑥).

Clearly all facets of an ℝ-Δ2-free polygon 𝑃 are locked if and only if 𝑃 is maximal.
Indeed, any point outside of 𝑃 must be beyond at least one facet, and thus the
polygon obtained by adding this point to 𝑃 would by the definition of locked facet
contain an ℝ-unimodular triangle in its interior.

The following characterisation of locked facets will play an important role in our
study of maximal ℝ-Δ2-free polygons.

Proposition 5.5.7. Let 𝑃 ⊂ ℝ2 be an ℝ-Δ2-free polygon. Then a facet 𝐹 of 𝑃 is locked
if and only if 𝑃 contains an ℝ-unimodular copy Δ of Δ2 such that the face ℱ B 𝐹 ∩ Δ

of Δ is not empty, lies in the relative interior of 𝐹 and the face ℓ of Δ that is opposite to ℱ
satisfies dim(𝑃÷ℓ ) = 2.

In the proof of Proposition 5.5.7, we use the following statement which can be
straightforwardly checked.

Proposition 5.5.8. Let 𝜎1, 𝜎2 ⊂ ℝ2 be two 2-dimensional polyhedral cones. Then dim(𝜎1∩
𝜎2) = 2 if and only if one of the following conditions are satisfied:

1. 𝜎1 ⊂ 𝜎2 or 𝜎2 ⊂ 𝜎1; or

2. there exists a ray 𝜌 of 𝜎1 that is contained in the interior of 𝜎2 and vice versa.

Proof of Proposition 5.5.7. Suppose the facet 𝐹 = [𝑎, 𝑏] of 𝑃 is locked (𝑎, 𝑏 ∈ ℝ2).
Let 𝜂 ∈ ℝ2 be an outer facet normal of 𝐹. The points 𝑥𝑛 B 1

2(𝑎 + 𝑏) + 1
𝑛𝜂 for 𝑛 ∈ ℕ

are beyond 𝐹. Hence for every 𝑛 ∈ ℕ there exists an ℝ-unimodular copy 𝑆𝑛 of Δ2
that is contained in the interior of 𝑃𝑛 B conv(𝑃, 𝑥𝑛). Note 𝑆𝑛 is an ℝ-translation of
a ℤ-unimodular copy of Δ2 that is contained in 𝑃1 +[0, 1]2. Since 𝑃1 +[0, 1]2 contains
only finitely manyℤ-unimodular copies ofΔ2, by restricting to an appropriate subse-
quence, we may assume that 𝑆𝑛 is anℝ-translation of exactly one fixedℤ-unimodular
copy Δ̃ of Δ2 for all 𝑛, i.e., 𝑆𝑛 = Δ̃ + 𝛿𝑛 for some 𝛿𝑛 ∈ ℝ2. Since there exists a (large
enough) natural number 𝑁 ∈ ℕ such that 𝛿𝑛 is in the compact set [−𝑁, 𝑁]2 for
all 𝑛, the sequence of 𝛿𝑛’s has a convergent subsequence. To simplify notation, we
abuse notation and use the same notation (𝛿𝑛)𝑛∈ℕ, (𝑆𝑛)𝑛∈ℕ for these subsequences.
Then Δ B lim𝑛→∞ 𝑆𝑛 is contained in 𝑃 and intersects the facet 𝐹 in a non-empty
face ℱ B 𝐹 ∩ Δ of Δ.

Let ℓ be the face of Δ opposite to ℱ . Since an ℝ-translation of Δ is in the interior
of 𝑃𝑛 we have dim(𝑃𝑛÷Δ) = 2 (see Lemma 5.2.17). We claim dim(𝑃÷ℓ ) = 2. Assume
towards a contradiction dim(𝑃÷ℓ ) ≤ 1. This is only possible if ℓ is an edge, say [𝑐1, 𝑐2]
for 𝑐1, 𝑐2 ∈ ℝ2 (as otherwise 𝑃÷ℓ is just a translation of 𝑃, and thus full-dimensional).
By Lemma 5.2.16, 𝑃÷[𝑐1, 𝑐2] = (𝑃 − 𝑐1) ∩ (𝑃 − 𝑐2). For sufficiently small 𝜀 > 0, we
have (𝑐𝑖 + 𝜀𝐵2) ∩ 𝑃 = (𝑐𝑖 + 𝜀𝐵2) ∩ 𝑃𝑛 for 𝑖 = 1, 2 and 𝑛 ∈ ℕ. Thus

(𝑃𝑛÷Δ) ∩ 𝜀𝐵2 =
⋂

𝑣∈𝑉(Δ)
(𝑃𝑛 − 𝑣) ∩ 𝜀𝐵2 ⊂

⋂
𝑖∈{1,2}

(𝑃 − 𝑐𝑖) ∩ 𝜀𝐵2 = (𝑃÷ℓ ) ∩ 𝜀𝐵2,
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where 𝑉(Δ) denotes the set of vertices of Δ. Hence dim(𝑃𝑛÷Δ) ≤ 1, a contradiction.
If ℱ is contained in the relative interior of 𝐹, the implication “⇒” follows. Sup-

pose otherwise, i.e. ℱ intersects 𝐹 in an endpoint. Note it is not possible that ℱ inter-
sects 𝐹 in both endpoints (since the end points 𝑎, 𝑏 of 𝐹 will remain vertices of 𝑃𝑛 for
sufficiently large 𝑛 ∈ ℕ). Suppose 𝑎 ∈ ℱ . In particular, 𝑎 is a vertex of Δ. Let 𝑎1 B 𝑎

and 𝑎2 be the two vertices of Δ that are not contained in the relative interior of 𝐹.
Call Δ’s third vertex 𝑐. There exists a fixed 𝜀 > 0 such that (𝑃𝑛 − 𝑎𝑖) ∩ 𝜀𝐵2 = 𝜎(𝑛)𝑎𝑖 ∩ 𝜀𝐵2

and (𝑃 − 𝑎𝑖) ∩ 𝜀𝐵2 = 𝜎𝑎𝑖 ∩ 𝜀𝐵2 for some polyhedral cones 𝜎(𝑛)𝑎𝑖 , 𝜎𝑎𝑖 ⊂ ℝ2 (𝑖 = 1, 2).
However, around 𝑐 we might need to choose 𝜀𝑛 > 0 depending on 𝑛 ∈ ℕ such
that (𝑃𝑛 − 𝑐) ∩ 𝜀𝑛𝐵2 = 𝜎𝑐 ∩ 𝜀𝑛𝐵2 for some polyhedral cone 𝜎𝑐 ⊂ ℝ2. In addi-
tion, (𝑃 − 𝑐) ∩ 𝜀𝐵2 = 𝜎′𝑐 for a possibly different cone 𝜎′𝑐 ⊂ ℝ2 and we might need to
decrease the 𝜀 from above. Note if 𝜀𝑛 needs to be adjusted with 𝑛 ∈ ℕ, then 𝜀𝑛 → 0
as 𝑛 → ∞. Furthermore, 𝜎(𝑛)𝑎2 = 𝜎𝑎2 doesn’t change for sufficiently small 𝜀 > 0.
Indeed, only one ray of 𝜎(𝑛)𝑎 changes, namely the ray 𝜌(𝑛)𝑎 B ℝ≥0(1

2(𝑏 − 𝑎) + 1
𝑛𝜂).

Since dim(𝑃𝑛÷Δ) = 2 for all 𝑛 ∈ ℕ (where (𝑃𝑛÷Δ) ∩ 𝜀𝑛𝐵2 = 𝜎(𝑛)𝑎 ∩ 𝜎𝑎2 ∩ 𝜎𝑐 ∩ 𝜀𝑛𝐵2

for all sufficiently large 𝑛 ∈ ℕ) and dim(𝑃÷Δ) ≤ 1, it follows with Proposition 5.5.8
that 𝜌(𝑛)𝑎 lies in the relative interior of 𝜎𝑎2 ∩𝜎𝑐 . Since dim(𝑃÷Δ) ≤ 1, one ray of 𝜎𝑎2 ∩𝜎′𝑐
is 𝜌𝑎 = ℝ≥0

1
2(𝑏 − 𝑎). Hence, 𝜌𝑎 ∩ 𝜀𝐵2 ⊂ 𝑃÷Δ for some sufficiently small 𝜀 > 0, and

thus we can move Δ within 𝑃 such that it intersects the facet 𝐹 in its relative interior.
For the reverse implication suppose 𝑥 is strictly beyond the facet 𝐹 of 𝑃. Then the

vertices of ℱ lie in the interior of conv(𝑃, 𝑥), and thus for sufficiently small 𝜀 > 0,
it follows that (𝑃÷ℓ ) ∩ 𝜀𝐵2 ⊂ conv(𝑃, 𝑥)÷Δ. That is, dim(conv(𝑃, 𝑥)÷Δ) = 2, i.e.,
an ℝ-translation of Δ is contained in the interior of conv(𝑃, 𝑥) by Lemma 5.2.17. □

Certainly, the previous proof heavily relies on properties of 2-dimensional geom-
etry. It would be interesting to know a characterisation of locked facets similar to
Proposition 5.5.7 in higher dimensions:

Question 5.5.9. Find a characterisation of ℝ-locked facets in 𝑑 dimensions for 𝑑 ≥ 3
similar to the one in Proposition 5.5.7.

The following statements will be useful to prove that facets of our candidate
maximal polygons are locked and follow by Proposition 5.5.7.

Corollary 5.5.10. Let 𝑃 be an ℝ-Δ2-free polygon containing Δ = conv(𝑣1, 𝑣2, 𝑣3), an ℝ-
unimodular copy of Δ2. Suppose that each vertex 𝑣𝑖 lies in the relative interior of a distinct
facet 𝐹𝑖 of 𝑃. If the lines spanned by 𝐹2 and 𝐹3 meet at a point, then 𝐹1 is locked. See
Figure 5.16.

Proof. By the assumption,Δ is anℝ-unimodular copy ofΔ2 that is contained in𝑃 such
that 𝐹1∩Δ is a vertex ofΔ that lies in the relative interior of 𝐹1. Since the lines spanned
by 𝐹2, 𝐹3 intersect in a point beneath 𝐹1, it follows that dim(𝑃÷ conv(𝑣2, 𝑣3)) = 2. The
statement follows by Proposition 5.5.7. □

Remark 5.5.11. Note that in Corollary 5.5.10, the point where the two lines spanned
by the facets 𝐹2 and 𝐹3 meet is beneath the facet 𝐹1. It cannot be beyond the facet 𝐹1, as
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𝐹1
𝐹2

𝐹3

Figure 5.16: Facets 𝐹1, 𝐹2, 𝐹3 are locked by Corollary 5.5.10.

otherwise dim(𝑃÷Δ) = 2, and thus an ℝ-translation of Δ is contained in the interior
of 𝑃.

Corollary 5.5.12. If 𝑃 is an ℝ-Δ2-free polygon containing Δ = conv(𝑣1, 𝑣2, 𝑣3), an ℝ-
unimodular copy of Δ2, with 𝑣1, 𝑣2 lying in the relative interior of two distinct parallel
facets 𝐹1, 𝐹2 of 𝑃, while 𝑣3 ∈ int(𝑃), then the two parallel facets are locked.

Proof. We show that 𝐹1 is locked (a similar argument works for 𝐹2). Note Δ is an ℝ-
unimodular copy ofΔ2 contained in𝑃 such that 𝐹1∩Δ is a vertex ofΔ that is contained
in the relative interior of 𝐹1. Since 𝑣3 ∈ int(𝑃), we have dim(𝑃÷ conv(𝑣2, 𝑣3)) = 2.
The statement follows by Proposition 5.5.7. □

We now construct a family of maximal ℝ-Δ2-free bodies consisting of all parallel-
ograms circumscribed around a unit square [0, 1]2. An ℝ-unimodular copy of [0, 1]2
we call an ℝ-unimodular parallelogram (or simply unimodular parallelogram if it is clear
from the context that we consider ℝ-unimodular copies).

Proposition 5.5.13. If 𝑃 is a parallelogram such that the relative interior of each of its
facets contains one vertex of a fixed unimodular parallelogram, see Figure 5.17, then 𝑃 is a
maximal ℝ-Δ2-free convex set.

Figure 5.17: A parallelogram circumscribed around a unit square. Any
such parallelogram is maximal ℝ-Δ2-free, since each facet is locked.

Proof. We first show 𝑃 is ℝ-Δ2-free. Up to an ℝ-unimodular transformation, we can
assume that the unimodular parallelogram is the standard unit square 𝑄 = [0, 1]2.
Note 𝑃 is contained in the union of the vertical and horizontal strip containing 𝑄,
and two vertices of 𝑃 lie in each strip. Thus the parallel lines supporting facets of 𝑃
through 𝑒1 and 𝑒2 have positive slope, while those through 0 and 𝑒1+ 𝑒2 have negative
slope. We call the parallel lines through 0 and 𝑒1 + 𝑒2 respectively 𝐿 and 𝐿 + 𝑒1 + 𝑒2.

Let 𝑣 = (𝑣1, 𝑣2) ∈ ℝ2 be a normal vector to 𝐿 (which is not necessarily rational).
Since 𝐿has negative slope, we can assume 𝑣 ∈ ℝ2

>0. The lattice segment conv(0, 𝑒1+𝑒2)
has endpoints on both lines, and thus the width of 𝑃 with respect to 𝑣 is ⟨𝑣, 𝑒1+ 𝑒2⟩ =
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𝑣1 + 𝑣2. Any segment with width in direction 𝑣 larger than this can’t be between the
two lines, and hence doesn’t lie in 𝑃.

Our goal is to show that every segment that is contained in 𝑃 and that is an ℝ-
translation of a primitive lattice segment is contained in 𝑄. Hence, the only ℝ-
unimodular copies of Δ2 that are contained in 𝑃 are an ℝ-translation of one of the
unimodular triangles contained in𝑄. For any primitive lattice segment ℓ there exists
a ℤ-translation such that ℓ ⊂ ℝ2

≥0 or ℓ ⊂ ℝ≥0 × ℝ≤0. Note a segment parallel to the
primitive lattice segment conv(0, 𝑚𝑒1 + 𝑛𝑒2), for integers 𝑚, 𝑛 with gcd(𝑚, 𝑛) = 1,
has width in direction 𝑣 equal to 𝑚𝑣1 + 𝑛𝑣2. If 𝑚, 𝑛 ≥ 1 and 𝑚 + 𝑛 > 2, the segment
cannot be contained in 𝑃. We have thus excluded all primitive lattice segments that
are contained in ℝ2

≥0 (up to a ℤ-translation) and that can’t be moved in the square 𝑄
via an ℝ-translation. An analogous argument using the other pair of parallel facets
disqualifies all primitive lattice segments that are contained in ℝ≥0 × ℝ≤0 (up to
a ℤ-translation) and that can’t be moved in the square 𝑄 via an ℝ-translation.

The only segments which are contained in 𝑃 are therefore ℝ-translations of the
lattice segments contained in 𝑄. It follows that the only ℝ-unimodular copies of Δ2
contained in 𝑃 are those contained in 𝑄. Since no translation of these is contained
in the relative interior of 𝑃 (see Lemma 5.2.17), 𝑃 is ℝ-Δ2-free.

We now wish to show that 𝑃 is maximal with this property. To do so, we
apply Corollary 5.5.10 for each facet of 𝑃: the square 𝑄 contains four unimodular
triangles, each of which has one vertex in the interior of three of the four facets of 𝑃.
Consider conv(0, 𝑒1, 𝑒2): this triangle shows that the facet containing 𝑒1 is locked,
because the facets of 𝑃 containing 0 and 𝑒2 are consecutive and thus meet at a point
beneath the facet containing 𝑒1. Thus the conditions of Corollary 5.5.10 are satisfied
and the facet is locked. The same triangle shows that the facet of 𝑃 containing 𝑒2 is
locked, while applying the same arguments to the triangle conv(0, 𝑒1, 𝑒1 + 𝑒2) shows
that the remaining two facets are also locked. As we have remarked earlier, when all
facets of an ℝ-Δ2-free polygon are locked, the polygon is maximal. □

We thus have a family of quadrilaterals with plenty of structure that are maxi-
mal ℝ-Δ2-free. However, there are many examples of maximal ℝ-Δ2-free quadrilat-
erals which we do not know how to characterise. On the left of Figure 5.18 we see
one such example. That this quadrilateral 𝑄 is ℝ-Δ2-free can be seen by checking
that any unimodular triangle which fits within a box circumscribed to 𝑄 cannot be
translated into𝑄 (see the git-repository mentioned above for a Magma script that au-
tomates this verification). To prove that it is inclusion-maximal, we can again apply
Corollary 5.5.10 to each facet: in Figure 5.18 the unimodular triangles corresponding
to each locked facet are represented. There are also examples of maximal ℝ-Δ2-free
polygons with more facets. On the right side of Figure 5.18 is one such example.
Again the fact that it is ℝ-Δ2-free can be checked by testing all unimodular triangles
which fit into an appropriate rectangle (see also the git-repository from above), while
its maximality follows from applying Corollary 5.5.10 to each facet, with respect to
the triangles inscribed to the hexagon in Figure 5.18.

In Section 5.5.1 we showed that maximalℤ-Δ2-free polygons have at most 4 facets.
It is natural to ask if there is also an upper bound on the facets of maximal ℝ-Δ2-
free polygons. In fact, Lovasz proved that maximal hollow convex bodies in any
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Figure 5.18: The quadrilateral on the left with ver-
tices (−0.21, 0.11), (0.46, 0.98), (1.42, 1.02), (0.82,−0.42) is maxi-

mal ℝ-Δ2-free, as certified by the inscribed triangles.
On the right is a maximal ℝ-Δ2-free hexagon with ver-
tices (0, 0.7), (0, 1.25), (0.4, 1.45), (1.37, 0.72), (1.2,−0.05), (0.6, 0.1) . The
inscribed triangles certify that each facet is locked, relying on the fact

that no two facets are parallel.

dimension 𝑑 have at most 2𝑑 facets (see [5] for a complete proof). This suggests the
following questions.

Question 5.5.14. Is there an upper bound on the number of facets of maximal ℝ-Δ𝑑-
free polytopes in ℝ𝑑? For maximal ℤ-Δ𝑑-free polytopes?
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