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Abstract. We classify four-dimensional quasismooth weighted hypersurfaces with small canon-

ical class, and verify a conjecture of Johnson and Kollár on infinite series of quasismooth hy-

persurfaces with anticanonical hyperplane section in the case of fourfolds. By considering the

quotient singularities that arise, we classify those weighted hypersurfaces that are canonical,

Calabi–Yau, and Fano fourfolds. We also consider other classes of hypersurfaces, including

Fano hypersurfaces of index greater than 1 in dimensions 3 and 4.

1. Introduction

A hypersurface X : (F = 0) ⊂ wPs−1 = P(a1, . . . , as) in weighted projective space is qua-

sismooth if its affine cone C(X) ⊂ Cs is nonsingular away from the origin. In this case X is

an orbifold; in particular it is Q-factorial. We use the notation Xd ⊂ P(a1, . . . , as) to denote

a general member of the linear system |O(d)| on P(a1, . . . , as), and we refer to Xd as a single

variety, even though it represents the whole deformation family.

Without loss of generality we may assume that X is well-formed: that is, X does not intersect

nontrivial orbifold strata of wPs−1 in a codimension one locus; see Iano–Fletcher [11, 6.9–

10] for the divisibility conditions this imposes on a1, . . . , as, d. It follows by Dolgachev [10,

Theorem 3.3.4] and [11, 6.14] that ωX = OX(d−
∑
ai).

In this paper we classify quasismooth hypersurfaces of dimension at most four with small ωX ;

that is, with ωX = OX(k) for k close to zero. Our main results are for fourfolds in the three

cases k = 1, 0, and −1, which we summarise in, respectively, Theorems 1.1, 1.2, and 1.3 below.

Within these classifications we identify the finite collections of varieties that satisfy additional

Mori-theoretic hypotheses on singularities. We summarise a range of other results very briefly

in Tables 7, 9, and 11 in §3; further details are available on the Graded Ring Database [3].

These classifications are the result of a terminating algorithm, essentially following Johnson–

Kollár [12, 13] and Reid [20]. This algorithm imposes linear conditions on the integer sequence

(a1, . . . , as, d), as we explain in §2 below. We demonstrate the essential idea in a beautiful

small example in §1.5 which recovers the ADE singularities as cones on quasismooth rational

curve hypersurfaces; this is an elementary analogue of Cheltsov–Shramov’s [7] application of

Yau–Yu’s [24] classification of isolated canonical hypersurface singularities. We have an imple-

mentation of the algorithm, available from [3], for the computer algebra system Magma. This

algorithm works for any values of dimension and canonical degree k, although since it merely

imposes necessary conditions, output that includes infinite series of solutions requires additional

analysis. To illustrate this, in §3 we recover the classification of low index del Pezzo surfaces as

a model case – following [7] and Boyer–Galicki–Nakamaye [2] – as well as the index two Fano

threefolds.

We use the standard notation of [11]. In particular, 1
r (a1, . . . , am) denotes the germ of the

quotient singularity Cm/µr, where µr acts with weights xi 7→ εaixi. We work over C throughout.

1.1. Canonical fourfold hypersurfaces. A canonical fourfold is a four-dimensional variety X

with KX ample and with X possessing at worst canonical singularities. The variety X embeds
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naturally in weighted projective space via its canonical ring

X = ProjR(X) where R(X) =
⊕

m∈Z≥0

H0(X,mKX).

We classify the cases where this embedding is a quasismooth weighted hypersurface or, equiva-

lently, where X is an orbifold and R(X) is minimally generated by six homogeneous generators.

The nonsingular fourfold X7 ⊂ P5 is the first example: R(X7) is generated in degree one since

−KX7 is very ample. More typically −KX will fail to be very ample, and so R(X) will need

generators in higher degree and the anticanonical embedding lies in projective space weighted in

those degrees: for example X8 ⊂ P(2, 1, 1, 1, 1, 1); or X10 ⊂ P(3, 2, 1, 1, 1, 1), which has a single

isolated terminal quotient singularity 1
3(1, 1, 1, 2). Johnson–Kollár [13, Cor 4.3] prove that in any

dimension that there are only finitely many cases of quasismooth hypersurfaces with ωX = O(k),

for each value of k > 0.

Theorem 1.1 (Canonical fourfold hypersurfaces). There are 1 338 926 deformation families of

well-formed, quasismooth four-dimensional hypersurfaces Xd ⊂ P(a1, . . . , a6) with ωX = O(1).

Of these, 649 have a member with canonical singularities, and the general member in each of

these cases has terminal singularities.

Canonical fourfolds have two natural invariants: their (geometric) genus pg = h0(X,KX) and

their degree K4
X . Amongst the 649 canonical fourfolds of Theorem 1.1, X7 ⊂ P5 has the largest

degree and

X165 ⊂ P(55, 37, 33, 17, 12, 10)

the smallest, with K4
X165

= 1/830 280. Genera are distributed amongst the 649 cases as shown

in Table 1. The number of cases with h0(X,mKX) = 0 for m < b and h0(X, bKX) 6= 0 (in

other words, those where b is the smallest weight) are given in Table 2. The extreme case is

X105 ⊂ P(23, 21, 18, 15, 14, 13), which has degree 1/226 044.

Table 1. The number of canonical fourfold hypersurfaces of genus pg.

pg 0 1 2 3 4 5 6

# 451 148 31 10 5 3 1

Chen–Chen [8, Theorem 8.2] prove that mKX is birational for a canonical fourfold with pg ≥ 2

whenever m ≥ 35. Three of the low degree cases from the 649 show that the requirement on pg
is sharp:

X72 ⊂ P(36, 11, 9, 8, 6, 1), X78 ⊂ P(39, 13, 10, 8, 6, 1), and X78 ⊂ P(39, 14, 9, 8, 6, 1).

It is interesting that all the families with canonical singularities have terminal general members.

Table 2. The number of canonical fourfold hypersurfaces with smallest weight b.

b 1 2 3 4 5 6 7 8 9 10 11 12 13

# 198 175 135 48 48 10 19 7 4 2 2 0 1

We see the same phenomenon in Theorem 1.3 below, where ωX = O(−1), and although the same

phenomenon occurs for the 95 Fano threefolds, we do not have a general explanation for it.
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1.2. Calabi–Yau fourfold hypersurfaces. A Calabi–Yau fourfold is a four-dimensional vari-

ety X with ωX = OX and with X possessing at worst canonical singularities, and satisfying the

regularity conditions dimH1(X,OX) = dimH2(X,OX) = 0.

In three dimensions, Calabi–Yau threefolds are well known from the Kreuzer–Skarke list [17]

of 473 800 776 toric hypersurfaces. Of these 184 026 are hypersurfaces in weighted projective

space. The Kreuzer–Skarke classification does not require that the hypersurface be quasismooth,

however the Palp webpage [16] allows one to extract that sublist: there are 7555 quasismooth

Calabi–Yau threefold hypersurfaces in weighted projective space.

We generate Calabi–Yau fourfolds as the case s = 6, k = 0 – the additional regularity and

singularity conditions are satisfied in all cases. Johnson–Kollár [13, Theorem 4.1] prove that, in

any dimension, there are only finitely many quasismooth hypersurfaces with k = 0.

Theorem 1.2 (Calabi–Yau fourfold hypersurfaces). The are 1 100 055 deformation families of

well-formed, quasismooth hypersurfaces Xd ⊂ P(a1, . . . , a6) with ωX = OX . In each case the

general member has canonical singularities and is a Calabi–Yau fourfold.

These Calabi–Yau fourfolds are polarised by an ample divisor A ∈ |OX(1)|. Their degree is

the rational number A4. The hypersurface with highest degree is the sextic X6 ⊂ P5, whilst the

lowest degree A4 = 1/500 625 433 457 614 850 966 280 (∼ 2× 10−24) is achieved by

X6521466 ⊂ P(3260733, 2173822, 931638, 151662, 1806, 1805).

Unsurprisingly, this case also has the largest ambient weight and the largest equation degree

amongst all hypersurfaces.

Table 3. The number of Calabi–Yau fourfold hypersurfaces with P1 = h0(X,A).

P1 0 1 2 3 4 5 6

# 987 884 109 443 2576 134 14 3 1

The distribution of the hypersurfaces partitioned by P1 = h0(X,A) is given in Table 3.

Table 4 contains the number of hypersurfaces with h0(X, bA) 6= 0, b as small as possible. These

are collected into ranges 500i+ 1 ≤ b ≤ 500(i+ 1). The three largest minimum weights are are

obtained by

X562500 ⊂ P(281250, 187500, 79619, 5167, 4500, 4464),

X594762 ⊂ P(297381, 198254, 84966, 4962, 4915, 4284),

and X656250 ⊂ P(328125, 218750, 93750, 5250, 5208, 5167).

The four extreme examples considered so far are double covers x21 = f(x2, . . . , x5). In total,

360 346 of the hypersurfaces are double covers.

Table 4. The number of Calabi–Yau fourfold hypersurfaces with smallest weight

b, where 500i+ 1 ≤ b ≤ 500(i+ 1).

i 0 1 2 3 4 5 6 7 8 9 10

# 1 096 329 3174 393 111 27 13 2 3 2 0 1

At the opposite extreme there are the two familiar nonsingular cases X6 ⊂ P5 and X10 ⊂
P(5, 1, 1, 1, 1, 1), and five cases having only 1

4(1, 1, 1, 1) singularities:

X9 ⊂ P(4, 1, 1, 1, 1, 1), X12 ⊂ P(4, 4, 1, 1, 1, 1), X15 ⊂ P(5, 4, 3, 1, 1, 1),

X16 ⊂ P(8, 4, 1, 1, 1, 1) and X24 ⊂ P(12, 8, 1, 1, 1, 1).

In total 32 715 of these Calabi–Yau fourfolds are singular with only isolated singularities.
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1.3. Fano fourfold hypersurfaces. A Fano fourfold is a normal projective four-dimensional

variety X with −KX ample and with X possessing at worst Q-factorial terminal singularities.

We embed such an X in weighted projective space via its anticanonical ring X = ProjR(X),

where R(X) = ⊕m∈Z≥0
H0(X,−mKX).

Theorem 1.3 (Fano fourfold hypersurfaces). If Xd ⊂ P(a1, . . . , a6) is a well-formed, quasi-

smooth hypersurface with ωX = OX(−1) then, possibly after reordering the weights ai, exactly

one of the following two cases holds:

(i) Xd is contained in one of 1597 infinite series of the form

X2k
∑
bi ⊂ P

(
−1 + k

4∑
i=1

bi, kb1, kb2, kb3, kb4, 2

)
, for all odd k = 1, 3, 5, . . . ;

(ii) Xd is equal to one of 1 233 322 sporadic cases.

Of all X in (i)–(ii) there are exactly 11 618 cases that have terminal Q-factorial singularities,

and so are Fano fourfolds. The same number have canonical singularities.

The complete list of sporadic cases and the infinite series is available online at [3]; the infinite

series are summarised neatly by a correspondence due to Johnson and Kollár in Corollary 1.4

below. We now describe some coarse features of the classification.

Four cases are nonsingular, namely

X5 ⊂ P5, X6 ⊂ P(2, 1, 1, 1, 1, 1), X8 ⊂ P(4, 1, 1, 1, 1, 1), and X10 ⊂ P(5, 2, 1, 1, 1, 1),

which match the well-known list of smooth canonical surface hypersurfaces; see (3.1).

A typical Fano fourfold hypersurfaces contain both isolated and one-dimensional orbifold

singularities. Besides the four nonsingular cases, 486 have only isolated singularities, and 20

have only one-dimensional singular loci. For example, X1743 ⊂ P(851, 581, 249, 41, 21, 1) has

five isolated terminal quotient singularities, whilst X20 ⊂ P(10, 3, 3, 2, 2, 1) has two curves of

transverse 1
2(1, 1, 1) and 1

3(1, 1, 2) points respectively. One could also study Fano fourfolds

with more general singularities; the ‘Mori category’ of Q-factorial terminal singularities that we

consider here is the smallest in which the minimal model program is defined.

The Fano fourfold hypersurface with the largest degree is the quintic X5 ⊂ P5. The one with

the smallest degree, K4
X = 1/498 240 036, is

X3486 ⊂ P(1743, 1162, 498, 42, 41, 1).

This Fano fourfold is a double cover: X3486
2:1−→ P(1162, 498, 42, 41, 1). In total 3511 of the

11 617 Fano hypersurfaces arise naturally as double covers of weighted projective four-space.

Many of these hypersurfaces will have interesting birational geometry. It is certainly possi-

ble to adapt the explicit birational techniques of Corti–Pukhilikov–Reid [9] to find birational

involutions for many of these hypersurfaces, working with either the generic member as in [9]

or every quasismooth members as in Cheltsov–Park [5]. This is interesting in its own right,

and we will come back to it in a future paper. A complete analysis of Sarkisov links in explicit

terms, proving for example that these hypersurfaces are not rational, is likely to be hard, if it is

possible at all.

Elephants. Every anticanonical Fano threefold hypersurface X has h0(X,−KX) 6= 0 and, for

a general member, an effective anticanonical divisor S ⊂ X can be chosen to be a K3 surface

(one must allow Kleinian quotient singularities), a so-called general elephant [21]. The general

elephant is central to the birational geometry of Fano threefolds: the 95 Fano threefold hy-

persurfaces correspond directly to the 95 K3 hypersurfaces and, for example, a great deal of

calculation of their birational rigidity in Corti–Pukhilikov–Reid [9] takes place on the elephant.
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For Fano fourfolds, the analogous question is whether or not there is a member V ∈ |−KX |
that is a Calabi–Yau threefold (allowing canonical singularities). In fact such an elephant need

not exist for coarse reasons: plenty of Fano fourfolds have empty anticanonical system. The

numbers of Fano fourfolds with h0(X,−mKX) = 0 for m < b and h0(X,−bKX) 6= 0 is given in

Table 5. In particular, 1036 Fano fourfold hypersurfaces have |−KX | empty; the two extreme

cases are X120 ⊂ P(40, 24, 21, 15, 11, 10) and X112 ⊂ P(28, 24, 21, 16, 13, 11).

Table 5. The number of Fano fourfold hypersurfaces with smallest weight b.

b 1 2 3 4 5 6 7 8 9 10 11

# 10 581 645 244 80 42 9 10 3 1 1 1

For the remaining 10 581 cases we compare the list of Fano fourfold hypersurfaces with the

Kreuzer–Skarke classification of Calabi–Yau threefold hypersurfaces. The number of Fano four-

fold hypersurfaces grouped according to P1 = h0(X,−KX), and Calabi–Yau threefold hypersur-

faces Y with h0(Y,OY (1)) = P1 − 1, is given in Table 6. The Fano/Calabi–Yau correspondence

Table 6. The number of Fano fourfold hypersurfaces X with P1 = h0(X,−KX)

and Calabi–Yau threefold hypersurfaces Y with h0(Y,OY (1)) = P1 − 1.

P1 0 1 2 3 4 5 6 Total

#Fano fourfolds 1036 8697 1772 98 11 3 1 11 618

#Fanos with CY3 0 7953 1772 98 11 3 1 9838

#Fanos with quasismooth CY3 0 6014 1429 97 11 3 1 7555

#Kreuzer–Skarke CY3 n/a 168 813 15 016 179 14 3 1 184 026

is most striking for those 8697 Fano fourfolds with h0(X,−KX) = 1, since these have a unique

effective anticanonical divisor. In 6014 cases there is a corresponding quasismooth Calabi–Yau,

and if X is chosen generally in its family, then its anticanonical divisor is a quasismooth Calabi–

Yau threefold. Some of the 8697 cannot have a quasismooth elephant because they possess

a singularity not polarised with a one. For example, X16 ⊂ P(5, 4, 3, 2, 2, 1) has a singularity
1
5(2, 2, 3, 4); put another way, the degree one variable is the only possible tangent form at the

index five point. The elephant is still a Calabi–Yau threefold (for general such X), just not

quasismooth.

There are also cases where the anticanonical divisor is never Calabi–Yau. For example,

X23 ⊂ P(11, 4, 3, 3, 2, 1) has anticanonical divisor S23 ⊂ P(11, 4, 3, 3, 2). This has a hyperquotient

singularity of type 1
11(4, 3, 3, 2; 1), in the notation of [21, (4.2)]. But any singularity of this type

is not canonical: the given weighted blowup of the ambient space, of discrepancy only 1/11,

extracts a divisor of discrepancy ≤ −1 from the threefold.

The Fano X43 ⊂ P(21, 14, 6, 1, 1, 1) is slightly different. Both this and any effective anticanon-

ical divisor must contain the plane P(21, 14, 6). For the fourfold, this is no problem; for its

threefold elephant, this forces up the divisor class group, the price of which is a non-Q-factorial

point, so certainly not quasismooth. This Fano fourfold is the ‘98th’ with P1 = 3 in the table

above, which does not match one of the 97 quasismooth Calabi–Yaus.

Tigers. Tigers were introduced by Keel–McKernan [15]. We follow Johnson–Kollár [13, Defi-

nition 3.2]: on normal variety X, a tiger is an effective Q-divisor D, numerically equivalent to

−KX , for which the pair (X,D) is not Kawamata log terminal.

A sufficient condition under which Xd does not admit a tiger is given in [13, Proposition 3.3]:

if Xd ⊂ P(a1, . . . , as) with a1 ≥ a2 ≥ · · · ≥ as then X does not have a tiger if d ≤ as−1as. This
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condition never holds for hypersurfaces in the infinite series, but in the sporadic hypersurfaces in

Theorem 1.3(ii) there are 443 485 cases which satisfy this condition, and so for which no member

has a tiger. Only one of these has terminal singularities, namely X112 ⊂ P(28, 24, 21, 16, 13, 11).

The absence of tigers is an ‘exceptionality’ condition; see the discussion in Cheltsov–Park–

Shramov [6, §1], for example.

Kähler–Einstein metrics. Johnson–Kollár [13, Proposition 3.3] give conditions under which Xd

admits a Kähler–Einstein metric: if Xd ⊂ P(a1, . . . , as) with a1 ≥ a2 ≥ · · · ≥ as then X admits

a Kähler–Einstein metric if d < s−1
s−2as−1as.

Of the sporadic hypersurfaces in Theorem 1.3(ii) there are 490 083 cases for which every qua-

sismooth member admits a Kähler–Einstein metric. Eight of these have terminal singularities:

X77 ⊂ P(20, 17, 14, 11, 9, 7), X80 ⊂ P(20, 16, 15, 13, 10, 7),

X80 ⊂ P(20, 16, 15, 13, 9, 8), X90 ⊂ P(25, 18, 15, 14, 13, 6),

X90 ⊂ P(30, 18, 13, 12, 11, 7), X91 ⊂ P(25, 20, 16, 13, 11, 7),

X112 ⊂ P(28, 24, 21, 16, 13, 11), X120 ⊂ P(40, 24, 21, 15, 11, 10).

1.4. The Johnson–Kollár conjecture. Johnson and Kollár [13] relate three classes, which

we describe below. In each case we define c := b1 + · · ·+ bs−2.

(i) Well-formed weighted projective (s− 3)-spaces P = P(b1, . . . , bs−2) that admit a quasi-

smooth member T ∈ |−2KP|; in other words, those P for which there is a (not necessarily

well-formed) quasismooth (s− 4)-fold hypersurface

T2c ⊂ P(b1, . . . , bs−2).

(ii) Well-formed quasismooth Calabi–Yau (s− 3)-fold hypersurfaces

S2c ⊂ P(c, b1, . . . , bs−2).

(iii) One-parameter series of well-formed quasismooth hypersurfaces

X
(k)

d(k)
⊂ P(a

(k)
1 , . . . , a(k)s ) for odd k ∈ Z≥0,

whose weights are determined by the series

(a
(k)
1 , a

(k)
2 , . . . , a(k)s , d(k)) = (c− 1, b1, . . . , bs−2, 2, 2c) + k (c, b1, . . . , bs−2, 0, 2c) .

It is clear that if P(b1, . . . , bs−2) is well-formed in (i) then so are the corresponding S and X. That

quasismoothness passes from T to X is shown in [13, Lemma 2.4]. Indeed, given quasismooth

T : (f(z1, . . . , zs−2) = 0) ⊂ P, the hypersurface S : (y21 = f(y2, . . . , ys−1)) ⊂ P(
∑
bi, b1, . . . , bs−2)

is quasismooth; conversely, given a quasismooth S, completing the square reveals a polynomial

f that defines a quasismooth T . Continuing with such an S, the hypersurface

X2k
∑
bi :
(
x21xs = f(x2, . . . , xs−1) + xk

∑
bi

s

)
⊂ P

(
−1 + k

∑
bi, kb1, . . . , kbs−2, 2

)
is quasismooth, and so the general hypersurface X is too. However, there is no clear reason why

an arbitrary quasismooth series of X of that degree should arise from a quasismooth S.

Nevertheless, Johnson and Kollár conjecture that ifX
(k)

d(k)
⊂ P(a

(k)
1 , . . . , a

(k)
s ) is a one-parameter

series containing infinitely many well-formed, quasismooth hypersurfaces with ωX = OX(−1)

whose weights are determined by a series

(a
(k)
1 , a

(k)
2 , . . . , a(k)s , d(k)) = (v1, . . . , vs+1) + k(w1, . . . , ws+1),

for fixed vectors v and w, then it is of type (iii) above, and furthermore it arises from a quasi-

smooth T of type (i) lying in a well-formed weighted projective space P(b1, . . . , bs−2).

Well-formedness of S in (ii) is not, by itself, sufficient to imply that the varieties in (i) and (iii)

are well-formed. However, if S is well-formed then gcd{b1, . . . , bi−1, bi+1, . . . , bs−2} = 1 or 2 for
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any i, hence the only way for P(b1, . . . , bs−2) to fail to be well-formed is by having an index two

stabiliser in codimension one. Exactly that failure is catastrophic for X, so we can rephrase

the conjecture informally as: infinite series in dimension n with ωX = OX(−1) correspond to

Calabi–Yau (n− 1)-folds arising as double covers of weighted projective space that do not have

a locus of transverse 1
2(1, 1) quotient singularities in codimension two that is fixed pointwise by

the involution.

In dimension three there are 48 well-formed, quasismooth K3 surfaces of the form S2
∑
bi ⊂

P(
∑
bi, b1, b2, b3). Of these, 25 of the spaces P(b1, b2, b3) are well-formed, and these correspond

to the 25 one-parameter series in Table 9 with d = 3, k = −1.

Corollary 1.4. The Johnson–Kollár conjecture holds when dimX = 4.

To check the corollary, it suffices to compare the list of 1597 series in Theorem 1.3 with the

list of 7555 quasismooth Calabi–Yau threefold hypersurfaces. Within the latter, 2390 cases are

double covers S2
∑
bi ⊂ P(

∑
bi, b1, b2, b3, b4). Of these, 1597 of the spaces P(b1, b2, b3, b4) are

well-formed. These correspond to the 1597 one-parameter series with d = 4, k = −1, exactly as

predicted by the conjecture.

1.5. Orbifold rational curves and ADE singularities. To illustrate the basic method of

classification, we will consider quasismooth projective curves

Cd : (Fd(x, y, z) = 0) ⊂ P(a, b, c) with d+ 1 = a+ b+ c.

Here we write F = Fd for a form of degree d. The numerical condition implies that gC = 0. To

carry out the analysis we enforce the order a ≥ b ≥ c on the ambient weights.

Quasismoothness at Px = (1 : 0 : 0) implies that at least one of xm, xm−1y, or xm−1z appears

(with non-zero coefficient) in F , for some m ≥ 2. In each case the monomial determines the

degree d, and then the numerical condition implies that m < 3: indeed a ≥ b so 2a+ c ≥ d+ 1,

but d ≥ (m− 1)a+ c. We consider the three cases x2, xy, and xz ∈ F separately.

If x2 ∈ F then d = 2a and the condition reads a+ 1 = b+ c. Quasismoothness at Py implies

that at least one of ym−1x, ym, or ym−1z appears in F . The relation gives that 2b ≥ a + 1, so

that 3b + c ≥ d + 2 and m ≤ 3. Thus the possible monomials at Py are y3, y2z, y2, and yz.

(Other cases are dismissed at once: xy2 implies d = a + 2b ≥ a + b + c = d + 1, whilst xy will

be considered separately at Px.)

Again we consider the cases separately. If x2 + y3 ∈ F then we can assemble the numerical

conditions together in a standard auxiliary matrix:

N =

 1 1 1 −1 1

2 0 0 −1 0

0 3 0 −1 0

 ,

where any positive integral element of the kernel of N of the form (a, b, c, d, 1) provides weights

that satisfy the numerical conditions so far. We compute the kernel using the (integral) echelon

form of N , which in this case is  1 0 3 −1 3

0 1 4 −1 4

0 0 6 −1 6

 .

This provides at once the solutions so far, namely a one-dimensional series

C6n : (x2 + y3 + · · · = 0) ⊂ P(3n, 2n, n+ 1), where n ≥ 1.

For small n we understand these easily:
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n Type Typical equation Numerics

1 D4 x2 + y3 + z3 C6 ⊂ P(3, 2, 2)

2 E6 x2 + y3 + z4 C12 ⊂ P(6, 4, 3)

3 E7 x2 + y3 + yz3 C18 ⊂ P(9, 6, 4)

5 E8 x2 + y3 + z5 C30 ⊂ P(15, 10, 6)

The case n = 4 is excluded since any curve C24 ⊂ P(12, 8, 5) fails to be quasismooth at Pz. In

fact, this requirement at Pz implies that at least one of xzm−1, yzm−1, and zm appears in F ,

which in turn implies that

m =
ne

n+ 1
, where e ≤ 6,

so m < 6 and this branch of the tree search is complete.

A similar exercise in the case when x2 + y2z ∈ F leads to the echelon form 1 1 0 −1 −1

0 2 0 −1 −2

0 0 1 0 2


which gives

C2n−2 : (x2 + y2z + zn−1 = 0) ⊂ P(n− 1, n− 2, 2), where n ≥ 4.

The equations in this case are the familiar Type Dn equations. All other branches of the tree

provide F with quadratic terms of rank at least two, and lead to Type An equations. Hence

we recover precisely the classification of ADE singularities as the affine cones on the resulting

curves C.

This simple exercise illustrates most of the ideas. In particular, even though we may have

infinitely many solutions, the collections of all monomials that can give quasismoothness is

finite and can be bounded at each step of the tree search. There is, however, an additional

consideration: the hypersurfaces listed here are not well-formed. In the analysis below we

enforce that additional condition too.

2. The quasismooth algorithm

We search for collections of integers

(a1, . . . , as, d) with a1 ≥ · · · ≥ as ≥ 1

for which, for a general form Fd of degree d, the hypersurface

Xd : (Fd(x1, . . . , xs) = 0) ⊂ Ps−1(a1, . . . , as)

is well-formed and quasismooth. We use this notation throughout, including the ordering on

the ai. We use Pi = (0 : · · · : 1 : 0 : · · · : 0), where the 1 is in the ith position, to denote the ith

coordinate point of Ps−1(a1, . . . , as). (Note that the variables start with x1, not the usual x0,

and the ordering convention on the ai is the opposite of that in [13].)

We are mainly interested in those varieties whose singularities lie in some restricted class;

see §3 for details. First, however, we make a complete list of the well-formed quasismooth

hypersurfaces, irrespective of singularities. The conditions on the singularities are imposed

afterwards. This is the same approach as taken in [12,13].

We learned the basic algorithm below from Miles Reid, who used it in [20] to compute the

‘famous 95’. The same approach is used by [12,13]: quasismoothness at 0-strata imposes a range

of possible linear conditions on integral vectors (a1, . . . , as, d) that one must organise and solve.
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2.1. Inequalities with semipositive and seminegative summation. Let a1 ≥ a2 ≥ · · · ≥
as ≥ 1 be integers, and let p1, . . . , ps be any integers (here negative integers are allowed). We

use the notation Σ+p` to denote the following number:

Σ+p` =

s∑
`=1

p′`,

where either p′` = p` ≥ 0 or 0 ≥ p′` ≥ p` is chosen minimally so that each sum p′`+p
′
`+1+· · ·+p′s ≥

0, working inductively down through ` = s, s−1, . . . , 1. Of course, if all p` ≥ 0 then Σ+p` =
∑
p`.

Equivalently, define the sequence σ0 := min{ps, 0} and σi+1 := min{σi + ps−i−1, 0}. Then

Σ+p` = σs. We also define Σ−p`. Set τ0 := max{ps, 0} and τi+1 := max{τi + ps−i−1, 0}. Then

Σ−p` = τs. The following lemma is elementary.

Lemma 2.1. In the notation above,

a1Σ
+pi ≥ a1p1 + · · ·+ asps

and

a1Σ
−pi ≤ a1p1 + · · ·+ asps.

2.2. Quasismoothness at 0-strata. At each coordinate point Pi, quasismoothness requires a

monomial xmi−1
i xji ∈ F for some mi ∈ Z≥0 and some 1 ≤ ji ≤ n (the case ji = i occurs when

Pi /∈ X). These conditions do not necessarily restrict the search to a finite set of solutions – as

in [12] we expect some infinite series – but they do allow for a terminating search provided that

we can handle certain infinite series. By recursively imposing these conditions at every point,

we obtain a branching search-tree. The monomials appearing in F at each step are recorded in

a matrix of exponents; this same matrix allows us to recognise when a branch of the tree has

been exhausted.

We compare the degree of a Laurent monomial xn1
1 · · ·xns

s , where each ni ∈ Z, with the degree

of F by recording the integers appearing in the expression

e := deg
xn1
1 · · ·xns

s

Fm

as a row of integers

(n1, . . . , ns,−m, e).
We recursively build a matrix using these rows of integers, as explained below. We refer to this

matrix as the tangent monomial matrix.

We always start in the same way by comparing the monomial x1 · · ·xs, which has degree

a1 + · · ·+ as, with F itself; in this case the relative degree is minus the canonical degree k and

we record the first row of the tangent monomial matrix, which has s+ 2 columns, as

(1, . . . , 1,−1,−k).

Any polynomial F whose variety X = (F = 0) is quasismooth at P1 must include a monomial

of the form xm1−1
1 xj1 for some non-negative integer m1 and for some variable xj1 ; j1 = 1 is

allowed, and then P1 /∈ X, which is fine. The crucial observation is that there are only finitely

many pairs (m1, j1) that can arise in this way. The number of pairs is bounded by the following

lemma.

Lemma 2.2. Assume that s ≥ 4.

(i) If k < 0 then m1 < s, and so the possible pairs (m1, j1) are

{(m, j) | m ∈ {2, 3, . . . , s− 1}, j ∈ {1, 2, . . . , s}} .

If 2− s < k < 0 then the only case with m1 = 2 that could arise is (2, 1).



10 G. BROWN AND A. M. KASPRZYK

(ii) If k ≥ 0 then m1 ≤ s+ k, and so the possible pairs (m1, j1) are

{(m, j) | m ∈ {2, 3, . . . , s+ k}, j ∈ {1, 2, . . . , s}} .

Proof. The proof uses the numerics of adjunction: k = d−(a1+ · · ·+as). If X is quasismooth at

P1 we need a tangent monomial xm1−1
1 xj ∈ F , for some m1 ≥ 2 and j ∈ {1, 2, . . . , s}. Suppose

that k < 0. If m1 ≥ s then

d = deg(xm1−1
1 xj) = (m1 − 1)a1 + aj ≥

∑
ai = d+ (−k) > d,

which is a contradiction. Thus a tangent monomial in F of degree m1 requires m1 < s.

Suppose now that k ≥ 0. If xm1−1
1 xj ∈ F with m1 ≥ s+ k + 1 then

d = (m1 − 1)a1 + aj ≥
∑

ai + (m1 − s) ≥ (d− k) + (k + 1) = d+ 1,

which again is a contradiction. Hence m1 ≤ s+ k as required.

The additional restriction in (i) when −k < s − 2 follows directly from adjunction, since

otherwise d− k = a1 + aj − k <
∑
ai. �

For each pair (m1, j1) we use the row of exponents and degree to extend the matrix, so from

the first monomial we obtain the new tangent monomial matrix(
1 1 · · · 1 1 1 · · · 1 −1 −k

m1 − 1 0 · · · 0 1 0 · · · 0 −1 0

)
,

where the 1 in the second row is in the j1th position (we have illustrated the case when j1 6= 1,

but this is also a possibility). The integral echelon reduction of this matrix is(
1 1 · · · 1 1 1 · · · 1 −1 −k
0 m1 − 1 · · · m1 − 1 m1 − 2 m1 − 1 · · · m1 − 1 2−m1 k(1−m1)

)
,

with a further simplification of the top row possible if m1 = 2.

Set c = −(2 − m1) ≥ 0 and b = k(1 − m1) – the final two entries of the last row, with

the indicated change of sign – and assemble all possible pairs (m2, j2) for which a monomial

xm2−1
2 xj2 could exist to verify the quasismoothness of X at P2. The possible pairs (m2, j2) are

determined by considering the case when i = 2 in the following lemma.

Lemma 2.3. Suppose that when considering the ith 0-stratum Pi, the last row of the tangent

monomial matrix in echelon form is

(

i−1︷ ︸︸ ︷
0, . . . , 0, pi, pi+1, . . . , ps,−c, b),

where the first i− 1 entries are zero, and pi > 0.

(i) If c > 0 then

mi ≤

{
d(Σ+p`)/ce , if b ≥ 0;

d(Σ+p` − b)/ce , otherwise.

(ii) If c < 0 and all p` ≥ 0 then

mi ≤

{
d(Σ−p` − b)/ce , if b ≥ 0;

d(Σ−p`)/ce , otherwise.

(iii) If c = 0 and all p` ≥ 0 then there are no solutions if
∑s

`=i p` > b.

Proof. Recall the notation: a` = deg x` are the unknown positive integers that we are attempting

to solve for, ordered in decreasing order. We seek possible (m, j) such that xm−1i xj ∈ F ; in

particular, such monomials have the same degree as F . Given such a choice of (m, j), the

current last row of the matrix

(0, . . . 0, pi, pi+1, . . . , ps,−c, b)
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implies that

deg
xpii · · ·x

ps
s(

xm−1i xj
)c = b

hence aipi + · · ·+ asps − cai(m− 1)− caj = b.(2.1)

Suppose first that c > 0. By Lemma 2.1,

aiΣ
+p` − cai(m− 1)− caj ≥ b.

Hence ai (Σ+p` − c(m− 1)) > b. When b ≥ 0 we obtain (Σ+p`)/c > m− 1, which gives the first

bound in (i). When b < 0, dividing by ai gives

Σ+p` − c(m− 1) > b/ai ≥ b,

which gives the second bound in (i).

Suppose now that c < 0. The inequality (2.1) together with Lemma 2.1 implies that

aiΣ
−p` + |c| ai(m− 1) + |c| aj ≤ b.

When b ≥ 0 we obtain

Σ−p` + |c| (m− 1) < b/ai ≤ b,
giving the first bound in (ii). When b < 0, using b/ai ≤ 0 gives the second bound.

When c = 0 the same analysis does not give a relation between the degree of F and that

of the monomial xpii · · ·x
ps
s , so we do not get a bound on m. Nevertheless, if

∑
p` > b then

that monomial cannot have degree b for any (positive integral) choice of weights; in this case we

conclude that there are no solutions, giving (iii). �

Corollary 2.4. Suppose that c 6= 0 and i > 1. Let mmax be the upper bound for the mi in

Lemma 2.3, determined according to the signs of b and c. Then the possible pairs (mi, ji) are

{(m, j) | m ∈ {2, 3, . . . ,mmax}, j ∈ {1, 2, . . . , s}} .

If c 6= 0 then Corollary 2.4 provides the possible choices for the next row of the tangent monomial

matrix. We run through each of these in turn, repeating this step until either c = 0 or i = s− 1.

When either case occurs we move to the next step, described below, which is to use this system

of equations encoded in the matrix to find all possible systems of weights.

2.3. Solving for possible weights. At this stage the tangent monomial matrix N is of size

r × (s + 2), for 2 ≤ r ≤ s. Note that it can happen that c = 0 and we stop growing N before

it has s rows. Treating this as an auxiliary matrix, we solve the r inhomogeneous equations

in s + 1 unknowns (a1, . . . , as, d) – the inequalities a1 ≥ · · · ≥ as ≥ 1 remain in force to avoid

repeating solutions and we solve for integral points of the resulting polyhedron. There is no

reason why these solutions should represent well-formed and quasismooth hypersurfaces, so we

perform some additional checks to eliminate infinite polyhedrons that could only contribute

finitely many solutions.

The hyperbola trick. We repeatedly use the following “hyperbola trick”. Let a, b, c, d be fixed

integers, and for simplicity suppose that d 6= 0. Consider the expression

N =
a+ λb

c+ λd
.

What is the largest value of λ ∈ Z for which N is an integer? Sketching the graph of N as a

function of λ answers this at once. The geometry is controlled by the determinant

∆ = det

(
a b

c d

)
.
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If ∆ = 0 then N = b/d is constant, and λ is bounded (in fact has no solutions at all) if and only

if b/d /∈ Z. If ∆ > 0 then dN/dλ < 0 and the graph approaches the asymptote b/d from above.

In this case λ is bounded above by setting N to be the smallest integer greater than b/d, that

is, N = bb/d + 1c, and solving for λ. If ∆ < 0, the graph approaches b/d from below, and λ is

bounded by setting N to be the largest integer less than b/d, that is, N = db/d− 1e.

2.4. One-parameter series of solutions. Consider the case when the solution polyhedron

is one-dimensional, with integer points {u+ λk | λ ∈ Z≥0}, for some u = (u1, . . . , us+1), k =

(k1, . . . , ks+1) ∈ Zs+1, where u lies in the strictly positive quadrant. Consider a general solution

(u1+λk1, . . . , us+1+λks+1). We describe the tests we subject this series to in our implementation;

there is some overlap.

Quasismooth Test I: the final coordinate point. Suppose ks 6= 0, and consider the point Ps. If

xi is to be a tangent monomial at Ps (for any i, including the possibility that i = s when Ps
does not lie on the hypersurface) then xNs xi ∈ F , for some N ∈ Z≥0. Computing degrees and

rearranging gives

(2.2) N =
(us+1 − ui) + λ(ks+1 − ki)

us + λks
.

We now apply the hyperbola trick described above. In this case N tends to (ks+1 − ki)/ks as

λ→∞, either from above or from below depending on the sign of the determinant

det

(
us+1 − ui ks+1 − ki

us ks

)
.

In either case this gives a formula for the largest value of λ for which N in equation (2.2) is

integral. If the determinant is zero then the hyperbola consists of two lines, one with λ =

−us/ks < 0 (which gives no solutions) and one with N = (ks+1 − ki)/ks, which gives solutions

if and only if N is integral; in this case the series requires further analysis.

When the determinant is not zero, the maximum of these values for 1 ≤ i ≤ s gives an upper

bound of λ, and so this is not an infinite series of solutions after all: we compute the finitely

many cases as sporadic solutions.

For example, consider the case u = (20, 9, 4, 4, 4, 40) and k = (15, 7, 3, 3, 2, 30). With this

input, the determinant above is never zero, and this method determines the maximum λ = 16.

When interpreted as a weighted hypersurface, u + 16k is indeed quasismooth; however, in this

case it does not represent a well-formed hypersurface, so will be excluded at at later stage. The

cases λ = 1, 3 and 13 all give rise to well-formed, quasismooth hypersurfaces:

X70 ⊂ P(35, 16, 7, 7, 6), X130 ⊂ P(65, 30, 13, 13, 10), X430 ⊂ P(215, 100, 43, 43, 30).

Almost identical u, k. If u and k have s−1 of the first s entries in common, then no case beyond

the first point u is well-formed, so we may reject the rest of series and treat u as a sporadic case.

If they have only s− 2 entries in common, and v = us+1− ks+1 6= 0, then the ambient space has

a codimension two stratum with nontrivial stabiliser, so the equation must prevent that lying

inside X. The only multiples of λ that permit this are zero and the non-unit divisors of v.

Complementary u, k modulo 2. A parity check on the sum of entries of u and u + k also rules

out the whole series in cases where the stabiliser Z/2 fixes a large coordinate subspace.

Quasismooth Test II: one-dimensional strata. If exactly one k` = 0 then we check for one-strata

with equal ui and equal ki where we can apply the hyperbola trick to bound λ.

Consider any one-stratum 〈xi1 , xi2〉 with ki1 = ki2 and ui1 = ui2 . Suppose further that ks+1

is divisible by ki1 , but that us+1 is not divisible by ui1 . This implies that the one-stratum is

contained in every hypersurface of the series. If this series really does contain infinitely many
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quasismooth members then there must be two tangent variables that work (numerically, at least)

for infinitely many λ.

Suppose xN1
i1
xN2
i2
xj ∈ F . Calculating degrees and rearranging gives

N1 +N2 =
(us+1 − uj) + λ(ks+1 − kj)

ui1 + λki1
.

The hyperbola trick applies. If for every j = 1, . . . , s, j 6= i1, i2, `, the associated determinant

is non-zero then even requiring a single tangent variable along this one-stratum puts an upper

bound on λ. (This one-stratum needs two tangent variables, which is why we do not impose the

conditions on x`.) We can calculate this bound and regard all cases below it as sporadic cases.

Easy codimension two failure of well-formedness. Let (u1 + λk1, . . . , us+1 + λks+1) be a one-

parameter series solution. Denote a general polynomial that defines the corresponding hyper-

surface by Fλ.

Lemma 2.5. Suppose that there exists a subset I = {i1, . . . , ir} ⊂ {1, . . . , s − 1} and α > 0

such that ui = αki for all i ∈ I. Denote d = us+1 and e = ks+1. If for some λ > 0 there is a

monomial m = xp1i1 · · ·x
pr
ir
∈ Fλ for which p1ki1 + · · ·+ prkir = e then

(i) p1ui1 + · · ·+ pruir = d,

(ii) m ∈ Fλ for all λ ≥ 0, and

(iii) d = αe.

Proof. Calculating the degree of the given monomial for the given λ > 0 gives
r∑
j=1

pj(uij + λkij ) = d+ λe

which, after rearrangement, gives

(2.3) λ

(
r∑
i=1

pjkij − e

)
= d−

r∑
i=1

pjuij .

Part (i) follows immediately. Since this equation holds independently of λ, we obtain (ii).

Finally, by substituting uij = αkij into (i) we obtain (iii). �

The special case r = s− 2 provides a well-formedness test, generalising the ‘almost identical’

test above. Suppose that u + λk is a one-parameter series as in Lemma 2.5 for which d 6= αe.

In this case, whenever λ > 0, the corresponding stratum PI has nontrivial stabiliser and so

cannot be contained in a well-formed hypersurface X. Therefore there must be a monomial

m ∈ Fλ, as in Lemma 2.5(ii). To avoid a contradiction, we must have that
∑
piki − e 6= 0. But

rearranging (2.3) for λ gives

λ =
d−

∑
piui∑

piki − e
=

(d− αe) + αe−
∑
piαki∑

piki − e
=

d− αe∑
piki − e

− α ≤ |d− αe| − α.

This gives an upper bound on λ, so we may reject the one-parameter series and consider instead

the finite number of solutions having these λ as sporadic cases.

Quasismoothness at all proportional strata. The proof of Lemma 2.5 also gives us a slight vari-

ation.

Lemma 2.6. Suppose there exists a subset I = {i1, . . . , ir} ⊂ {1, . . . , s−1} and α > 0 such that

ui = αki for all i ∈ I. Set d := us+1 and e := ks+1. If for some λ > 0 and h /∈ I there is a

monomial m = xhx
p1
i1
· · ·xprir ∈ Fλ for which p1ki1 + · · ·+ prkir = e− kh then

(i) p1ui1 + · · ·+ pruir = d− uh, and

(ii) m ∈ Fλ for all λ ≥ 0.
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Suppose the stratum ΓI = P(ai1 , . . . , air) is contained in the generalX. Any monomialm ∈ Fλ
of the form in Lemma 2.6 gives a tangent variable along the stratum ΓI . To be quasismooth

along ΓI , there must exist at least r such monomials with distinct linear forms xh.

To use this as a test, we consider each h /∈ I in turn, positing a monomial m ∈ Fλ as in

the lemma. If some m also satisfies p1ki1 + · · · + prkir = e − kh, then xh provides one of the

tangent forms for every λ and we record this fact. Otherwise we may rearrange to obtain an

upper bound for λ with xh a tangent form:

λ =
d− uh −

∑
piui∑

piki + kh − e
=

(d− uh + αkh − αe)− αkh + αe− α
∑
piαki∑

piki + kh − e

=
d− uh + αkh − αe∑

piki + kh − e
− α

≤ |(d− αe)− (uh − αkh)| − α

which again provides an upper bound for λ in terms of the series. If we find r independent

tangent forms along ΓI then it can be contained inside a quasismooth X; if not, then these

bounds apply to limit the number of quasismooth members of the series.

2.5. Analysis of singularities. Since Xd ⊂ P(a1, . . . , as) is general, the quotient singularities

of the hypersurfaces can be described by following [11, §10]. We then apply the Reid–Shepherd-

Barron–Tai criterion as given in [20, (3.1)] and [23, Theorem 3.3].

The orbifold strata on the ambient P(a1, . . . , as) correspond to subsets I ⊂ {1, . . . , s} of

indices for which rI := gcd{ai | i ∈ I} > 1. We only need to work with maximal I for any given

r = rI , and so we always assume this is the case. For example, any point on the relative big

torus Π◦ ⊂ Π of the I = {4, 5} stratum ΠI ⊂ P(1, 3, 5, 8, 12) has a quotient singularity of type
1
4(1, 3, 5) = 1

4(1, 3, 1) transverse to ΠI .

Given a hypersurface Xd : (F = 0) ⊂ P(a1, . . . , as), consider an ambient orbifold stratum Π =

P(ai1 , . . . , ait) of transverse type 1
r (b1, . . . , bs−t). So {ai1 , . . . , ait , b1, . . . , bs−t} = {a1, . . . , as}.

One of two things can happen:

(i) F vanishes on Π, so that Π ⊂ X. In this case, at any point P ∈ X ∩ Π◦, X has

a transverse quotient singularity of type 1
r (b1, . . . , b̂j , . . . , bs−t), where xj is a tangent

variable to X at P . Note that there may be several tangent variables at P , but their

weights are congruent modulo r and so any one may be used.

(ii) F = 0 cuts a codimension one locus transversely inside Π. In this case, at any point P ∈
X∩Π◦, the hypersurface X has a transverse quotient singularity of type 1

r (b1, . . . , bs−t).

This is enough to calculate the singularities of X.

Example 2.7. Consider X112 ⊂ P(28, 24, 21, 16, 13, 11) in coordinates x, y, z, u, v, and w. The

ambient space has the following orbifold strata:

0-dimensional strata: 1
28(24, 21, 16, 13, 11), 1

24(4, 21, 16, 13, 11), 1
21(7, 3, 16, 13, 11),

1
16(12, 8, 5, 13, 11), 1

13(4, 11, 8, 3, 11), and 1
11(6, 2, 10, 5, 2).

1-dimensional strata: Transverse 1
8(28, 21, 13, 11) = 1

8(4, 5, 5, 3) along the relatively

open stratum in P(24, 16); 1
7(3, 2, 6, 4) along P(28, 21); and 1

3(1, 1, 1, 2) along P(24, 21).

2-dimensional strata: Transverse 1
4(21, 13, 11) = 1

4(1, 1, 3) along P(28, 24, 16).

Since X is general it intersects the open two-stratum transversely in a curve of transverse
1
4(1, 1, 3) singularities. It also contains the P(24, 21) stratum: the monomials y4u and z4x

provide tangent forms along it, so X has transverse type 1
3(1, 1, 2) in the open stratum. These

two curves meet at the y-coordinate point P2, where y4u eliminates u, so is a dissident point
1
24(4, 21, 13, 11). It does not pass through the 0-strata of indices 28 and 16, since there exist pure

power monomials x4 and u7. The remaining 0-strata do lie on X: the monomials z4x, v7z and
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w8y (or w9v) provide orbifold tangent equations at those points, which are therefore isolated

terminal quotient singularities: 1
21(3, 16, 13, 11), 1

13(2, 11, 3, 11), and 1
11(6, 10, 5, 2).

The closure of the index four curve on X has two more dissident points where it meets

P(24, 16): the intersection is cut out by (y4 + u6)u, which in the relatively open stratum is two

points each of type 1
8(4, 5, 5, 3). Finally, X meets the open stratum of P(28, 21) in a single point

of type 1
7(3, 2, 6, 4) cut out by (x3 + z4)x.

The monomials seen so far already describe terminal singularities, so define a Fano fourfold

X : (x4 + y4u+ z4x+ u7 + v7z + w8y = 0) ⊂ P(28, 24, 21, 16, 13, 11).

3. Classifications of hypersurfaces

The main results of this paper concern fourfolds. Before discussing those, we recover known

classifications in lower dimensions as a means of checking our implementation. There are also

new results in these lower dimensions, but that is not what we focus on. The results in dimensions

two, three, and four are summarised in Tables 7, 9, and 11, respectively; details are available on

the Graded Ring Database [3]. The varieties are polarised byA ∈ |OX(1)|, and have ωX = OX(k)

for k = d −
∑
ai. In particular, KX = kA and X is not embedded by ±KX unless k = ±1.

When k < 0 we say that X has index −k. We list only nondegenerate hypersurfaces, that is,

those whose defining equation degree is not equal to one of the weights; degenerate hypersurfaces

only arise in the anticanonical case when the index is bigger than the dimension.

3.1. Two-dimensional orbifold hypersurfaces. We summarise the results in Table 7. (Of

course terminal points of surfaces are smooth, so the two last numerical columns are identical.)

The 95 weighted K3 hypersurfaces of Reid [20] is the first important result. The 62 cases of

canonically polarised surfaces are not so familiar, but the four cases of these that are smooth

are well known:

(3.1) X5 ⊂ P3, X6 ⊂ P(2, 1, 1, 1), X8 ⊂ P(4, 1, 1, 1), and X10 ⊂ P(5, 2, 1, 1).

The anticanonically polarised surfaces are the result of Johnson–Kollár [12, Theorem 8]: the

result is 22 sporadic cases and a single infinite one-parameter series. Higher index del Pezzo

surfaces have been studied by Boyer, Galicki and Nakamaye [2], Cheltsov and Shramov [7], and

Paemurru [18].

Table 7. Summary of results for surfaces, including the number of canonical,

terminal, and smooth cases that occur among the series and sporadic results.

dim k #series #sporadic #can #term #sm Ref

2 −2 9 32† 4 1 1 [2, 7, 18]

2 −1 1 22 3 3 3 [12]

2 0 0 95 95 2 2 [20]

2 1 0 62 4 4 4

2 2 0 205 8 2 2

2 3 0 103 11 6 6

2 4 0 276 11 2 2

2 5 0 96 11 7 7

†A 33rd case X18 ⊂ P(7, 6, 4, 3) lies in a series but with the weights in a different

order.
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We consider the case ωX = OX(−2) in detail to illustrate the need for careful post-processing

of the output from this algorithm when there are infinite series. First, it can happen that

sporadic elements also appear in infinite series. Second, it is also typical – as already happens

in [12] – that infinite series are not saturated in their natural integral parameter: for example,

often only alternate cases are well-formed. The algorithm as described is unable to analyse this,

but we do for Theorem 3.3 below, which is sharp. Whilst the algorithm returns nine series and

37 sporadic cases, observation (with or without a computer) trims this to a sharp result of nine

precisely-specified series and 32 sporadic cases.

Theorem 3.1 (Index two del Pezzo hypersurfaces).

(i) The general member of each of the cases listed in Table 8 is a well-formed del Pezzo

surface of index two with log terminal singularities.

(ii) Conversely, if Xd ⊂ P(a1, a2, a3, a4) is a well-formed del Pezzo surface of index two (so

that a1 + · · ·+ a4 = d+ 2) with log terminal singularities then, possibly after reordering

the ai, it is one of the cases listed in Table 8.

(iii) Of the surfaces in Table 8, only X2 ⊂ P3, X3 ⊂ P(2, 1, 1, 1), X4 ⊂ P(2, 2, 1, 1), and

X6 ⊂ P(3, 2, 2, 1) have a member with canonical singularities, of which only the first has

nonsingular member.

Table 8. All well-formed index two del Pezzo hypersurfaces with log terminal singularities.

One two-dimensional series

0. X2+2m+n ⊂ P((1, 1, 1, 1) +m(1, 1, 0, 0) + n(1, 0, 0, 0)) for all n,m ≥ 0.

Eight one-dimensional series

1. X6+2n ⊂ P((3, 2, 2, 1) +n(1, 1, 0, 0)) for all n ≥ 0.

2. X20+4n ⊂ P((8, 5, 5, 4) +n(2, 1, 1, 0)) for all even n ≥ 0.

3. X24+6n ⊂ P((10, 8, 4, 4) +n(3, 2, 1, 0)) for all odd n ≥ −1.

4. X17+4n ⊂ P((7, 5, 4, 3) +n(2, 1, 1, 0)) for all n ≥ 0 congruent to 0 mod 3.

5. X21+6n ⊂ P((9, 7, 4, 3) +n(3, 2, 1, 0)) for all n ≥ 0 congruent to 0 mod 3.

6. X24+6n ⊂ P((12, 7, 4, 3) +n(3, 2, 1, 0)) for all n ≥ 0 congruent to 0 mod 3.

7. X9+2n ⊂ P((4, 3, 3, 1) +n(1, 1, 0, 0)) for all n ≥ 0 congruent to 0 or 1 mod 3.

8. X12+3n ⊂ P((4, 4, 3, 3) +n(1, 1, 1, 0)) for all n ≥ 0 congruent to 0 or 1 mod 3.

32 sporadic cases

X12 ⊂ P(6, 4, 3, 1) X36 ⊂ P(18, 12, 7, 1) X99 ⊂ P(41, 29, 17, 14)

X12 ⊂ P(5, 4, 3, 2) X36 ⊂ P(13, 10, 9, 6) X105 ⊂ P(43, 35, 19, 10)

X14 ⊂ P(7, 4, 3, 2) X40 ⊂ P(20, 13, 8, 1) X105 ⊂ P(47, 28, 21, 11)

X15 ⊂ P(7, 5, 4, 1) X45 ⊂ P(22, 15, 9, 1) X107 ⊂ P(41, 32, 25, 11)

X16 ⊂ P(8, 5, 4, 1) X48 ⊂ P(16, 13, 12, 9) X107 ⊂ P(47, 29, 20, 13)

X18 ⊂ P(9, 6, 4, 1) X57 ⊂ P(22, 19, 13, 5) X111 ⊂ P(43, 34, 25, 11)

X20 ⊂ P(10, 5, 4, 3) X57 ⊂ P(25, 19, 8, 7) X111 ⊂ P(49, 31, 20, 13)

X22 ⊂ P(11, 7, 5, 1) X57 ⊂ P(19, 19, 12, 9) X135 ⊂ P(61, 45, 18, 13)

X27 ⊂ P(13, 9, 6, 1) X64 ⊂ P(32, 19, 8, 7) X226 ⊂ P(113, 61, 43, 11)

X30 ⊂ P(15, 10, 6, 1) X70 ⊂ P(35, 19, 13, 5) X226 ⊂ P(113, 71, 31, 13)

X30 ⊂ P(15, 10, 4, 3) X81 ⊂ P(31, 24, 19, 9)

Remark 3.2. This classification in Table 8 appears elsewhere in the literature; see [2, 7, 18]. In

our presentation we assemble series that lie on the same affine line into a single series with

congruence conditions. The list of series and sporadic cases is given without repetition. The
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surface X18 ⊂ P(7, 6, 3, 4) is the initial case n = −1 in Series 3. In that form, it does not respect

the ordering of weights that we imposed at the outset, but it falls naturally in the series and so

we record it there. Other works prefer to list this case separately, precisely because it breaks

the ordering. All other cases in the table have the conventional ordering.

Some of the series could be extended by allowing negative values for n and relaxing the

ordering of weights, but in each case this only duplicates a hypersurface appearing in another

series (after reordering the weights). These coincidences are:

(i) Series 1 meets Series 0 at X4 ⊂ P(2, 1, 2, 1) when n = −1;

(ii) Series 2 meets Series 8 at X12 ⊂ P(4, 3, 3, 4) when n = −2;

(iii) Series 3 meets Series 0 at X6 ⊂ P(1, 2, 1, 4) when n = −3;

(iv) Series 4 meets Series 0 at X5 ⊂ P(1, 2, 1, 3) when n = −3;

(v) Series 6 meets Series 0 at X6 ⊂ P(3, 1, 1, 3) when n = −3;

(vi) Series 7 meets Series 0 at X5 ⊂ P(2, 1, 3, 1) when n = −2;

(vii) Series 8 meets Series 1 at X6 ⊂ P(2, 2, 1, 3) when n = −2.

Proof of Theorem 3.3. (i) and (iii) are routine: working in coordinates x, y, z, and t on wP3,

we check that every hypersurface listed is well-formed and quasismooth, and identify those with

canonical singularities.

Series 0 has a member xy + z2+n+2m + t2+n+2m = 0. This satisfies the conditions, which are

open, and so the general member does too. This hypersurface meets potential orbifold strata in

quotient singularities 1
1+n+m(1, 1) and 1

1+m(1, 1), which are canonical if and only if n+m ≤ 1.

We consider Series 8 according to the residue of n modulo 3. If n = 3k then

x2t+ y2z + z2k+3 + t9+2n = 0

meets the one-dimensional y-z orbifold stratum P(3(k + 1), 3) in two points and satisfies the

conditions; it has a 1
3(1, 1) singularity, which is not canonical. If n = 3k + 1 then

x2t+ y2z + xzk+2 + t9+2n = 0

satisfies the conditions; again is not canonical. The remaining series and the sporadic cases are

checked similarly.

(ii) follows from the correct implementation of the algorithm, followed by correct organisation

of the output. The first step is to analyse the infinite series, confirming that each one does

represent infinitely many quasismooth cases, and that the values of n in Table 8 are the only

ones that work. For example, in Series 7, when n = 3k + 2 the one-dimensional x-z orbifold

stratum P(3(k + 2), 3) is contained in X, since 9 + 2n is not congruent to 0 modulo 3, so the

hypersurface is not well-formed in this case. Other cases are treated similarly. The second step

is then to exclude sporadic cases that lie in series, which is a routine observation. �

3.2. Three-dimensional orbifold hypersurfaces. We summarise the results in Table 9.

Some of these results are well known: the 7555 Calabi-Yau threefolds agree with Kreuzer–

Skarke [17]; when k = 1 we recover Iano-Fletcher’s list [11] of 23 canonical hypersurfaces. The

other classifications with k > 0 are new, to the best of our knowledge. The classifications with

k < 0 and terminal singularities agree with those obtained by Suzuki [4, 22].

When k = −1 Johnson and Kollár [13, Theorem 2.2] classify all well-formed quasismooth

threefold hypersurfaces with ωX = OX(−1). Our algorithm produces 4450 sporadic cases and

25 infinite series. Of these 4450 sporadic cases, eight lie in the infinite series (requiring the

given order on the ai). Removing these leaves 4442 sporadic cases and 25 infinite one-parameter

series, in agreement with [13]. Note that [13] include a further 23 infinite series that satisfy all

the conditions except for well-formedness, and that these series contain no well-formed cases.

A further 14 sporadic cases lie in the series after relaxing the condition on the order of the ai.
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Table 9. Summary of results for threefolds, including the number of canonical,

terminal, and smooth cases that occur among the series and sporadic results.

dim k #series #sporadic #can #term #sm Ref

3 −2 66 7084 96 8 3

3 −1 25 4442 95 95 2 [11,13,20]

3 0 0 7555 7555 4 4 [17]

3 1 0 6448 23 23 2 [11]

3 2 0 11 762 53 17 6

3 3 0 8298 76 27 2

3 4 0 13 305 110 25 7

3 5 0 7007 83 45 3

We choose not to remove them from the sporadic list; these cases are listed in Table 10. After

checking the singularities, we recover the 95 cases of well-formed quasismooth terminal Fano

threefolds discussed after Theorem (4.5) in [20], and in [13, Corollary 2.5].

Table 10. Index one Fano threefolds that lie in infinite series after reordering

their weights.

X6 ⊂ P(2, 2, 1, 1, 1) X8 ⊂ P(3, 2, 2, 1, 1) X10 ⊂ P(4, 3, 2, 1, 1)

X12 ⊂ P(5, 3, 2, 2, 1) X12 ⊂ P(5, 4, 2, 1, 1) X16 ⊂ P(7, 4, 3, 2, 1)

X16 ⊂ P(7, 5, 2, 2, 1) X18 ⊂ P(8, 5, 3, 2, 1) X20 ⊂ P(9, 5, 4, 2, 1)

X22 ⊂ P(10, 7, 3, 2, 1) X24 ⊂ P(11, 8, 3, 2, 1) X26 ⊂ P(12, 7, 5, 2, 1)

X28 ⊂ P(13, 9, 4, 2, 1) X36 ⊂ P(17, 12, 5, 2, 1)

We continue calculating in higher index. We say X is a Fano threefold with canonical singu-

larities if it satisfies the conditions for a Fano threefold with ‘terminal’ relaxed to ‘canonical’.

Theorem 3.3 (Index two Fano hypersurfaces).

(i) There are 66 one-parameter series and 7084 sporadic cases of well-formed quasismooth

threefold hypersurfaces with ωX = OX(−2).

(ii) There are 96 Fano threefold hypersurfaces of index two with canonical singularities.

With the exception of the cubic X3 ⊂ P4, they are all of the form Xd ⊂ P(a1, a2, a3, a4, 2),

where Sd ⊂ P(a1, a2, a3, a4) is one of the 95 K3 hypersurfaces.

As in [22], three of these 96 hypersurfaces are nonsingular: X3 ⊂ P4, X4 ⊂ P(2, 1, 1, 1, 1, 4),

and X6 ⊂ P(3, 2, 1, 1, 1, 6). A further five have terminal singularities:

X10 ⊂ P(5, 3, 2, 1, 1), X18 ⊂ P(9, 5, 3, 2, 1), X22 ⊂ P(11, 7, 3, 2, 1),

X26 ⊂ P(13, 7, 5, 2, 1) and X38 ⊂ P(19, 11, 5, 3, 2).

We briefly describe the computer analysis. The raw output consists of 7102 sporadic cases

and 85 series, 84 of which are one-dimensional, and one of which is two-dimensional. The

two-dimensional series is

X3+2m+3n ⊂ P((1, 1, 1, 1, 1) +m(1, 1, 0, 0, 0) + n(1, 1, 1, 0, 0)).
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When both m and n > 0 this is not quasismooth along the one-stratum x1, x2: x3 is the only

tangent form there. Therefore this solution is the union of two one-parameter series

X3+2n ⊂ P((1, 1, 1, 1, 1) + n(1, 1, 0, 0, 0)) and X3+3n ⊂ P((1, 1, 1, 1, 1) + n(1, 1, 1, 0, 0)),

which are both well-formed and quasismooth for all n ≥ 0. Of the remaining one-parameter

series, 64 have a ‘periodic’ subset of well-formed quasismooth elements: that is, the distribution is

either all elements, every other element, every third element, or two out of every three elements.

The remaining 20 one-parameter series are easily seen to have no well-formed quasismooth

elements. It remains to observe which of the sporadic cases lie in these 66 families and to

calculate their singularities.

We can compute higher index, although proving precise statements about the infinite series

becomes increasingly difficult as the number of results gets larger. We state the results which

have canonical singularities, where the statements can be made precise.

Theorem 3.4 (Index three Fano hypersurfaces). There are 100 Fano threefold hypersurfaces of

index three with canonical singularities. Of these 100 cases:

(i) 95 are of the form Xd ⊂ P(a1, a2, a3, a4, 3), where Sd ⊂ P(a1, a2, a3, a4) is one of the 95

K3 hypersurfaces, and so have a quasismooth K3 hypersurface elephant;

(ii) X2 ⊂ P4, X3 ⊂ P(2, 1, 1, 1, 1) and X4 ⊂ P(2, 2, 1, 1, 1) have a quasismooth K3 elephant

which is not a hypersurface, but has minimal embedding codimension two;

(iii) X21 ⊂ P(9, 7, 4, 3, 1) and X30 ⊂ P(10, 9, 7, 4, 3) do not have a quasismooth K3 elephant.

As in [22], of these 100 hypersurfaces only the quadric is nonsingular, and a further six have

terminal singularities: X3 ⊂ P(2, 1, 1, 1, 1, 3), X4 ⊂ P(2, 2, 1, 1, 1, 4), X6 ⊂ P(3, 2, 2, 1, 1), X12 ⊂
P(5, 4, 3, 2, 1, 12), X15 ⊂ P(7, 5, 3, 2, 1), and X21 ⊂ P(8, 7, 5, 3, 1).

Theorem 3.5 (Index four Fano hypersurfaces). There are 78 Fano threefold hypersurfaces of

index four with canonical singularities. Of these 78 cases:

(i) 67 are of the form Xd ⊂ P(a1, a2, a3, a4, 4), where Sd ⊂ P(a1, a2, a3, a4) is one of the 95

K3 hypersurfaces, and so have a quasismooth K3 hypersurface elephant;

(ii) Six cases, X3 ⊂ P(2, 2, 1, 1, 1, 3), X4 ⊂ P(2, 2, 2, 1, 1, 4), X4 ⊂ P(3, 2, 1, 1, 1, 4), X5 ⊂
P(3, 2, 2, 1, 1, 5), X6 ⊂ P(3, 3, 2, 1, 1, 6), and X6 ⊂ P(3, 2, 2, 2, 1, 6) have a quasismooth

K3 elephant which is not a hypersurface, but has minimal embedding codimension two;

(iii) Five cases, X20 ⊂ P(8, 6, 5, 4, 1, 20), X28 ⊂ P(10, 8, 7, 4, 3, 28), X28 ⊂ P(14, 8, 5, 4, 1, 28),

X36 ⊂ P(18, 8, 7, 4, 3, 36), and X44 ⊂ P(22, 9, 8, 5, 4, 44) do not have a quasismooth K3

elephant.

Continuing in this fashion – listing Fano threefolds with canonical singularities of higher in-

dex – there are 46 cases in index five, of which 43 have hypersurface K3 elephants, whilst

X4 ⊂ P(3, 2, 2, 1, 1), X6 ⊂ P(3, 3, 2, 2, 1), and X6 ⊂ P(4, 3, 2, 1, 1) have codimension two ele-

phants. There are 88 cases in index six, of which 69 have a hypersurface elephant, 17 have a

codimension two elephant, and two cases – X24 ⊂ P(9, 8, 6, 5, 2) and X24 ⊂ P(11, 9, 8, 6, 5) –

have no quasismooth K3 elephant.

3.3. Fourfolds. Our main results are the cases k = −1, 0, and 1. When k ≥ 0 there are no

infinite series and the raw output of the algorithm is ready to use.

We describe the case k = −1 in more detail in Steps 1–5 below. In this case raw output

consists of four two-parameter series, 1611 one-parameter series, and 1 234 076 sporadic cases.

Step 1. The two-parameter series do not contain any good elements. The first case is the series

corresponding to integral points in the polyhedron

(15, 10, 3, 2, 1, 1, 31) + cone{(15, 10, 3, 2, 0, 0, 30), (15, 10, 3, 2, 2, 0, 32)}.
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Table 11. Summary of results for fourfolds, including the number of canonical,

terminal, and smooth cases that occur among the series and sporadic results.

dim k #series #sporadic #can #term #sm

4 −2 4151† 2 088 986†† 15 051 2304 2

4 −1 1597 1 233 322 11 618 11 618 4

4 0 0 1 100 055 1 100 055 33 2

4 1 0 1 338 926 649 649 6

4 2 0 2 337 581 1373 504 2

4 3 0 1 318 278 1200 636 7

4 4 0 2 258 837 2079 596 3

4 5 0 1 291 194 1651 1017 5

†Experimental result based on 100 initial terms: of the 5799 series generated by the

algorithm, 1648 were rejected by this test and excluded. The excluded series have

not been proven to have no well-formed quasismooth members.
††Sporadic elements that lie in one of the series have not been removed from this list.

The cone is not regular, but has three semigroup generators, including (15, 10, 3, 2, 1, 0, 31), so

its integral points are all of the form

(15N, 10N, 3N, 2N, 1 + n2 + 2n3, 1, 30N + 1 + n2 + 2n3) ,

where N := n1 + n2 + n3 + 1 and n1, n2, n3 ≥ 0. These integral points correspond to

X30N+1+n2+2n3 ⊂ P(15N, 10N, 3N, 2N, 1 + n2 + 2n3, 1).

When N > 0 this is not well-formed. The vertex (15, 10, 3, 2, 1, 1, 31) does work, and corresponds

to X31 ⊂ P(15, 10, 3, 2, 1, 1), but this is already contained in the sporadic list.

The other three cases are

(4, 3, 3, 2, 1, 1, 13) + cone{(4, 3, 3, 2, 0, 0, 12), (4, 3, 3, 2, 2, 0, 14)},
(4, 3, 3, 2, 2, 1, 14) + cone{(4, 3, 3, 2, 0, 0, 12), (4, 3, 3, 2, 2, 0, 14)},

and (15, 10, 3, 2, 2, 1, 32) + cone{(15, 10, 3, 2, 0, 0, 30), (15, 10, 3, 2, 2, 0, 32)}.

They follow the same pattern as above; in each case the hypersurface corresponding to the vertex

is already in the sporadic list.

Step 2. 1597 of the one-parameter families match those predicted by the Johnson–Kollár con-

jecture, so they all work. We normalise them so they are the intersection of an affine line with

the strict positive quadrant, irrespective of ordering of the vertex.

Step 3. The remaining 14 one-parameter series, listed in Table 12, do not contain infinitely many

good members. For example, consider the series

(213, 107, 84, 15, 8, 2, 428) + cone{(214, 107, 84, 15, 8, 0, 428)},

expressed as

X428(n+1) : (F = 0) ⊂ P(214(n+ 1)− 1, 107(n+ 1), 84(n+ 1), 15(n+ 1), 8(n+ 1), 2).

The x3-x4 stratum Γ is contained in any X (by mod 3 and mod 9 congruence). But we see that

x1, x2, and x6 cannot be tangent forms along Γ unless n = 0. For example, if xa3x
b
4x6 ∈ F then

84a + 15b + 2/(n + 1) = 428, hence n = 0 or 1; and since b must be even, n 6= 1. Similarly
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Table 12. Fourteen 1-parameter series excluded at Step 3.

(105, 53, 30, 21, 2, 2, 212) + cone{(106, 53, 30, 21, 2, 0, 212)}

(109, 55, 27, 24, 4, 2, 220) + cone{(110, 55, 27, 24, 4, 0, 220)}

(117, 59, 33, 21, 5, 2, 236) + cone{(118, 59, 33, 21, 5, 0, 236)}

(117, 59, 39, 18, 2, 2, 236) + cone{(118, 59, 39, 18, 2, 0, 236)}

(129, 65, 36, 21, 8, 2, 260) + cone{(130, 65, 36, 21, 8, 0, 260)}

(157, 79, 63, 15, 1, 2, 316) + cone{(158, 79, 63, 15, 1, 0, 316)}

(165, 83, 66, 15, 2, 2, 332) + cone{(166, 83, 66, 15, 2, 0, 332)}

(181, 91, 72, 15, 4, 2, 364) + cone{(182, 91, 72, 15, 4, 0, 364)}

(193, 97, 45, 28, 24, 2, 388) + cone{(194, 97, 45, 28, 24, 0, 388)}

(213, 107, 84, 15, 8, 2, 428) + cone{(214, 107, 84, 15, 8, 0, 428)}

(217, 109, 40, 36, 33, 2, 436) + cone{(218, 109, 40, 36, 33, 0, 436)}

(217, 109, 69, 22, 18, 2, 436) + cone{(218, 109, 69, 22, 18, 0, 436)}

(277, 139, 108, 16, 15, 2, 556) + cone{(278, 139, 108, 16, 15, 0, 556)}

(301, 151, 117, 19, 15, 2, 604) + cone{(302, 151, 117, 19, 15, 0, 604)}

xa3x
b
4x1 /∈ F . If xa3x

b
4x2 ∈ F then, again by computing degrees and dividing by 2(n+ 1), we have

that 28a+ 5b = 107, but this has no solutions with a, b ∈ Z≥0. We conclude that x5 is the only

tangent form along Γ, and so X is not quasismooth unless n = 0. We add this initial n = 0

element to the sporadic list and exclude the series. The remaining cases work similarly: in each

case we need to record the initial element but no others.

At the end of this step, we have excluded the two-parameter series and 14 of the one-parameter

series, and have added 14 additional elements to the sporadic list.

Step 4. Remove any members of the sporadic list that lie in the series. The form of the Johnson–

Kollár conjecture helps: rather than testing membership, one can simple observe when a sporadic

case is of the right form; this also finds sporadic elements who lie in a series after re-ordering.

There are 768 sporadic elements that lie in the series, of which 381 only do so after re-ordering;

we remove these cases from the sporadic list.

Step 5. Check for canonical singularities in the sporadic list and the series. Again, the form of

the Johnson–Kollár conjecture helps: every member of a series has the form

X2h
∑
bi ⊂ P(−1 + h

∑
bi, hb1, . . . , hbs−2, 2),

where n ≥ 3 and h ≥ 1 is odd. Whenever h > 1, the (s− 3)-stratum P(hb1, . . . , hbs−2) has non-

trivial stabiliser Z/h, and X intersects this in codimension two on X. Its transverse quotient

type is 1
h(h − 1, 2), which is not canonical when h ≥ 3 and so, in particular, X does not have

canonical singularities when h > 1. Hence we need only check the sporadic cases and the first

member of each series.

3.4. Higher index Fano fourfolds: experimental results. There is no known sharp upper

bound for the index of Fano fourfold hypersurfaces. For Fano threefolds, Suzuki [22, Theorem 0.3]

proves that the highest Fano index is realised by a weighted projective space, and Prokhorov [19,

Theorem 1.4] proves that only weighted projective space achieves this. Taking this as a guide,

one may expect the highest index of a (Q-factorial terminal) Fano weighted projective space
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to be an upper bound. The classification of all such P(a1, . . . , a5) is known [14, Theorem 3.5]:

there are 28 686 cases in total, and the highest index is 881, realised by P(430, 287, 123, 21, 20).

Although we have the raw results in a few higher indices, we only discuss the case of index two

here, where we give an experimental overview, as we explain below. The raw output in this case

consists of 5799 series and of 2 088 986 sporadic cases.

For all results so far we have taken the raw output from the algorithm and analysed it in

detail, proving non-existence individually for those series we reject. In fact, those series that

worked always did so because there is some small periodicity in the behaviour of their elements:

typically every other element represents a well-formed quasismooth hypersurface. This has given

us computer-assisted rigorous proofs. We now adopt a more experimental approach: in what

follows we reject any series that does not have a well-formed quasismooth element in its first

100 terms (in practice we have experimented with increasing the number of terms considered,

and have found no difference in outcome).

There are five two-dimensional series, but these do not contribute anything other than existing

one-dimensional series or sporadic results, so we reject them. Among the remaining 5794 one-

dimensional series, 1643 have no good cases among the first 100 elements, and so we reject these

too. This leaves 4151 one-dimensional series. These fall into several different types. The largest

is a natural generalisation of the Johnson–Kollár series, but with a6 = 4:

Xd(k) ⊂ P(a
(k)
1 , . . . , a

(k)
6 ) for even k ≥ 0, where

(a
(k)
1 , . . . , a

(k)
6 , d(k)) =

(∑
bi − 2, b1, . . . , b4, 4, 2

∑
bi

)
+ k

(∑
bi, b1, . . . , b4, 0, 2

∑
bi

)
for each of the 2390 well-formed quasismooth Calabi–Yau threefolds S2

∑
bi ⊂ P(

∑
bi, b1, . . . , b4).

Note that, in contrast to the Johnson–Kollár correspondence in index one, we do not restrict to

those 1597 cases with well-formed P(b1, . . . , b4).

Another large type is similar: there are 1585 cases with a6 = 3 of the form

(a
(k)
1 , . . . , a

(k)
6 , d(k)) =

(
b1 − 1, b2, b3, b4, b5, 3,

∑
bi

)
+ k

(
b1, b2, b3, b4, b5, 0,

∑
bi

)
where X∑

bi ⊂ P(b1, b2, b3, b4, b5) is a Calabi–Yau threefold hypersurface that is a triple cover∑
bi = 3b1 (in some cases after reordering so that b1 is no longer the biggest of the bi), and k is

constrained modulo 3.

The remaining cases also form patterns:

3 cases: (a5 = a6 = 1) For all k ≥ 0

(a
(k)
1 , . . . , a

(k)
6 , d(k)) =

(
b1, b2, b3, 1, 1, 1,

∑
bi + 1

)
+ k

(
b1, b2, b3, 0, 0, 0,

∑
bi

)
where (b1, b2, b3) = (1, 1, 1), (2, 1, 1) or (3, 2, 1).

95 cases: (a5 = a6 = 1) For all k ≥ 0

(a
(k)
1 , . . . , a

(k)
6 , d(k)) =

(
b1, b2, b3, b4, 1, 1,

∑
bi

)
+ k

(
b1, b2, b3, b4, 0, 0,

∑
bi

)
where X∑

bi ⊂ P(b1, b2, b3, b4) is any of the 95 K3 hypersurfaces.

48 cases: (a5 = 2, a6 = 1) For all k ≥ 0

(a
(k)
1 , . . . , a

(k)
6 , d(k)) =

(
b1 − 1, b2, b3, b4, 2, 1,

∑
bi

)
+ k

(
b1, b2, b3, b4, 0, 0,

∑
bi

)
where X∑

bi ⊂ P(b1, b2, b3, b4) is any of the 48 K3 hypersurfaces that are double covers.

A further 8 cases arise from these K3 surfaces, also with a5 = 2, a6 = 1, but with more

adjustments to the first three entries b1, b2, b3 of the initial term.

22 cases: (a6 = 3) For k subject to a condition modulo 3, with kernels similarly deter-

mined by certain Calabi–Yau threefolds, but where the weights of the initial term of
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the series is half the kernel after two entries are slightly modified. For example:

(15, 6, 5, 3, 3, 3, 33) + k(33, 11, 10, 6, 6, 0, 66) for k ≡ 2 mod 3,

and (9, 5, 4, 1, 1, 3, 63) + k(21, 10, 7, 2, 2, 0, 42) for k ≡ 1 or 2 mod 3.

We do not see a single systematic pattern to this classification of infinite series, but it does still

seem to be determined by Calabi–Yau hypersurfaces of lower dimension.

At this stage it would also be possible also to run through the sporadic cases to determine

which lie in one of the series. We have not done this, so the number we give for the sporadic

classification is an upper bound.

3.5. Higher dimensions.

Nonsingular weighted hypersurfaces. If Xd ⊂ P(a1, . . . , as) is nonsingular then

Y
(n)
d ⊂ P(a1, . . . , as,

n︷ ︸︸ ︷
1, . . . , 1)

is a nonsingular (n+s−2)-fold for any n ≥ 0. The converse holds too: smoothness for any n ≥ 0

implies smoothness for them all. Whilst it is easy to write down nonsingular hypersurfaces of

general type with empty canonical system – for example, X30 ⊂ P(5, 3, 2) – these tend to involve

high degree equations with d = a1 · · · as. So perhaps it is not a surprise that the numbers of

smooth cases in dimensions three and four in Tables 9 and 11 match exactly the numbers of

smooth surfaces in Table 7. We list the first cases in Table 13, presented as (not necessarily

well-formed) orbifold zero-dimensional schemes Zd ⊂ P(a1, a2).

Table 13. The orbifold zero-dimensional schemes Zd ⊂ P(a1, a2) of index I ≤ 10

I # (a1, a2, d) of index I = d− a1 − a2

0 1 (1, 1, 2)

1 3 (1, 1, 3), (2, 1, 4), (3, 2, 6)

2 2 (1, 1, 4), (3, 1, 6)

3 4 (1, 1, 5), (4, 1, 8), (2, 1, 6), (5, 2, 10)

4 2 (1, 1, 6), (5, 1, 10)

5 6 (1, 1, 7), (6, 1, 12), (2, 1, 8), (3, 1, 9), (4, 3, 12), (7, 2, 14)

6 2 (1, 1, 8), (7, 1, 14)

7 7 (1, 1, 9), (8, 1, 16), (2, 1, 10), (4, 1, 12), (3, 2, 12), (5, 3, 15), (9, 2, 18)

8 3 (1, 1, 10), (9, 1, 18), (3, 1, 12)

9 5 (1, 1, 11), (10, 1, 20), (2, 1, 12), (5, 1, 15), (11, 2, 22)

10 2 (1, 1, 12), (11, 1, 22)

Series of Fano five-folds. Fano five-folds that have quasismooth Calabi–Yau fourfold elephants

arise directly from the 1 100 055 hypersurfaces: simply include an additional one amongst the

weights. But we can also use Calabi–Yau fourfolds to describe infinite series of anticanonically-

polarised five-fold hypersurfaces using Johnson and Kollár’s construction: 360 346 of the Calabi–

Yau hypersurfaces are double covers V2
∑
bi ⊂ P(

∑
bi, b1, . . . , b5), and of these 261 195 have

P(b1, . . . , b5) well-formed. Each of these determine an infinite series according to the Johnson–

Kollár recipe of §1.4. In each series, only the initial element could possibly have terminal
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singularities, and 31 400 Fano five-folds of the form X2
∑
bi ⊂ P(−1 +

∑
bi, b1, . . . , b5, 2) arise

in this way. In fact 25 276 of these 31 400 cases already arise in the usual way by including an

additional one among the weights of a Calabi–Yau fourfold: cases like X10 ⊂ P(4, 1, 1, 1, 1, 1, 2)

can be realised by both approaches.

3.6. Notes on computation. Our implementation of the algorithm can be downloaded from [3].

The results can be downloaded as plain-text files, or may be queried online. The code was run

on version 2.21-1 of the Magma computer algebra system [1]. Calculations in dimensions two

and three for small k can easily be carried out on a single computer. In dimension four the

search tree is too large to be tackled reasonably in a single run. Instead, we run the algorithm

to recursive depth one and compute the possible monomials at the first coordinate point P1.

We then run each of these as a single process on a high-performance computing cluster of about

200 cores, together with a data management layer to handle results, failed processes, and so on.

This runs in the order of an hour. Text files containing the results, and functions to parse them

as Magma input, are available at [3].
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