
MACHINE LEARNING THE DIMENSION OF A FANO VARIETY

TOM COATES , ALEXANDER M. KASPRZYK , AND SARA VENEZIALE

Abstract. Fano varieties are basic building blocks in geometry – they are ‘atomic pieces’ of mathematical
shapes. Recent progress in the classification of Fano varieties involves analysing an invariant called the
quantum period. This is a sequence of integers which gives a numerical fingerprint for a Fano variety. It is
conjectured that a Fano variety is uniquely determined by its quantum period. If this is true, one should
be able to recover geometric properties of a Fano variety directly from its quantum period. We apply
machine learning to the question: does the quantum period of 𝑋 know the dimension of 𝑋? Note that
there is as yet no theoretical understanding of this. We show that a simple feed-forward neural network
can determine the dimension of 𝑋 with 98% accuracy. Building on this, we establish rigorous asymptotics
for the quantum periods of a class of Fano varieties. These asymptotics determine the dimension of 𝑋 from
its quantum period. Our results demonstrate that machine learning can pick out structure from complex
mathematical data in situations where we lack theoretical understanding. They also give positive evidence
for the conjecture that the quantum period of a Fano variety determines that variety.

1. Introduction

Algebraic geometry describes shapes as the solution sets of systems of polynomial equations,
and manipulates or analyses a shape 𝑋 by manipulating or analysing the equations that define 𝑋.
This interplay between algebra and geometry has applications across mathematics and science; see
e.g. [3, 22, 53, 57]. Shapes defined by polynomial equations are called algebraic varieties. Fano varieties
are a key class of algebraic varieties. They are, in a precise sense, atomic pieces of mathematical
shapes [45,46]. Fano varieties also play an essential role in string theory. They provide, through their
‘anticanonical sections’, the main construction of the Calabi–Yau manifolds which give geometric
models of spacetime [6, 30, 55].

The classification of Fano varieties is a long-standing open problem. The only one-dimensional
example is a line; this is classical. The ten smooth two-dimensional Fano varieties were found by
del Pezzo in the 1880s [19]. The classification of smooth Fano varieties in dimension three was a
triumph of 20th century mathematics: it combines work by Fano in the 1930s, Iskovskikh in the 1970s,
and Mori–Mukai in the 1980s [24, 38–40, 51, 52]. Beyond this, little is known, particularly for the
important case of Fano varieties that are not smooth.

A new approach to Fano classification centres around a set of ideas from string theory called Mirror
Symmetry [7, 15, 31, 35]. From this perspective, the key invariant of a Fano variety is its regularized
quantum period [8]

𝐺𝑋(𝑡) =
∞∑
𝑑=0

𝑐𝑑𝑡
𝑑 (1)

This is a power series with coefficients 𝑐0 = 1, 𝑐1 = 0, and 𝑐𝑑 = 𝑟𝑑𝑑!, where 𝑟𝑑 is a certain Gromov–
Witten invariant of 𝑋. Intuitively speaking, 𝑟𝑑 is the number of rational curves in 𝑋 of degree 𝑑

that pass through a fixed generic point and have a certain constraint on their complex structure. In
general 𝑟𝑑 can be a rational number, because curves with a symmetry group of order 𝑘 are counted
with weight 1/𝑘, but in all known cases the coefficients 𝑐𝑑 in (1) are integers.

It is expected that the regularized quantum period 𝐺𝑋 uniquely determines 𝑋. This is true (and
proven) for smooth Fano varieties in low dimensions, but is unknown in dimensions four and higher,
and for Fano varieties that are not smooth.
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(a) 𝑥2 + 𝑦2 = 𝑧2 + 1 (b) 𝑥2 + 𝑦2 = 𝑧2

Figure 1. Algebraic varieties and their equations: (a) a smooth example; (b) an example with a
singular point.

In this paper we will treat the regularized quantum period as a numerical signature for the Fano
variety 𝑋, given by the sequence of integers (𝑐0 , 𝑐1 , . . .). A priori this looks like an infinite amount
of data, but in fact there is a differential operator 𝐿 such that 𝐿𝐺𝑋 ≡ 0; see e.g. [8, Theorem 4.3].
This gives a recurrence relation that determines all of the coefficients 𝑐𝑑 from the first few terms, so
the regularized quantum period 𝐺𝑋 contains only a finite amount of information. Encoding a Fano
variety 𝑋 by a vector in Z𝑚+1 given by finitely many coefficients (𝑐0 , 𝑐1 , . . . , 𝑐𝑚) of the regularized
quantum period allows us to investigate questions about Fano varieties using machine learning.

In this paper we ask whether the regularized quantum period of a Fano variety 𝑋 knows the
dimension of 𝑋. There is currently no viable theoretical approach to this question. Instead we use
machine learning methods applied to a large dataset to argue that the answer is probably yes, and
then prove that the answer is yes for toric Fano varieties of low Picard rank. The use of machine
learning was essential to the formulation of our rigorous results (Theorems 5 and 6 below). This
work is therefore proof-of-concept for a larger program, demonstrating that machine learning can
uncover previously unknown structure in complex mathematical datasets. Thus the Data Revolution,
which has had such impact across the rest of science, also brings important new insights to pure
mathematics [18, 21, 34, 49, 58, 59]. This is particularly true for large-scale classification questions,
e.g. [1, 10, 14, 17, 47], where these methods can potentially reveal both the classification itself and
structural relationships within it.

2. Results

Algebraic varieties can be smooth or have singularities. Depending on their equations, algebraic varieties
can be smooth (as in Figure 1(a)) or have singularities (as in Figure 1(b)). In this paper we consider
algebraic varieties over the complex numbers. The equations in Figures 1(a) and 1(b) therefore define
complex surfaces; however, for ease of visualisation, we have plotted only the points on these surfaces
with co-ordinates that are real numbers.

Most of the algebraic varieties that we consider below will be singular, but they all have a class
of singularities called terminal quotient singularities. This is the most natural class of singularities to
allow from the point of view of Fano classification [46]. Terminal quotient singularities are very mild;
indeed, in dimensions one and two, an algebraic variety has terminal quotient singularities if and only
if it is smooth.

The Fano varieties that we consider. The fundamental example of a Fano variety is projective spaceP𝑁−1.
This is a quotient of C𝑁 \ {0} by the group C×, where the action of 𝜆 ∈ C× identifies the points
(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) and (𝜆𝑥1 ,𝜆𝑥2 , . . . ,𝜆𝑥𝑁 ). The resulting algebraic variety is smooth and has dimen-
sion 𝑁 − 1. We will consider generalisations of projective spaces called weighted projective spaces
and toric varieties of Picard rank two. A detailed introduction to these spaces is given in §A.

To define a weighted projective space, choose positive integers 𝑎1 , 𝑎2 , . . . , 𝑎𝑁 such that any subset
of size 𝑁 − 1 has no common factor, and consider

P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) = (C𝑁 \ {0})/C×
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where the action of 𝜆 ∈ C× identifies the points
(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) and (𝜆𝑎1𝑥1 ,𝜆

𝑎2𝑥2 , . . . ,𝜆
𝑎𝑁 𝑥𝑁 )

in C𝑁 \ {0}. The quotient P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) is an algebraic variety of dimension 𝑁 − 1. A general
point of P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) is smooth, but there can be singular points. Indeed, a weighted projective
space P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) is smooth if and only if 𝑎𝑖 = 1 for all 𝑖, that is, if and only if it is a projective
space.

To define a toric variety of Picard rank two, choose a matrix(
𝑎1 𝑎2 · · · 𝑎𝑁
𝑏1 𝑏2 · · · 𝑏𝑁

)
(2)

with non-negative integer entries and no zero columns. This defines an action of C× × C× on C𝑁 ,
where (𝜆, 𝜇) ∈ C× ×C× identifies the points

(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) and (𝜆𝑎1𝜇𝑏1𝑥1 ,𝜆
𝑎2𝜇𝑏2𝑥2 , . . . ,𝜆

𝑎𝑁𝜇𝑏𝑁 𝑥𝑁 )

in C𝑁 . Set 𝑎 = 𝑎1 + 𝑎2 + · · · + 𝑎𝑁 and 𝑏 = 𝑏1 + 𝑏2 + · · · + 𝑏𝑁 , and suppose that (𝑎, 𝑏) is not a scalar
multiple of (𝑎𝑖 , 𝑏𝑖) for any 𝑖. This determines linear subspaces

𝑆+ = {(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) | 𝑥𝑖 = 0 if 𝑏𝑖/𝑎𝑖 < 𝑏/𝑎}
𝑆− = {(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) | 𝑥𝑖 = 0 if 𝑏𝑖/𝑎𝑖 > 𝑏/𝑎}

of C𝑁 , and we consider the quotient

𝑋 = (C𝑁 \ 𝑆)/(C× ×C
×) (3)

where 𝑆 = 𝑆+ ∪ 𝑆−. The quotient 𝑋 is an algebraic variety of dimension 𝑁 − 2 and second Betti
number 𝑏2(𝑋) ≤ 2. If, as we assume henceforth, the subspaces 𝑆+ and 𝑆− both have dimension two
or more then 𝑏2(𝑋) = 2, and thus 𝑋 has Picard rank two. In general 𝑋 will have singular points, the
precise form of which is determined by the weights in (2).

There are closed formulas for the regularized quantum period of weighted projective spaces and
toric varieties [9]. We have

𝐺P(𝑡) =
∞∑
𝑘=0

(𝑎𝑘)!
(𝑎1𝑘)!(𝑎2𝑘)! · · · (𝑎𝑁 𝑘)! 𝑡

𝑎𝑘 (4)

where P = P(𝑎1 , . . . , 𝑎𝑁 ) and 𝑎 = 𝑎1 + 𝑎2 + · · · + 𝑎𝑁 , and

𝐺𝑋(𝑡) =
∑

(𝑘,𝑙)∈Z2∩𝐶

(𝑎𝑘 + 𝑏𝑙)!
(𝑎1𝑘 + 𝑏1𝑙)! · · · (𝑎𝑁 𝑘 + 𝑏𝑁 𝑙)!

𝑡𝑎𝑘+𝑏𝑙 (5)

where the weights for 𝑋 are as in (2), and 𝐶 is the cone in R2 defined by the equations 𝑎𝑖𝑥 + 𝑏𝑖𝑦 ≥
0, 𝑖 ∈ {1, 2, . . . , 𝑁}. Formula (4) implies that, for weighted projective spaces, the coefficient 𝑐𝑑 from (1)
is zero unless 𝑑 is divisible by 𝑎. Formula (5) implies that, for toric varieties of Picard rank two, 𝑐𝑑 = 0
unless 𝑑 is divisible by gcd{𝑎, 𝑏}.

Data generation: weighted projective spaces. The following result characterises weighted projective spaces
with terminal quotient singularities; this is [43, Proposition 2.3].

Proposition 1. Let 𝑋 = P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) be a weighted projective space of dimension at least three. Then 𝑋

has terminal quotient singularities if and only if
𝑁∑
𝑖=1

{𝑘𝑎𝑖/𝑎} ∈ {2, . . . , 𝑁 − 2}

for each 𝑘 ∈ {2, . . . , 𝑎 − 2}. Here 𝑎 = 𝑎1 + 𝑎2 + · · · + 𝑎𝑁 and {𝑞} denotes the fractional part 𝑞 − ⌊𝑞⌋ of 𝑞 ∈ Q.

A simpler necessary condition is given by [42, Theorem 3.5]:

Proposition 2. Let 𝑋 = P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) be a weighted projective space of dimension at least two, with
weights ordered 𝑎1 ≤ 𝑎2 ≤ . . . ≤ 𝑎𝑁 . If 𝑋 has terminal quotient singularities then 𝑎𝑖/𝑎 < 1/(𝑁 − 𝑖 + 2) for
each 𝑖 ∈ {3, . . . , 𝑁}.
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Weighted projective spaces Rank-two toric varieties

Dimension Sample size Percentage Dimension Sample size Percentage

1 1 0.001
2 1 0.001 2 2 0.001
3 7 0.005 3 17 0.009
4 8 936 5.957 4 758 0.379
5 23 584 15.723 5 6 050 3.025
6 23 640 15.760 6 19 690 9.845
7 23 700 15.800 7 35 395 17.698
8 23 469 15.646 8 42 866 21.433
9 23 225 15.483 9 47 206 23.603
10 23 437 15.625 10 48 016 24.008

Total 150 000 Total 200 000

Table 1. The distribution by dimension in our datasets.

Weighted projective spaces with terminal quotient singularities have been classified in dimensions
up to four [41,43]. Classifications in higher dimensions are hindered by the lack of an effective upper
bound on 𝑎.

We randomly generated 150 000 distinct weighted projective spaces with terminal quotient sin-
gularities, and with dimension up to 10, as follows. We generated random sequences of weights
𝑎1 ≤ 𝑎2 ≤ . . . ≤ 𝑎𝑁 with 𝑎𝑁 ≤ 10𝑁 and discarded them if they failed to satisfy any one of the
following:

(i) for each 𝑖 ∈ {1, . . . , 𝑁}, gcd{𝑎1 , . . . , 𝑎̂𝑖 , . . . , 𝑎𝑁 } = 1, where 𝑎̂𝑖 indicates that 𝑎𝑖 is omitted;
(ii) 𝑎𝑖/𝑎 < 1/(𝑁 − 𝑖 + 2) for each 𝑖 ∈ {3, . . . , 𝑁};

(iii)
∑𝑁

𝑖=1{𝑘𝑎𝑖/𝑎} ∈ {2, . . . , 𝑁 − 2} for each 𝑘 ∈ {2, . . . , 𝑎 − 2}.
Condition (i) here was part of our definition of weighted projective spaces above; it ensures that the set
of singular points in P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) has dimension at most 𝑁 − 2, and also that weighted projective
spaces are isomorphic as algebraic varieties if and only if they have the same weights. Condition (ii)
is from Proposition 2; it efficiently rules out many non-terminal examples. Condition (iii) is the
necessary and sufficient condition from Proposition 1. We then deduplicated the sequences. The
resulting sample sizes are summarised in Table 1.

Data generation: toric varieties. Deduplicating randomly-generated toric varieties of Picard rank two is
harder than deduplicating randomly generated weighted projective spaces, because different weight
matrices in (2) can give rise to the same toric variety. Toric varieties are uniquely determined, up to
isomorphism, by a combinatorial object called a fan [25]. A fan is a collection of cones, and one can
determine the singularities of a toric variety 𝑋 from the geometry of the cones in the corresponding
fan.

We randomly generated 200 000 distinct toric varieties of Picard rank two with terminal quotient
singularities, and with dimension up to 10, as follows. We randomly generated weight matrices, as
in (2), such that 0 ≤ 𝑎𝑖 , 𝑏 𝑗 ≤ 5. We then discarded the weight matrix if any column was zero, and
otherwise formed the corresponding fan 𝐹. We discarded the weight matrix unless:

(i) 𝐹 had 𝑁 rays;
(ii) each cone in 𝐹 was simplicial (i.e. has number of rays equal to its dimension);

(iii) the convex hull of the primitive generators of the rays of 𝐹 contained no lattice points other
than the rays and the origin.

Conditions (i) and (ii) together guarantee that 𝑋 has Picard rank two, and are equivalent to the
conditions on the weight matrix in (2) given in our definition. Conditions (ii) and (iii) guarantee
that 𝑋 has terminal quotient singularities. We then deduplicated the weight matrices according to the
isomorphism type of 𝐹, by putting 𝐹 in normal form [32,48]. See Table 1 for a summary of the dataset.
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(a) log 𝑐𝑑 for P(5, 5, 11, 23, 28, 29, 33, 44, 66, 76). (b) log 𝑐𝑑 for Example 3.

Figure 2. The logarithm of the non-zero period coefficients 𝑐𝑑: (a) for a typical weighted projec-
tive space; (b) for the toric variety of Picard rank two from Example 3.

(a) (b)

Figure 3. The slopes and 𝑦-intercepts from the linear models: (a) for weighted projective spaces
with terminal quotient singularities. The colour records the dimension of the weighted projective
space and the circled points indicate projective spaces. (b) for toric varieties of Picard rank two
with terminal quotient singularities. The colour records the dimension of the toric variety.

Data analysis: weighted projective spaces. We computed an initial segment (𝑐0 , 𝑐1 , . . . , 𝑐𝑚) of the regu-
larized quantum period for all the examples in the sample of 150 000 terminal weighted projective
spaces, with 𝑚 ≈ 100 000. The non-zero coefficients 𝑐𝑑 appeared to grow exponentially with 𝑑, and
so we considered {log 𝑐𝑑}𝑑∈𝑆 where 𝑆 = {𝑑 ∈ Z≥0 | 𝑐𝑑 ≠ 0}. To reduce dimension we fitted a linear
model to the set {(𝑑, log 𝑐𝑑) | 𝑑 ∈ 𝑆} and used the slope and intercept of this model as features; see
Figure 2(a) for a typical example. Plotting the slope against the 𝑦-intercept and colouring datapoints
according to the dimension we obtain Figure 3(a): note the clear separation by dimension. A Support
Vector Machine (SVM) trained on 10% of the slope and 𝑦-intercept data predicted the dimension of
the weighted projective space with an accuracy of 99.99%. Full details are given in §§B–C.

Data analysis: toric varieties. As before, the non-zero coefficients 𝑐𝑑 appeared to grow exponentially
with 𝑑, so we fitted a linear model to the set {(𝑑, log 𝑐𝑑) | 𝑑 ∈ 𝑆} where 𝑆 = {𝑑 ∈ Z≥0 | 𝑐𝑑 ≠ 0}. We
used the slope and intercept of this linear model as features.

Example 3. In Figure 2(b) we plot a typical example: the logarithm of the regularized quantum period
sequence for the nine-dimensional toric variety with weight matrix(

1 2 5 3 3 3 0 0 0 0 0
0 0 0 3 4 4 1 2 2 3 4

)
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Figure 4. The slopes and 𝑦-intercepts from the linear model. This is as in Figure 3(b), but
plotting only data points for which the standard error 𝑠int for the 𝑦-intercept satisfies 𝑠int < 0.3.
The colour records the dimension of the toric variety.

along with the linear approximation. We see a periodic deviation from the linear approximation; the
magnitude of this deviation decreases as 𝑑 increases (not shown).

To reduce computational costs, we computed pairs (𝑑, log 𝑐𝑑) for 1000 ≤ 𝑑 ≤ 20 000 by sampling
every 100th term. We discarded the beginning of the period sequence because of the noise it introduces
to the linear regression. In cases where the sampled coefficient 𝑐𝑑 is zero, we considered instead the
next non-zero coefficient. The resulting plot of slope against 𝑦-intercept, with datapoints coloured
according to dimension, is shown in Figure 3(b).

We analysed the standard errors for the slope and 𝑦-intercept of the linear model. The standard
errors for the slope are small compared to the range of slopes, but in many cases the standard error 𝑠int
for the 𝑦-intercept is relatively large. As Figure 4 illustrates, discarding data points where the standard
error 𝑠int for the 𝑦-intercept exceeds some threshold reduces apparent noise. This suggests that the
underlying structure is being obscured by inaccuracies in the linear regression caused by oscillatory
behaviour in the initial terms of the quantum period sequence; these inaccuracies are concentrated in
the 𝑦-intercept of the linear model. Note that restricting attention to those data points where 𝑠int is
small also greatly decreases the range of 𝑦-intercepts that occur. As Example 4 and Figure 5 suggest,
this reflects both transient oscillatory behaviour and also the presence of a subleading term in the
asymptotics of log 𝑐𝑑 which is missing from our feature set. We discuss this further below.

Example 4. Consider the toric variety with Picard rank two and weight matrix(
1 10 5 13 8 12 0
0 0 3 8 5 14 1

)
This is one of the outliers in Figure 3(b). The toric variety is five-dimensional, and has slope 1.637 and
𝑦-intercept −62.64. The standard errors are 4.246 × 10−4 for the slope and 5.021 for the 𝑦-intercept.
We computed the first 40 000 coefficients 𝑐𝑑 in (1). As Figure 5 shows, as 𝑑 increases the 𝑦-intercept
of the linear model increases to −28.96 and 𝑠int decreases to 0.7877. At the same time, the slope
of the linear model remains more or less unchanged, decreasing to 1.635. This supports the idea
that computing (many) more coefficients 𝑐𝑑 would significantly reduce noise in Figure 3(b). In this
example, even 40 000 coefficients may not be enough.

Computing many more coefficients 𝑐𝑑 across the whole dataset would require impractical amounts
of computation time. In the example above, which is typical in this regard, increasing the number of
coefficients computed from 20 000 to 40 000 increased the computation time by a factor of more than 10.
Instead we restrict to those toric varieties of Picard rank two such that the 𝑦-intercept standard error 𝑠int
is less than 0.3; this retains 67 443 of the 200 000 datapoints. We used 70% of the slope and 𝑦-intercept
data in the restricted dataset for model training, and the rest for validation. An SVM model predicted
the dimension of the toric variety with an accuracy of 87.7%, and a Random Forest Classifier (RFC)
predicted the dimension with an accuracy of 88.6%.
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Figure 5. Variation as we move deeper into the period sequence. The 𝑦-intercept and its standard
error 𝑠int for the toric variety from Example 4, as computed from pairs (𝑘, log 𝑐𝑘) such that 𝑑 −
20 000 ≤ 𝑘 ≤ 𝑑 by sampling every 100th term. We also show LOWESS-smoothed trend lines.

Neural networks. Neural networks do not handle unbalanced datasets well. We therefore removed the
toric varieties of dimensions 3, 4, and 5 from our data, leaving 61 164 toric varieties of Picard rank
two with terminal quotient singularities and 𝑠int < 0.3. This dataset is approximately balanced by
dimension.

A Multilayer Perceptron (MLP) with three hidden layers of sizes (10, 30, 10) using the slope and
intercept as features predicted the dimension with 89.0% accuracy. Since the slope and intercept give
good control over log 𝑐𝑑 for 𝑑 ≫ 0, but not for small 𝑑, it is likely that the coefficients 𝑐𝑑 with 𝑑 small
contain extra information that the slope and intercept do not see. Supplementing the feature set by
including the first 100 coefficients 𝑐𝑑 as well as the slope and intercept increased the accuracy of the
prediction to 97.7%. Full details can be found in §§B–C.

From machine learning to rigorous analysis. Elementary “out of the box” models (SVM, RFC, and MLP)
trained on the slope and intercept data alone already gave a highly accurate prediction for the dimen-
sion. Furthermore even for the many-feature MLP, which was the most accurate, sensitivity analysis
using SHAP values [50] showed that the slope and intercept were substantially more important to the
prediction than any of the coefficients 𝑐𝑑: see Figure 6. This suggested that the dimension of 𝑋 might
be visible from a rigorous estimate of the growth rate of log 𝑐𝑑.

In §3 we establish asymptotic results for the regularized quantum period of toric varieties with
low Picard rank, as follows. These results apply to any weighted projective space or toric variety of
Picard rank two: they do not require a terminality hypothesis. Note, in each case, the presence of a
subleading logarithmic term in the asymptotics for log 𝑐𝑑.

Theorem 5. Let 𝑋 denote the weighted projective space P(𝑎1 , . . . , 𝑎𝑁 ), so that the dimension of 𝑋 is 𝑁 − 1.
Let 𝑐𝑑 denote the coefficient of 𝑡𝑑 in the regularized quantum period 𝐺𝑋(𝑡) given in (4). Let 𝑎 = 𝑎1 + · · · + 𝑎𝑁
and 𝑝𝑖 = 𝑎𝑖/𝑎. Then 𝑐𝑑 = 0 unless 𝑑 is divisible by 𝑎, and non-zero coefficients 𝑐𝑑 satisfy

log 𝑐𝑑 ∼ 𝐴𝑑 − dim𝑋

2 log 𝑑 + 𝐵

as 𝑑 → ∞, where

𝐴 = −
𝑁∑
𝑖=1

𝑝𝑖 log 𝑝𝑖

𝐵 = −dim𝑋

2 log(2𝜋) − 1
2

𝑁∑
𝑖=1

log 𝑝𝑖

Note, although it plays no role in what follows, that 𝐴 is the Shannon entropy of the discrete random
variable 𝑍 with distribution (𝑝1 , 𝑝2 , . . . , 𝑝𝑁 ), and that 𝐵 is a constant plus half the total self-information
of 𝑍.
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Figure 6. Model sensitivity analysis using SHAP values. The model is an MLP with three
hidden layers of sizes (10,30,10) applied to toric varieties of Picard rank two with terminal
quotient singularities. It is trained on the slope, 𝑦-intercept, and the first 100 coefficients 𝑐𝑑 as
features, and predicts the dimension with 97.7% accuracy.

Theorem 6. Let 𝑋 denote the toric variety of Picard rank two with weight matrix(
𝑎1 𝑎2 𝑎3 · · · 𝑎𝑁
𝑏1 𝑏2 𝑏3 · · · 𝑏𝑁

)
so that the dimension of 𝑋 is 𝑁−2. Let 𝑎 = 𝑎1+· · ·+𝑎𝑁 , 𝑏 = 𝑏1+· · ·+𝑏𝑁 , and ℓ = gcd{𝑎, 𝑏}. Let [𝜇 : 𝜈] ∈ P1

be the unique root of the homogeneous polynomial
𝑁∏
𝑖=1

(𝑎𝑖𝜇 + 𝑏𝑖𝜈)𝑎𝑖𝑏 −
𝑁∏
𝑖=1

(𝑎𝑖𝜇 + 𝑏𝑖𝜈)𝑏𝑖 𝑎

such that 𝑎𝑖𝜇 + 𝑏𝑖𝜈 ≥ 0 for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and set

𝑝𝑖 =
𝜇𝑎𝑖 + 𝜈𝑏𝑖
𝜇𝑎 + 𝜈𝑏

Let 𝑐𝑑 denote the coefficient of 𝑡𝑑 in the regularized quantum period 𝐺𝑋(𝑡) given in (5). Then non-zero
coefficients 𝑐𝑑 satisfy

log 𝑐𝑑 ∼ 𝐴𝑑 − dim𝑋

2 log 𝑑 + 𝐵

as 𝑑 → ∞, where

𝐴 = −
𝑁∑
𝑖=1

𝑝𝑖 log 𝑝𝑖

𝐵 = −dim𝑋

2 log(2𝜋)− 1
2

𝑁∑
𝑖=1

log 𝑝𝑖−
1
2 log

(
𝑁∑
𝑖=1

(𝑎𝑖𝑏 − 𝑏𝑖𝑎)2
ℓ 2𝑝𝑖

)
Theorem 5 is a straightforward application of Stirling’s formula. Theorem 6 is more involved, and

relies on a Central Limit-type theorem that generalises the De Moivre–Laplace theorem.

Theoretical analysis. The asymptotics in Theorems 5 and 6 imply that, for 𝑋 a weighted projective
space or toric variety of Picard rank two, the quantum period determines the dimension of 𝑋. Let
us revisit the clustering analysis from this perspective. Recall the asymptotic expression log 𝑐𝑑 ∼
𝐴𝑑 − dim𝑋

2 log 𝑑 + 𝐵 and the formulae for 𝐴 and 𝐵 from Theorem 5. Figure 7(a) shows the values of 𝐴
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(a) (b)

Figure 7. The values of the asymptotic coefficients 𝐴 and 𝐵: (a) for all weighted projective
spacesP(𝑎1 , . . . , 𝑎𝑁 ) with terminal quotient singularities and 𝑎𝑖 ≤ 25 for all 𝑖. The colour records
the dimension of the weighted projective space. (b) for toric varieties of Picard rank two in our
dataset. The colour records the dimension of the toric variety.

(a) (b)

Figure 8. For weighted projective spaces, the asymptotic coefficients 𝐴 and 𝐵 are closely related
to the slope and 𝑦-intercept. (a) Comparison between 𝐴 and the slope from the linear model, for
weighted projective spaces that occur in both Figure 3(a) and Figure 7(a), coloured by dimension.
The line slope = 𝐴 is indicated. (b) Comparison between 𝐵 and the 𝑦-intercept from the linear
model, for weighted projective spaces that occur in both Figure 3(a) and Figure 7(a), coloured by
dimension. In each case the line 𝑦-intercept = 𝐵 − 9

2 dim𝑋 is shown.

and 𝐵 for a sample of weighted projective spaces, coloured by dimension. Note the clusters, which
overlap. Broadly speaking, the values of 𝐵 increase as the dimension of the weighted projective space
increases, whereas in Figure 3(a) the 𝑦-intercepts decrease as the dimension increases. This reflects
the fact that we fitted a linear model to log 𝑐𝑑, omitting the subleading log 𝑑 term in the asymptotics.
As Figure 8 shows, the linear model assigns the omitted term to the 𝑦-intercept rather than the slope.
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Figure 9. Linear bounds for the cluster of five-dimensional weighted projective spaces in Fig-
ure 7(a). The bounds are given by Proposition 7.

The slope of the linear model is approximately equal to 𝐴. The 𝑦-intercept, however, differs from
𝐵 by a dimension-dependent factor. The omitted log term does not vary too much over the range
of degrees (𝑑 < 100 000) that we considered, and has the effect of reducing the observed 𝑦-intercept
from 𝐵 to approximately 𝐵− 9

2 dim𝑋, distorting the clusters slightly and translating them downwards
by a dimension-dependent factor. This separates the clusters. We expect that the same mechanism
applies in Picard rank two as well: see Figure 7(b).

We can show that each cluster in Figure 7(a) is linearly bounded using constrained optimisation
techniques. Consider for example the cluster for weighted projective spaces of dimension five, as in
Figure 9.

Proposition 7. Let 𝑋 be the five-dimensional weighted projective space P(𝑎1 , . . . , 𝑎6), and let 𝐴, 𝐵 be as in
Theorem 5. Then 𝐵 + 5

2𝐴 ≥ 41
8 . If in addition 𝑎𝑖 ≤ 25 for all 𝑖 then 𝐵 + 5𝐴 ≤ 41

40 .

Fix a suitable 𝜃 ≥ 0 and consider

𝐵 + 𝜃𝐴 = −dim𝑋

2 log(2𝜋) − 1
2

𝑁∑
𝑖=1

log 𝑝𝑖 − 𝜃
𝑁∑
𝑖=1

𝑝𝑖 log 𝑝𝑖

with dim𝑋 = 𝑁 − 1 = 5. Solving

min(𝐵 + 𝜃𝐴) subject to 𝑝1 + · · · + 𝑝6 = 1
𝑝1 , . . . , 𝑝6 ≥ 0

on the five-simplex gives a linear lower bound for the cluster. This bound does not use terminality: it
applies to any weighted projective space of dimension five. The expression 𝐵+𝜃𝐴 is unbounded above
on the five-simplex (because 𝐵 is) so we cannot obtain an upper bound this way. Instead, consider

max(𝐵 + 𝜃𝐴) subject to 𝑝1 + · · · + 𝑝6 = 1
𝜖 ≤ 𝑝1 ≤ 𝑝2 ≤ · · · ≤ 𝑝6

for an appropriate small positive 𝜖, which we can take to be 1/𝑎 where 𝑎 is the maximum sum of the
weights. For Figure 9, for example, we can take 𝑎 = 124, and in general such an 𝑎 exists because there
are only finitely many terminal weighted projective spaces. This gives a linear upper bound for the
cluster.

The same methods yield linear bounds on each of the clusters in Figure 7(a). As the Figure shows
however, the clusters are not linearly separable.
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Discussion. We developed machine learning models that predict, with high accuracy, the dimension
of a Fano variety from its regularized quantum period. These models apply to weighted projective
spaces and toric varieties of Picard rank two with terminal quotient singularities. We then established
rigorous asymptotics for the regularized quantum period of these Fano varieties. The form of the
asymptotics implies that, in these cases, the regularized quantum period of a Fano variety𝑋 determines
the dimension of 𝑋. The asymptotics also give a theoretical underpinning for the success of the
machine learning models.

Perversely, because the series involved converge extremely slowly, reading the dimension of a Fano
variety directly from the asymptotics of the regularized quantum period is not practical. For the same
reason, enhancing the feature set of our machine learning models by including a log 𝑑 term in the
linear regression results in less accurate predictions. So although the asymptotics in Theorems 5 and 6
determine the dimension in theory, in practice the most effective way to determine the dimension of
an unknown Fano variety from its quantum period is to apply a machine learning model.

The insights gained from machine learning were the key to our formulation of the rigorous results
in Theorems 5 and 6. Indeed, it might be hard to discover these results without a machine learning
approach. It is notable that the techniques in the proof of Theorem 6 – the identification of generating
functions for Gromov–Witten invariants of toric varieties with certain hypergeometric functions – have
been known since the late 1990s and have been studied by many experts in hypergeometric functions
since then. For us, the essential step in the discovery of the results was the feature extraction that we
performed as part of our ML pipeline.

This work demonstrates that machine learning can uncover previously unknown structure in
complex mathematical data, and is a powerful tool for developing rigorous mathematical results;
cf. [18]. It also provides evidence for a fundamental conjecture in the Fano classification program [8]:
that the regularized quantum period of a Fano variety determines that variety.

3. Methods

In this section we prove Theorem 5 and Theorem 6. The following result implies Theorem 5.

Theorem 8. Let 𝑋 denote the weighted projective space P(𝑎1 , . . . , 𝑎𝑁 ), so that the dimension of 𝑋 is 𝑁 − 1.
Let 𝑐𝑑 denote the coefficient of 𝑡𝑑 in the regularized quantum period 𝐺𝑋(𝑡) given in (4). Let 𝑎 = 𝑎1 + . . . + 𝑎𝑁 .
Then 𝑐𝑑 = 0 unless 𝑑 is divisible by 𝑎, and

log 𝑐𝑘𝑎 ∼ 𝑘𝑎

[
log 𝑎 − 1

𝑎

𝑁∑
𝑖=1

𝑎𝑖 log 𝑎𝑖

]
− dim𝑋

2 log(𝑘𝑎) + 1 + dim𝑋

2 log 𝑎 − dim𝑋

2 log(2𝜋) − 1
2

𝑁∑
𝑖=1

log 𝑎𝑖

That is, non-zero coefficients 𝑐𝑑 satisfy

log 𝑐𝑑 ∼ 𝐴𝑑 − dim𝑋

2 log 𝑑 + 𝐵

as 𝑑 → ∞, where

𝐴 = −
𝑁∑
𝑖=1

𝑝𝑖 log 𝑝𝑖 𝐵 = −dim𝑋

2 log(2𝜋) − 1
2

𝑁∑
𝑖=1

log 𝑝𝑖

and 𝑝𝑖 = 𝑎𝑖/𝑎.

Proof. Combine Stirling’s formula

𝑛! ∼
√

2𝜋𝑛
(𝑛
𝑒

)𝑛
with the closed formula (4) for 𝑐𝑘𝑎 . □

Toric varieties of Picard rank 2. Consider a toric variety 𝑋 of Picard rank two and dimension 𝑁 − 2 with
weight matrix (

𝑎1 𝑎2 𝑎3 · · · 𝑎𝑁
𝑏1 𝑏2 𝑏3 · · · 𝑏𝑁

)
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as in (2). Let us move to more invariant notation, writing 𝛼𝑖 for the linear form on R2 defined by the
transpose of the 𝑖th column of the weight matrix, and 𝛼 = 𝛼1 + · · · + 𝛼𝑁 . Equation 5 becomes

𝐺𝑋(𝑡) =
∑

𝑘∈Z2∩𝐶

(𝛼 · 𝑘)!∏𝑁
𝑖=1(𝛼𝑖 · 𝑘)!

𝑡𝛼·𝑘

where 𝐶 is the cone 𝐶 = {𝑥 ∈ R2 | 𝛼𝑖 · 𝑥 ≥ 0 for 𝑖 = 1, 2, . . . , 𝑁}. As we will see, for 𝑑 ≫ 0 the
coefficients

(𝛼 · 𝑘)!∏𝑁
𝑖=1(𝛼𝑖 · 𝑘)!

where 𝑘 ∈ Z
2 ∩ 𝐶 and 𝛼 · 𝑘 = 𝑑

are approximated by a rescaled Gaussian. We begin by finding the mean of that Gaussian, that is, by
minimising

𝑁∏
𝑖=1

(𝛼𝑖 · 𝑘)! where 𝑘 ∈ Z
2 ∩ 𝐶 and 𝛼 · 𝑘 = 𝑑.

For 𝑘 in the strict interior of 𝐶 with 𝛼 · 𝑘 = 𝑑, we have that

(𝛼𝑖 · 𝑘)! ∼
(
𝛼𝑖 · 𝑘
𝑒

)𝛼𝑖 ·𝑘

as 𝑑 → ∞.

Proposition 9. The constrained optimisation problem

min
𝑁∏
𝑖=1

(𝛼𝑖 · 𝑥)𝛼𝑖 ·𝑥 subject to

{
𝑥 ∈ 𝐶

𝛼 · 𝑥 = 𝑑

has a unique solution 𝑥 = 𝑥∗. Furthermore, setting 𝑝𝑖 = (𝛼𝑖 · 𝑥∗)/(𝛼 · 𝑥∗) we have that the monomial
𝑁∏
𝑖=1

𝑝
𝛼𝑖 ·𝑘
𝑖

depends on 𝑘 ∈ Z2 only via 𝛼 · 𝑘.

Proof. Taking logarithms gives the equivalent problem

min
𝑁∑
𝑖=1

(𝛼𝑖 · 𝑥) log(𝛼𝑖 · 𝑥) subject to

{
𝑥 ∈ 𝐶

𝛼 · 𝑥 = 𝑑
(6)

The objective function
∑𝑁

𝑖=1(𝛼𝑖 · 𝑥) log(𝛼𝑖 · 𝑥) here is the pullback to R2 of the function

𝑓 (𝑥1 , . . . , 𝑥𝑁 ) =
𝑁∑
𝑖=1

𝑥𝑖 log 𝑥𝑖

along the linear embedding 𝜑 : R2 → R𝑁 given by (𝛼1 , . . . , 𝛼𝑁 ). Note that 𝐶 is the preimage under 𝜑
of the positive orthantR𝑁

+ , so we need to minimise 𝑓 on the intersection of the simplex 𝑥1+· · ·+𝑥𝑁 = 𝑑,
(𝑥1 , . . . , 𝑥𝑁 ) ∈ R𝑁

+ with the image of 𝜑. The function 𝑓 is convex and decreases as we move away from
the boundary of the simplex, so the minimisation problem in (6) has a unique solution 𝑥∗ and this
lies in the strict interior of 𝐶. We can therefore find the minimum 𝑥∗ using the method of Lagrange
multipliers, by solving

𝑁∑
𝑖=1

𝛼𝑖 log(𝛼𝑖 · 𝑥) + 𝛼 = 𝜆𝛼 (7)

for 𝜆 ∈ R and 𝑥 in the interior of 𝐶 with 𝛼 · 𝑥 = 𝑑. Thus
𝑁∑
𝑖=1

𝛼𝑖 log(𝛼𝑖 · 𝑥∗) = (𝜆 − 1)𝛼
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and, evaluating on 𝑘 ∈ Z2 and exponentiating, we see that
𝑁∏
𝑖=1

(𝛼𝑖 · 𝑥∗)𝛼𝑖 ·𝑘

depends only on 𝛼 · 𝑘. The result follows. □

Given a solution 𝑥∗ to (7), any positive scalar multiple of 𝑥∗ also satisfies (7), with a different value
of 𝜆 and a different value of 𝑑. Thus the solutions 𝑥∗, as 𝑑 varies, lie on a half-line through the origin.
The direction vector [𝜇 : 𝜈] ∈ P1 of this half-line is the unique solution to the system

𝑁∏
𝑖=1

(𝑎𝑖𝜇 + 𝑏𝑖𝜈)𝑎𝑖𝑏 =
𝑁∏
𝑖=1

(𝑎𝑖𝜇 + 𝑏𝑖𝜈)𝑏𝑖 𝑎(
𝜇
𝜈

)
∈ 𝐶

(8)

Note that the first equation here is homogeneous in 𝜇 and 𝜈; it is equivalent to (7), by exponentiating
and then eliminating 𝜆. Any two solutions 𝑥∗, for different values of 𝑑, differ by rescaling, and the
quantities 𝑝𝑖 in Proposition 9 are invariant under this rescaling. They also satisfy 𝑝1 + · · · + 𝑝𝑁 = 1.

We use the following result, known in the literature as the “Local Theorem” [29], to approximate
multinomial coefficients.

Local Theorem. For 𝑝1 , . . . , 𝑝𝑛 ∈ [0, 1] such that 𝑝1 + · · · + 𝑝𝑛 = 1, the ratio

𝑑
𝑛−1

2

(
𝑑

𝑘1 · · · 𝑘𝑛

) 𝑛∏
𝑖=1

𝑝
𝑘𝑖
𝑖

:
exp(− 1

2
∑𝑛

𝑖=1 𝑞𝑖𝑥
2
𝑖
)

(2𝜋) 𝑛−1
2
√
𝑝1 · · · 𝑝𝑛

→ 1

as 𝑑 → ∞, uniformly in all 𝑘𝑖 ’s, where

𝑞𝑖 = 1 − 𝑝𝑖 𝑥𝑖 =
𝑘𝑖 − 𝑑𝑝𝑖√
𝑑𝑝𝑖𝑞𝑖

and the 𝑥𝑖 lie in bounded intervals.

Let 𝐵𝑟 denote the ball of radius 𝑟 about 𝑥∗ ∈ R2. Fix 𝑅 > 0. We apply the Local Theorem with
𝑘𝑖 = 𝛼𝑖 · 𝑘 and 𝑝𝑖 = (𝛼𝑖 · 𝑥∗)/(𝛼 · 𝑥∗), where 𝑘 ∈ Z2 ∩ 𝐶 satisfies 𝛼 · 𝑘 = 𝑑 and 𝑘 ∈ 𝐵

𝑅
√
𝑑
. Since

𝑥𝑖 =
𝛼𝑖 · (𝑘 − 𝑥∗)√

𝑑𝑝𝑖𝑞𝑖

the assumption that 𝑘 ∈ 𝐵
𝑅
√
𝑑

ensures that the 𝑥𝑖 remain bounded as 𝑑 → ∞. Note that, by Proposi-
tion 9, the monomial

∏𝑁
𝑖=1 𝑝

𝑘𝑖
𝑖

depends on 𝑘 only via 𝛼 · 𝑘, and hence here is independent of 𝑘:
𝑁∏
𝑖=1

𝑝
𝑘𝑖
𝑖
=

𝑁∏
𝑖=1

𝑝
𝛼𝑖 ·𝑥∗
𝑖

=

𝑁∏
𝑖=1

𝑝
𝑑𝑝𝑖
𝑖

Furthermore
𝑁∑
𝑖=1

𝑞𝑖𝑥
2
𝑖 =

(𝑘 − 𝑥∗)𝑇𝐴 (𝑘 − 𝑥∗)
𝑑

where 𝐴 is the positive-definite 2 × 2 matrix given by

𝐴 =

𝑁∑
𝑖=1

1
𝑝𝑖
𝛼𝑇
𝑖 𝛼𝑖

Thus as 𝑑 → ∞, the ratio

(𝛼 · 𝑘)!∏𝑁
𝑖=1(𝛼𝑖 · 𝑘)!

:
exp

(
− 1

2𝑑 (𝑘 − 𝑥∗)𝑇𝐴 (𝑘 − 𝑥∗)
)

(2𝜋𝑑) 𝑁−1
2

∏𝑁
𝑖=1 𝑝

𝑑𝑝𝑖+ 1
2

𝑖

→ 1 (9)

for all 𝑘 ∈ Z2 ∩ 𝐶 ∩ 𝐵
𝑅
√
𝑑

such that 𝛼 · 𝑘 = 𝑑.
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Theorem 6. Let 𝑋 be a toric variety of Picard rank two and dimension 𝑁 − 2 with weight matrix(
𝑎1 𝑎2 𝑎3 · · · 𝑎𝑁
𝑏1 𝑏2 𝑏3 · · · 𝑏𝑁

)
Let 𝑎 = 𝑎1 + · · · + 𝑎𝑁 and 𝑏 = 𝑏1 + · · · + 𝑏𝑁 , let ℓ = gcd(𝑎, 𝑏), and let [𝜇 : 𝜈] ∈ P1 be the unique solution
to (8). Let 𝑐𝑑 denote the coefficient of 𝑡𝑑 in the regularized quantum period 𝐺𝑋(𝑡). Then non-zero coefficients 𝑐𝑑
satisfy

log 𝑐𝑑 ∼ 𝐴𝑑 − dim𝑋

2 log 𝑑 + 𝐵

as 𝑑 → ∞, where

𝐴 = −
𝑁∑
𝑖=1

𝑝𝑖 log 𝑝𝑖

𝐵 = −dim𝑋

2 log(2𝜋) − 1
2

𝑁∑
𝑖=1

log 𝑝𝑖 −
1
2 log

(
𝑁∑
𝑖=1

(𝑎𝑖𝑏 − 𝑏𝑖𝑎)2
ℓ 2𝑝𝑖

)
and 𝑝𝑖 =

𝜇𝑎𝑖 + 𝜈𝑏𝑖
𝜇𝑎 + 𝜈𝑏

.

Proof. We need to estimate

𝑐𝑑 =
∑

𝑘∈Z2∩𝐶
with 𝛼 · 𝑘 = 𝑑

(𝛼 · 𝑘)!∏𝑁
𝑖=1(𝛼𝑖 · 𝑘)!

Consider first the summands with 𝑘 ∈ Z2 ∩𝐶 such that 𝛼 · 𝑘 = 𝑑 and 𝑘 ∉ 𝐵
𝑅
√
𝑑
. For 𝑑 sufficiently large,

each such summand is bounded by 𝑐𝑑−
1+dim𝑋

2 for some constant 𝑐 – see (9). Since the number of such
summands grows linearly with 𝑑, in the limit 𝑑 → ∞ the contribution to 𝑐𝑑 from 𝑘 ∉ 𝐵

𝑅
√
𝑑

vanishes.
As 𝑑 → ∞, therefore

𝑐𝑑 ∼
1

(2𝜋𝑑) 𝑁−1
2

∏𝑁
𝑖=1 𝑝

𝑑𝑝𝑖+ 1
2

𝑖

∑
𝑘∈Z2∩𝐶∩𝐵

𝑅
√
𝑑

with 𝛼 · 𝑘 = 𝑑

exp
(
−(𝑘 − 𝑥∗)𝑇𝐴 (𝑘 − 𝑥∗)

2𝑑

)
Writing 𝑦𝑘 = (𝑘 − 𝑥∗)/

√
𝑑, considering the sum here as a Riemann sum, and letting 𝑅 → ∞, we see

that

𝑐𝑑 ∼
1

(2𝜋𝑑) 𝑁−1
2

∏𝑁
𝑖=1 𝑝

𝑑𝑝𝑖+ 1
2

𝑖

√
𝑑

∫
𝐿𝛼

exp
(
− 1

2 𝑦
𝑇𝐴𝑦

)
𝑑𝑦

where 𝐿𝛼 is the line through the origin given by ker 𝛼 and 𝑑𝑦 is the measure on 𝐿𝛼 given by the integer
lattice Z2 ∩ 𝐿𝛼 ⊂ 𝐿𝛼.

To evaluate the integral, let

𝛼⊥ =
1
ℓ

(
𝑏

−𝑎

)
where ℓ = gcd{𝑎, 𝑏}

and observe that the pullback of 𝑑𝑦 along the map R → 𝐿𝛼 given by 𝑡 ↦→ 𝑡𝛼⊥ is the standard measure
on R. Thus ∫

𝐿𝛼

exp
(
− 1

2 𝑦
𝑇𝐴𝑦

)
𝑑𝑦 =

∫ ∞

−∞
exp

(
− 1

2𝜃𝑥
2) 𝑑𝑥 =

√
2𝜋
𝜃

where 𝜃 =
∑𝑁

𝑖=1
1

ℓ2𝑝𝑖
(𝛼𝑖 · 𝛼⊥)2, and

𝑐𝑑 ∼
1

(2𝜋𝑑) dim𝑋
2

∏𝑁
𝑖=1 𝑝

𝑑𝑝𝑖+ 1
2

𝑖

√
𝜃

Taking logarithms gives the result. □
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(a) (b)

Figure 10. Singular charts on the weighted projective space P(1, 2, 3): (a) the real-valued points
in the chart 𝑈𝑦 . (b) the real-valued points in the chart 𝑈𝑧 .

Appendix A. Supplementary Notes

We begin with an introduction to weighted projective spaces and toric varieties, aimed at non-
specialists.

Projective spaces and weighted projective spaces. The fundamental example of a Fano variety is two-dim-
ensional projective spaceP2. This is a quotient of C3 \ {0} by the group C×, where the action of 𝜆 ∈ C×

identifies the points (𝑥, 𝑦, 𝑧) and (𝜆𝑥,𝜆𝑦,𝜆𝑧) in C3 \ {0}. The variety P2 is smooth: we can see this by
covering it with three open sets 𝑈𝑥 , 𝑈𝑦 , 𝑈𝑧 that are each isomorphic to the plane C2:

𝑈𝑥 = {(1, 𝑌, 𝑍)} given by rescaling 𝑥 to 1
𝑈𝑦 = {(𝑋, 1, 𝑍)} given by rescaling 𝑦 to 1
𝑈𝑧 = {(𝑋,𝑌, 1)} given by rescaling 𝑧 to 1

Here, for example, in the case 𝑈𝑥 we take 𝑥 ≠ 0 and set 𝑌 = 𝑦/𝑥, 𝑍 = 𝑧/𝑥.
Although the projective spaceP2 is smooth, there are closely related Fano varieties called weighted

projective spaces [20, 36] that have singularities. For example, consider the weighted projective
plane P(1, 2, 3): this is the quotient of C3 \ {0} by C×, where the action of 𝜆 ∈ C× identifies the
points (𝑥, 𝑦, 𝑧) and (𝜆𝑥,𝜆2𝑦,𝜆3𝑧). Let us write

𝜇𝑛 = {𝑒2𝜋𝑘i/𝑛 | 𝑘 ∈ Z}

for the group of 𝑛th roots of unity. The variety P(1, 2, 3) is once again covered by open sets

𝑈𝑥 = {(1, 𝑌, 𝑍)} given by rescaling 𝑥 to 1
𝑈𝑦 = {(𝑋, 1, 𝑍)} given by rescaling 𝑦 to 1
𝑈𝑧 = {(𝑋,𝑌, 1)} given by rescaling 𝑧 to 1

but this time we have 𝑈𝑥 � C2, 𝑈𝑦 � C2/𝜇2, and 𝑈𝑧 = C2/𝜇3. This is because, for example, when we
choose 𝜆 ∈ C× to rescale (𝑥, 𝑦, 𝑧) with 𝑧 ≠ 0 to (𝑋,𝑌, 1), there are three possible choices for 𝜆 and they
differ by the action of 𝜇3. In particular this lets us see thatP(1, 2, 3) is singular. For example, functions
on the chart 𝑈𝑦 � C2/𝜇2 are polynomials in 𝑋 and 𝑍 that are invariant under 𝑋 ↦→ −𝑋, 𝑍 ↦→ −𝑍, or
in other words

𝑈𝑦 = SpecC[𝑋2 , 𝑋𝑍, 𝑍2]
= SpecC[𝑎, 𝑏, 𝑐]/(𝑎𝑐 − 𝑏2)

Thus the chart 𝑈𝑦 is the solution set for the equation 𝑎𝑐 − 𝑏2 = 0, as pictured in Figure 10(a). Similarly,
the chart 𝑈𝑧 � C2/𝜇3 can be written as

𝑈𝑧 = SpecC[𝑋3 , 𝑋𝑌, 𝑌3]
= SpecC[𝑎, 𝑏, 𝑐]/(𝑎𝑐 − 𝑏3)

and is the solution set to the equation 𝑎𝑐 − 𝑏3 = 0, as pictured in Figure 10(b). The variety P(1, 2, 3)
has singular points at (0, 1, 0) ∈ 𝑈𝑦 and (0, 0, 1) ∈ 𝑈𝑧 , and away from these points it is smooth.
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There are weighted projective spaces of any dimension. Let 𝑎1 , 𝑎2 , . . . , 𝑎𝑁 be positive integers such
that any subset of size 𝑁 − 1 has no common factor, and consider

P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) = (C𝑁 \ {0})/C×

where the action of 𝜆 ∈ C× identifies the points

(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) and (𝜆𝑎1𝑥1 ,𝜆
𝑎2𝑥2 , . . . ,𝜆

𝑎𝑁 𝑥𝑁 )
in C𝑁 \ {0}. The quotient P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) is an algebraic variety of dimension 𝑁 − 1. A general point
of P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) is smooth, but there can be singular points. Indeed, P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ) is covered
by 𝑁 open sets

𝑈𝑖 = {(𝑋1 , . . . , 𝑋𝑖−1 , 1, 𝑋𝑖+1 , . . . , 𝑋𝑁 )} 𝑖 ∈ {1, 2, . . . , 𝑁}
given by rescaling 𝑥𝑖 to 1; here we take 𝑥𝑖 ≠ 0 and set 𝑋𝑗 = 𝑥 𝑗/𝑥𝑖 . The chart 𝑈𝑖 is isomorphic
toC𝑁−1/𝜇𝑎𝑖 , where 𝜇𝑎𝑖 acts onC𝑁−1 with weights 𝑎 𝑗 , 𝑗 ≠ 𝑖. In Reid’s notation, this is the cyclic quotient
singularity 1

𝑎𝑖
(𝑎1 , . . . , 𝑎̂𝑖 , . . . , 𝑎𝑁 ); it is smooth if and only if 𝑎𝑖 = 1.

The topology of weighted projective space is very simple, with

𝐻 𝑘
(
P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 );Q) =

{
Q if 0 ≤ 𝑘 ≤ 2𝑁 − 2 and 𝑘 is even;
0 otherwise.

Hence every weighted projective space has second Betti number 𝑏2 = 1. There is a closed formula [9,
Proposition D.9] for the regularized quantum period of 𝑋 = P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ):

𝐺𝑋(𝑡) =
∞∑
𝑘=0

(𝑎𝑘)!
(𝑎1𝑘)!(𝑎2𝑘)! · · · (𝑎𝑁 𝑘)! 𝑡

𝑎𝑘 (10)

where 𝑎 = 𝑎1 + 𝑎2 + · · · + 𝑎𝑁 .

Toric varieties of Picard rank 2. As well as weighted projective spaces, which are quotients of C𝑁 \ {0}
by an action of C×, we will consider varieties that arise as quotients of C𝑁 \ 𝑆 by C× ×C×, where 𝑆 is a
union of linear subspaces. These are examples of toric varieties [16, 25]. Specifically, consider a matrix(

𝑎1 𝑎2 · · · 𝑎𝑁
𝑏1 𝑏2 · · · 𝑏𝑁

)
(11)

with non-negative integer entries and no zero columns. This defines an action of C× × C× on C𝑁 ,
where (𝜆, 𝜇) ∈ C× ×C× identifies the points

(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) and (𝜆𝑎1𝜇𝑏1𝑥1 ,𝜆
𝑎2𝜇𝑏2𝑥2 , . . . ,𝜆

𝑎𝑁𝜇𝑏𝑁 𝑥𝑁 )

in C𝑁 . Set 𝑎 = 𝑎1 + 𝑎2 + . . . + 𝑎𝑁 and 𝑏 = 𝑏1 + 𝑏2 + · · · + 𝑏𝑁 , and suppose that (𝑎, 𝑏) is not a scalar
multiple of (𝑎𝑖 , 𝑏𝑖) for any 𝑖. This determines linear subspaces

𝑆+ = {(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) | 𝑥𝑖 = 0 if 𝑏𝑖/𝑎𝑖 < 𝑏/𝑎}
𝑆− = {(𝑥1 , 𝑥2 , . . . , 𝑥𝑁 ) | 𝑥𝑖 = 0 if 𝑏𝑖/𝑎𝑖 > 𝑏/𝑎}

of C𝑁 , and we consider the quotient

𝑋 = (C𝑁 \ 𝑆)/(C× ×C
×) (12)

where 𝑆 = 𝑆+ ∪ 𝑆−. See e.g. [5, §A.5].
These quotients behave in many ways like weighted projective spaces. Indeed, if we take the weight

matrix (11) to be (
𝑎1 𝑎2 · · · 𝑎𝑁 0
0 0 · · · 0 1

)
then 𝑋 coincides with P(𝑎1 , 𝑎2 , . . . , 𝑎𝑁 ). We will consider only weight matrices such that the sub-
spaces𝑆+ and𝑆− both have dimension two or more; this implies that the second Betti number 𝑏2(𝑋) = 2,
and hence 𝑋 is not a weighted projective space. We will refer to such quotients (12) as toric varieties
of Picard rank two, because general theory implies that the Picard lattice of 𝑋 has rank two. The
dimension of 𝑋 is 𝑁 − 2. As for weighted projective spaces, toric varieties of Picard rank two can have
singular points, the precise form of which is determined by the weights (11). There is also a closed
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Dimension
1 2 3 4

P1 P2 7 cases 28 686 cases
see [41] see [43]

Table 2. The classification of low-dimensional weighted projective spaces with terminal quotient
singularities.

formula [9, Proposition C.2] for the regularized quantum period. Let 𝐶 denote the cone in R2 defined
by the equations 𝑎𝑖𝑥 + 𝑏𝑖𝑦 ≥ 0, 𝑖 ∈ {1, 2, . . . , 𝑁}. Then

𝐺𝑋(𝑡) =
∑

(𝑘,𝑙)∈Z2∩𝐶

(𝑎𝑘 + 𝑏𝑙)!
(𝑎1𝑘 + 𝑏1𝑙)!(𝑎2𝑘 + 𝑏2𝑙)! · · · (𝑎𝑁 𝑘 + 𝑏𝑁 𝑙)!

𝑡𝑎𝑘+𝑏𝑙 (13)

Classification results. Weighted projective spaces with terminal quotient singularities have been clas-
sified in dimensions up to four; see Table 2 for a summary. There are 35 three-dimensional Fano toric
varieties with terminal quotient singularities and Picard rank two [41]. There is no known classifica-
tion of Fano toric varieties with terminal quotient singularities in higher dimension, even when the
Picard rank is two.

Appendix B. Supplementary Methods 1

Data analysis: weighted projective spaces. We computed an initial segment (𝑐0 , 𝑐1 , . . . , 𝑐𝑚) of the regu-
larized quantum period, with 𝑚 ≈ 100 000, for all the examples in the sample of 150 000 weighted
projective spaces with terminal quotient singularities. We then considered {log 𝑐𝑑}𝑑∈𝑆 where 𝑆 = {𝑑 ∈
Z≥0 | 𝑐𝑑 ≠ 0}. To reduce dimension we fitted a linear model to the set {(𝑑, log 𝑐𝑑) | 𝑑 ∈ 𝑆} and used the
slope and intercept of this model as features. The linear fit produces a close approximation of the data.
Figure 11 shows the distribution of the standard errors for the slope and the 𝑦-intercept: the errors for
the slope are between 3.9 × 10−8 and 1.4 × 10−5, and the errors for the 𝑦-intercept are between 0.0022
and 0.82. As we will see below, the standard error for the 𝑦-intercept is a good proxy for the accuracy
of the linear model. This accuracy decreases as the dimension grows – see Figure 11(c) – but we will
see below that this does not affect the accuracy of the machine learning classification.

Data analysis: toric varieties of Picard rank 2. We fitted a linear model to the set {(𝑑, log 𝑐𝑑) | 𝑑 ∈ 𝑆}
where 𝑆 = {𝑑 ∈ Z≥0 | 𝑐𝑑 ≠ 0}, and used the slope and intercept of this linear model as features. The
distribution of standard errors for the slope and 𝑦-intercept of the linear model are shown in Figure 12.
The standard errors for the slope are small compared to the range of slopes, but in many cases the
standard error for the 𝑦-intercept is relatively large. As Figure 13 illustrates, discarding data points
where the standard error 𝑠int for the 𝑦-intercept exceeds some threshold reduces apparent noise. As
discussed above, we believe that this reflects inaccuracies in the linear regression caused by oscillatory
behaviour in the initial terms of the quantum period sequence.

Example 10. Let us consider in more detail the toric variety from Example 3. In Figure 14 we plot log 𝑐𝑑
along with its linear approximation. Figure 14(a) shows only the first 250 terms, whilst Figure 14(b)
shows the interval between the 1000th and the 1250th term. We see considerable deviation from the
linear approximation among the first 250 terms; the deviation reduces for larger 𝑑.

Appendix C. Supplementary Methods 2

We performed our experiments using scikit-learn [54], a standard machine learning library for
Python. The computations that produced the data shown in Figure 7(a) were performed using
Mathematica [37]. All code required to replicate the results in this paper is available from Bitbucket
under an MIT license [13].
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(a) (b)

(c)

Figure 11. Standard errors for the slope and 𝑦-intercept. The distribution of standard errors for
the slope and 𝑦-intercept from the linear model applied to weighted projective spaces 𝑋 with
terminal quotient singularities: (a) standard error for the slope. (b) standard error for the 𝑦-
intercept. (c) standard error for the 𝑦-intercept by dimension.

(a) (b)

Figure 12. Standard errors for the slope and 𝑦-intercept. The distribution of standard errors
for the slope and 𝑦-intercept from the linear model applied to toric varieties of Picard rank two
with terminal quotient singularities: (a) standard error for the slope. (b) standard error for
the 𝑦-intercept.

Weighted projective spaces. We excluded dimensions one and two from the analysis, since there is
only one weighted projective space in each case (namely P1 and P2). Therefore we have a dataset
of 149 998 slope-intercept pairs, labelled by the dimension which varies between three and ten. We
standardised the features, by translating the means to zero and scaling to unit variance, and applied a
Support Vector Machine (SVM) with linear kernel and regularisation parameter 𝐶 = 10. By looking at
different train–test splits we obtained the learning curves shown in Figure 15. The figure displays the
mean accuracies for both training and validation data obtained by performing five random test-train
splits each time: the shaded areas around the lines correspond to the 1𝜎 region, where 𝜎 denotes the
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(a) (b)

(c)

Figure 13. The slopes and 𝑦-intercepts from the linear model applied to toric varieties of Picard
rank two with terminal quotient singularities. Data points are selected according to the standard
error 𝑠int for the 𝑦-intercept. The colour records the dimension of the toric variety. (a) All data
points. (b) Points with 𝑠int < 1: 101 183/200000 points. (c) Points with 𝑠int < 0.3: 67 445/200000
points.

(a) (b)

Figure 14. The logarithm of the non-zero coefficients 𝑐𝑑 for Example 3: (a) the first 250 terms.
(b) terms between 𝑑 = 1000 and 𝑑 = 1250. In each case, the linear approximation is also shown.
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Figure 15. Learning curves for a Support Vector Machine with linear kernel applied to the
dataset of weighted projective spaces. The plot shows the means of the training and validation
accuracies for five different random train–test splits. The shaded regions show the 1𝜎 interval,
where 𝜎 is the standard deviation.

Figure 16. Decision boundaries computed from a Support Vector Machine with linear kernel
trained on 70% of the dataset of weighted projective spaces. Note that the data has been
standardised.

standard deviation. Using 10% (or more) of the data for training we obtained an accuracy of 99.99%.
In Figure 16 we plot the decision boundaries computed by the SVM between neighbouring dimension
classes.

Toric varieties of Picard rank 2. In light of the discussion above, we restricted attention to toric varieties
with Picard rank two such that the 𝑦-intercept standard error 𝑠int is less than 0.3. We also excluded
dimension two from the analysis, since in this case there are only two varieties (namely, P1 ×P1 and
the Hirzebruch surface F1). The resulting dataset contains 67 443 slope-intercept pairs, labelled by
dimension; the dimension varies between three and ten, as shown in Table 3.

Support Vector Machine. We used a linear SVM with regularisation parameter 𝐶 = 50. By considering
different train–test splits we obtained the learning curves shown in Figure 17, where the means and the
standard deviations were obtained by performing five random samples for each split. Note that the
model did not overfit. We obtained a validation accuracy of 88.2% using 70% of the data for training.
Figure 18 shows the decision boundaries computed by the SVM between neighbouring dimension
classes. Figure 19 shows the confusion matrices for the same train–test split.

Random Forest Classifier. We used a Random Forest Classifier (RFC) with 1500 estimators and the same
features (slope and 𝑦-intercept for the linear model). By considering different train–test splits we
obtained the learning curves shown in Figure 20; note again that the model did not overfit. Using
70% of the data for training, the RFC gave a validation accuracy of 89.4%. Figure 21 on page 22 shows
confusion matrices for the same train–test split.
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Figure 17. Learning curves for a Support Vector Machine with linear kernel applied to the dataset
of toric varieties of Picard rank two. The plot shows the means of the training and validation
accuracies for five different random train–test splits. The shaded regions show the 1𝜎 interval,
where 𝜎 is the standard deviation.

Figure 18. Decision boundaries computed from a Support Vector Machine with linear kernel
trained on 70% of the dataset of toric varieties of Picard rank two. Note that the data has been
standardised.

(a) Confusion matrix normalised with respect to
the true values.

(b) Confusion matrix normalised with respect to
the predicted values.

Figure 19. Confusion matrices for a Support Vector Machine with linear kernel trained on 70%
of the dataset of toric varieties of Picard rank two.
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Rank-two toric varieties with 𝑠int < 0.3

Dimension Sample size Percentage

3 17 0.025
4 758 1.124
5 5 504 8.161
6 12 497 18.530
7 16 084 23.848
8 13 701 20.315
9 10 638 15.773
10 8 244 12.224

Total 67 443

Table 3. The distribution by dimension among toric varieties of Picard rank two in our dataset
with 𝑠int < 0.3.

Figure 20. Learning curves for a Random Forest Classifier applied to the dataset of toric varieties
of Picard rank two. The plot shows the means of the training and validation accuracies for five
different random train–test splits. The shaded regions show the 1𝜎 interval, where 𝜎 is the
standard deviation.

(a) Confusion matrix normalised with respect to
the true values.

(b) Confusion matrix normalised with respect to
the predicted values.

Figure 21. Confusion matrices for a Random Forest Classifier trained on 70% of the dataset of
toric varieties of Picard rank two.
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Figure 22. Learning curves for a Multilayer Perceptron classifier MLP2 applied to the dataset of
toric varieties of Picard rank two and dimension at least six, using just the regression data as
features. The plot shows the means of the training and validation accuracies for five different
random train–test splits. The shaded regions show the 1𝜎 interval, where 𝜎 is the standard
deviation.

Figure 23. Learning curves for a Multilayer Perceptron classifier MLP102 applied to the dataset
of toric varieties of Picard rank two and dimension at least six, using as features the regression
data as well as log 𝑐𝑑 for 1 ≤ 𝑑 ≤ 100. The plot shows the means of the training and validation
accuracies for five different random train–test splits. The shaded regions show the 1𝜎 interval,
where 𝜎 is the standard deviation.

Feed-forward neural network. As discussed above, neural networks do not handle unbalanced datasets
well, and therefore we removed the toric varieties with dimensions three, four, and five from our
dataset: see Table 3. We trained a Multilayer Perceptron (MLP) classifier on the same features, using
an MLP with three hidden layers (10, 30, 10), Adam optimiser [44], and rectified linear activation
function [2]. Different train–test splits produced the learning curve in Figure 22; again the model did
not overfit. Using 70% of the data for training, the MLP gave a validation accuracy of 88.7%. One
could further balance the dataset, by randomly undersampling so that there are the same number
of representatives in each dimension (8244 representatives: see Table 3). This resulted in a slight
decrease in accuracy: the better balance was outweighed by loss of data caused by undersampling.

Feed-forward neural network with many features. We trained an MLP with the same architecture, but
supplemented the features by including log 𝑐𝑑 for 1 ≤ 𝑑 ≤ 100 (unless 𝑐𝑑 was zero in which case we
set that feature to zero), as well as the slope and 𝑦-intercept as before. We refer to the previous neural
network as MLP2, because it uses 2 features, and refer to this neural network as MLP102, because it uses
102 features. Figure 23 shows the learning curves obtained for different train–test splits. Using 70%
of the data for training, the MLP102 model gave a validation accuracy of 97.7%.

We do not understand the reason for the performance improvement between MLP102 and MLP2.
But one possible explanation is the following. Recall that the first 1000 terms of the period sequence
were excluded when calculating the slope and intercept, because they exhibit irregular oscillations
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ML models
SVM RFC MLP2 MLP102

87.7% 88.6% 88.7% 97.7%

Table 4. Comparison of model accuracies. Accuracies for various models applied to the dataset
of toric varieties of Picard rank two and dimension at least six: a Support Vector Machine with
linear kernel, a Random Forest Classifier, and the neural networks MLP2 and MLP102.

that decay as 𝑑 grows. These oscillations reduce the accuracy of the linear regression. The oscillations
may, however, carry information about the toric variety, and so including the first few values of log(𝑐𝑑)
potentially makes more information available to the model. For example, examining the pattern of
zeroes at the beginning of the sequence (𝑐𝑑) sometimes allows one to recover the values of 𝑎 and 𝑏

– see (13) for the notation. This information is relevant to estimating the dimension because, as a
very crude approximation, larger 𝑎 and 𝑏 go along with larger dimension. Omitting the slope and
intercept, however, and training on the coefficients log 𝑐𝑑 for 1 ≤ 𝑑 ≤ 100 with the same architecture
gave an accuracy of only 62%.

Comparison of models. The validation accuracies of the SVM, RFC, and the neural networks MLP2 and
MLP102, on the same data set (𝑠int < 0.3, dimension between six and ten), are compared in Table 4. Their
confusion matrices are shown in Table 5. All models trained on only the regression data performed
well, with the RFC slightly more accurate than the SVM and the neural network MLP2 slightly more
accurate still. Misclassified examples are generally in higher dimension, which is consistent with
the idea that misclassification is due to convergence-related noise. The neural network trained on
the supplemented feature set, MLP102, outperforms all other models. However, as discussed above,
feature importance analysis using SHAP values showed that the slope and the intercept were the most
influential features in the prediction.

Appendix D. Supplementary Discussion

Comparison with Principal Component Analysis. An alternative approach to dimensionality reduction,
rather than fitting a linear model to log 𝑐𝑑, would be to perform Principal Component Analysis (PCA)
on this sequence and retain only the first few principal components. Since the vectors (𝑐𝑑) have
different patterns of zeroes – 𝑐𝑑 is non-zero only if 𝑑 is divisible by the Fano index 𝑟 of 𝑋 – we need to
perform PCA for Fano varieties of each index 𝑟 separately. We analysed this in the weighted projective
space case, finding that for each 𝑟 the first two components of PCA are related to the growth coefficients
(𝐴, 𝐵) from Theorem 5 by an invertible affine-linear transformation. That is, our analysis suggests that
the coefficients (𝐴, 𝐵) contain exactly the same information as the first two components of PCA. Note,
however, that the affine-linear transformation that relates PCA to (𝐴, 𝐵) varies with the Fano index
𝑟. Using 𝐴 and 𝐵 as features therefore allows for meaningful comparison between Fano varieties of
different index. Furthermore, unlike PCA-derived values, the coefficients (𝐴, 𝐵) can be computed for
a single Fano variety, rather than requiring a sufficiently large collection of Fano varieties of the same
index.

Towards more general Fano varieties. Weighted projective spaces and toric varieties of Picard rank two
are very special among Fano varieties. It is hard to quantify this, because so little is known about Fano
classification in the higher-dimensional and non-smooth cases, but for example this class includes only
18% of the Q-factorial terminal Fano toric varieties in three dimensions. On the other hand, one can
regard weighted projective spaces and toric varieties of Picard rank two as representative of a much
broader class of algebraic varieties called toric complete intersections. Toric complete intersections
share the key properties that we used to prove Theorems 5 and 6 – geometry that is tightly controlled
by combinatorics, including explicit expressions for genus-zero Gromov–Witten invariants in terms of
hypergeometric functions – and we believe that the rigorous results of this paper will generalise to the
toric complete intersection case. All smooth two-dimensional Fano varieties and 92 of the 105 smooth
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Model True confusion matrix Predicted confusion matrix

SVM

RFC

MLP2

MLP102

Table 5. Comparison of confusion matrices. Confusion matrices for various models applied to
the dataset of toric varieties of Picard rank two and dimension at least six: a Support Vector
Machine with linear kernel, a Random Forest Classifier, and the neural networks MLP2 and
MLP102.
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three-dimensional Fano varieties are toric complete intersections [9]. Many theorems in algebraic
geometry were first proved for toric varieties and later extended to toric complete intersections and
more general algebraic varieties; cf. [26, 27, 33] and [28,56].

The machine learning paradigm presented here, however, applies much more broadly. Since our
models take only the regularized quantum period sequence as input, we expect that whenever we can
calculate 𝐺𝑋 – which is the case for almost all known Fano varieties – we should be able to apply a
machine learning pipeline to extract geometric information about 𝑋.

Data availability. Our datasets [11,12] and the code for the Magma computer algebra system [4] that
was used to generate them are available from Zenodo [23] under a CC0 license. The data was collected
using Magma V2.25-4.

Code availability. All code required to replicate the results in this paper is available from Bitbucket
under an MIT license [13].
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