IS THERE A SMOOTH LATTICE POLYTOPE WHICH DOES NOT HAVE THE INTEGER
DECOMPOSITION PROPERTY?

JOHANNES HOFSCHEIER “© AND ALEXANDER M. KASPRZYK

AsstracT. We introduce Tadao Oda’s famous question on lattice polytopes which was originally posed at
Oberwolfach in 1997 and, although simple to state, has remained unanswered. The question is motivated
by a discussion of the two-dimensional case — including a proof of Pick’s Theorem, which elegantly relates
the area of a lattice polygon to the number of lattice points it contains in its interior and on its boundary.

1. INTRODUCTION

Lattice polytopes are fundamental objects in mathematics and play a crucial role in a broad range
of subjects such as discrete and algebraic geometry, algebra, combinatorics, coding theory, and opti-
misation theory. They arise naturally in a variety of unexpected or even surprising ways. Consider
the following classical question from enumerative combinatorics, for instance.

Question 1. How many monomials in three variables of a given degree m are there?

A monomial is a product of (powers of) certain variables; its degree is the sum of the exponents
as they appear in the product. We thus wish to find the total number of all triples of non-negative
integers whose sum equals a given integer m.

Let x, y, and z be the three variables in Question 1. We consider some examples first, and we obtain
three monomials of degree one, six monomials of degree two, and ten monomials of degree three;
see Figure 1. In the process, we see that the monomials in x, y, and z of degree m can be arranged
in a triangular shape where the exponent of x decreases from the top down, and the exponent of z
decreases from the left to the right. The exponent of the remaining variable y is completely determined
by the two other exponents and the total degree m. We conclude that the number of monomials in
three variables of a given degree equals the number of points in a certain triangle, as illustrated by
Figure 1.

More precisely, the number of monomials in x, y, and z of degree m equals the number of lattice
points — that is, points with integer-valued coordinates — in the triangle with vertices (0, 0), (m,0),
and (m, m). In other words, let T be the triangle with vertices (0, 0), (1,0), and (1, 1), let

mT ={mv |v €T}

be the m-th dilation of T, and let Ly(m) = |mT N Z?| count the number of lattice points in mT. Then,
the number of monomials in three variables of degree m equals L (m).

In order to answer Question 1, we thus wish to find a formula for Ly(m). The set of all lattice
points contained in the triangle mT can be constructed by removing the diagonal from a square of
side length m + 1 and, subsequently, discarding one of the two resulting congruent triangles.! From
this construction, it can be seen that a formula as desired is given by
(m+22-(m+2) 1 , 3

5 =5m + i +1.
Notice that the leading coefficient coincides with the area of T. This is not a coincidence, but part of a
bigger story known as Ehrhart theory.

Our goal is to introduce a famous question asked by Tadao Oda at Oberwolfach in 1997. Roughly
speaking, Oda wondered whether the lattice points within a polytope, given that it is of a certain type,
always satisfy an elegant counting property; see Question 2 at the end of this snapshot for a precise
statement. It will become apparent that a certain instance of this problem is related to Question 1 in

Lr(m) =
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Figure 1. Interpreting monomials in three variables x, y, and z as lattice points in a
triangle, for (a) degree one, (b) degree two, and (c) degree three.

that, in view of how we counted the monomials, it amounts to the question whether each monomial
of degree m can be written as a product of m variables. Of course, one immediately sees that this is
the case. However, Oda’s question is not so easy in full generality; although simple to state, it remains
unanswered.

Let us now introduce the general picture. We work with the lattice of integral points Z¢ ¢ R,
that is, the set which consists of all points in d-dimensional space whose coordinates are integers. A
subset C ¢ R?is called convex if every straight line segment which connects two points in C lies entirely
within C. The convex hull of a set of points B C R? is the inclusion-wise smallest subset conv(B) c R?
which is convex and contains B. For B = {v1, ..., v,}, an alternative description is as follows:

n n
conv(v1,...,0,) = {vai MyoeiAp € [O,l],ZAi = 1}.
i=1 i=1

The term lattice polytope shall describe the convex hull P = conv (v, ..., v,) of a finite number of lattice
points vy, ..., vy.

As before, the m-th dilation of P is the polytope mP = {mv | v € P}. The value of the Ehrhart
function Lp at m € Zs is defined to be the number of lattice points Lp(m) = |mP N Z%| in mP.
The dimension of P, denoted by dim(P), is the dimension of the smallest affine space containing P.?

Theorem 1 (see [3,4]). There exists a polynomial f of degree dim(P) with rational coefficients such
that Lp(m) = f(m) for all m € Zsp. Furthermore, the leading coefficient of f coincides with the
Euclidean volume vol(P) of P.

Theorem 1 allows us to interpret Lp as a polynomial of degree dim(P) which we call the Ehrhart
polynomial of P. That the leading coefficient coincides with the volume of the polytope P is surprising.
However, if P is a polygon, that is, if P is a polytope of dimension two, then the relationship between
the area of P and the lattice points it contains can be made even more precise.

Theorem 2 (Pick’s Theorem). For a lattice polygon P C R?, the Euclidean volume vol(P) is given by
the formula

|0P N Z2|
T2
Here, |P° N Z?| denotes the number of interior lattice points, and |dP N Z?| denotes the number of
boundary lattice points of P.

vol(P) = |P° N Z?| 1.

Let us use Pick’s Theorem to compute the area of the polygon P shown in Figure 2. It can be seen

2The term affine subspace refers to a point, line, plane, ... in R¢. For example, a non-degenerate triangle is contained in a
plane but in no line; therefore, such a triangle is of dimension two.
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Figure 2. Computing the area of a lattice polygon by Pick’s Theorem. There are 23
interior lattice points and 16 boundary lattice points.

that P has 23 interior lattice points and 16 boundary lattice points, so its area is given by

vol(P) = 23 + % —1=30.

2. Proor orF Pick’s THEOREM

The proof of Pick’s Theorem contains numerous beautiful ideas and constructions from Ehrhart
theory. Since several of these play an important role in motivating Oda’s Oberwolfach question,
we give a proof here. The fundamental idea is to proceed by induction on the number of lattice
points [P N Z?|.3

2.1. The base case. We assume that P is a triangle whose vertices v1,v>, and v3 are its only lattice
points; that is, |[P N Z2| = 3. Such triangles are called empty. We will show that, in this case, v1, v,
and v3 constitute an affine basis of Z2; that is, the difference vectors v1 — v3 and v, — v3 form a lattice
basis of Z>.* Let us assume this for a moment and show how it implies Pick’s Theorem in the base
case.

By assumption, v; — v3 and v, — v3 form a lattice basis of Z2. The 2 x 2-matrix A whose rows are
these difference vectors is invertible over Z. In other words, there exists another 2 X 2-matrix B with
entries in Z such that the matrix product AB equals the identity matrix, and thus the determinant>
of A must itself be invertible over Z; this is, the determinant of A is 1 or —1. It is a geometrical fact that
the absolute value of the determinant det( ;) of the 2 X 2-matrix with rows a,b € Z? equals the area of
the parallelogram spanned by a4 and b. Hence, the area of P equals (1/2) |[det(A)| =1/2=0+3/2-1,
as desired.

It remains to show that v1,v,, and v3 together form an affine basis of Z2. Let P denote the
parallelogram spanned by v1 — v3 and v, — v3; that is,

P = {A1U1 + Arvp — (/\1 + /\2)1)3 | 0<A; < 1}.

Such a parallelogram is shown in Figure 3. We claim that the only lattice points contained in P are
its vertices 0,v1 — v3,v2 — v3, and v1 + v2 — 2v3. Indeed, the triangle with the vertices 0,v1 — v3,
and v, — v3 is empty, and so its opposite triangle, that is, the triangle with the vertices v1 — v3, v2 — v3,
and v1 + v, — 2v3 which covers the other half of P, is also empty. Certainly, theset {P +v | v € 7%} of
all translations of P tiles the plane, as illustrated in Figure 3, from which we may observe that every
lattice point in Z? is a vertex of a lattice translation of P. Hence, each x € Z? can be expressed as a

3This means that the theorem is first proved for polygons containing exactly three lattice points (Section 2.1). In a second
step, it is proved that if the statement of the theorem holds for all polygons which contain at most N lattice points, then it also
holds for all polygons containing N + 1 lattice points, where N > 3 is any integer (Section 2.2). As a consequence, the theorem
must then hold for all integers N > 3.

#The vectors v1,...,v; € Z% are said to form a lattice basis if each vector v € Z% admits a unique representation of the
formov = Ajo1 +---+Aqv4forAy,..., Ay € Z;thed +1elements vy, ..., 0441 € Z¢ are said to form an affine basis if the difference
vectors v1 — v441,...,04 — U441 form a lattice basis.

SThe value of the determinant of a 2 X 2-matrix (* Z ) is given by the expression ad — bc.
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Figure 3. Tiling the plane with translations of a parallelogram which comes from an
empty triangle with vertices v1, v2, v3.
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Figure 4. A lattice polygon (a) with exactly three boundary lattice points is cut (b) into
three subpolygons P1, P>, and P3. Here, by =4,b, =3,bz3 =2and iy =1, i = i3 = 0.

linear combination x = kj(v1 —v3) + kz(v2 —v3) for k1, kx € Z. Moreover, this representation is unique,
so v1, V2, and v3 together form an affine basis of 72,

2.2. The inductive step. Let us assume Pick’s Theorem is valid for all lattice polygons Q C R2
with |Q N Z2| < N for some N > 3. We need to show that it then holds for all lattice polygons P
with [P N Z?| = N + 1. Let P be such a polygon. The inductive step splits into two cases: either there
are exactly three lattice points on the boundary dP of P; or |dP N Z?| > 3.

If |9P N Z?| = 3 then the interior P° of P contains at least one lattice point v. The three line segments
connecting v with the three vertices of P split the polygon into three subpolygons Pq, P, and Ps, as
illustrated by Figure 4. We shall count the lattice points in each of the Pk, k = 1,2, 3, and relate these
counts to the number of lattice points in P. Let iy = |PyNZ?|, and letby = |0PyNP°NZ?| = |dPxNZ?|-2,
fork=1,2,3.

Since [Py N Z?| < N for k = 1,2,3, we can apply our initial assumption on the validity of Pick’s
Theorem for lattice polygons containing at most N lattice points to each of the polygons Py, P;, P,
and we obtain

|0Py N Z2|
+ —_— -
2
1.

vol(Px) = |Py N 2%

bk+2_
2

1

=ir+
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The area of P equals the sum of the areas of the subpolygons P;, P>, and Ps. By further counting the
lattice points in each of the three subpolygons separately, we arrive at the following chain of equalities:

3
vol(P) = Z vol(Py)
k=1

b +2
-1
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P N 73|
2
Notice that each lattice point which lies on the interior parts of the dissecting lines is counted twice

by the term 22:1 by, except for v, which is counted three times. This is accounted for by the addition
of 1/2 in the fourth line.

If [9P NZ?| > 3, we can find v, w € IP NZ? such that the line segment connecting v and w divides P
into two subpolygons P; and P, with |Px N Z?| < N for k = 1,2. This is illustrated by Figure 5. We

=|P°NnZ% + - 1.

Figure 5. A lattice polygon (a) with four or more lattice points on its boundary can
be split (b) into two subpolygons P and P,. Here, i1 =4, i, =14, b1 =7, by = 11,
and i =5.

again count the number of lattice points in the subpolygons P; and P, and relate these counts to the
number of lattice points in P. Let iy = [P N 72|, and let by = |(dPx \ P°) N Z?| be the number of
boundary lattice points of Py that are not contained in the interior of P. By i we denote the number of

interior lattice points in the line segment from v to w. Since |Px N Z?| < N, we can apply the inductive
hypothesis to obtain

b k+i
2
The area of P equals the sum of the areas of P; and P;; hence,

vol(P) = vol(P7) + vol(P)
. b +i . by+i
=(11+ 12 —1)+(12+ 22 —1)

b1+b2_

VOl(Pk) =i+ -1.

=(1+i+10)+ 2

|oP N Z?|
+—_

=|P°nZ2
| | 5

1.
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Regarding the final equality, notice that iy + i, +i = |[P°N 72|, whereas by + by counts the lattice points
on the boundary of P, counting v and w twice, however.

3. OpA’s OBERWOLFACH QUESTION

Recall our reinterpretation of Question 1 as a problem on the number of lattice points in dilations of
the empty triangle T with vertices at (0, 0), (1,0), and (1, 1); the lattice points contained in the set T N Z>
each correspond to a monomial of degree one. We now construct a single combinatorial object which
simultaneously encodes the lattice points (and hence their counts) in all dilations mT, m € Z.

Figure 6. The cone Cr over the empty triangle T affinely embedded into R®.

We begin by identifying R? with the subset R? x {1} of R3; in other words, we think of the plane
as lying inside three-dimensional space at height one. In this copy of R?, we consider the triangle T.
The cone over T is defined as Ct = {A(x,1) | A € Rxq, x € T}; it is depicted in Figure 6. We may think
of Cr as the union of all half-lines that start at the origin and pass through a point in T x {1}. The
cross-section of Cr at height m € Z5, or, more precisely, Cr N {(x,y,z) | z = m} = (mT, m), can be
identified with the dilation mT of T. Hence, the cone Ct encodes the lattice points in all dilations of T'.

This construction can be generalised to arbitrary lattice polytopes P ¢ R?. Indeed, the cone over P
can be defined as

Cp = Rxo(P x {1})
={A(x,1) | A € Ry, x € P}.
As before, the cross-section of Cp at height m € Z5( can be identified with the dilation mP.

3.1. The integer decomposition property. A lattice polytope P ¢ R? is said to have the integer
decomposition property if each lattice point in Cp at height m can be written as the sum of m (not
necessarily distinct) lattice points at height one.

Example 1. If the polytope under consideration is an empty triangle T, this means that for all (x, m) €
Cr N Z3 there exist (not necessarily distinct) points (x1,1), ..., (xy,1) € CT N 73 such that

(x,m)=(x1, 1)+ -+ (x;, 1).

Indeed, every empty triangle T has the integer decomposition property; the interested reader is invited
to think about why this is the case.

It is natural to ask which other lattice polytopes have the integer decomposition property. Let us
study some important classes of lattice polytopes for which this question has been resolved.

Example 2. We generalise empty lattice triangles to arbitrary dimension. If vy, ..., v, form an affine
basis of Z%, their convex hull S = conv(vy, . . ., v4) is called a d-dimensional unimodular simplex. We claim
that such a simplex S has the integer decomposition property. Indeed, since v, . . ., v4 is an affine basis
of 74, it follows that (vg, 1), . .., (v4, 1) is a lattice basis of Z%*1. Hence, every lattice point (x, m) in the
cone Cg can be expressed as a linear combination (x, m) = Z?:o Ai(vi, 1), where A; € Z. Since (x, m) is
in Cg, it follows that A; > 0, and thus S has the integer decomposition property.
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Figure 7. Every two-dimensional polygon can be covered by empty triangles.

€)) (b)

Figure 8. If (a) triangles S; cover a polygon P, then (b) the cones Cs; cover Cp.

Example 3. Every two-dimensional lattice polygon can be covered by empty lattice triangles; Figure 7
provides an example of how this can be achieved. More generally, suppose P is a lattice polytope
in R? which is covered by unimodular simplices S1, ..., Sy; thatis, P = S; U--- U S,,. Such a covering
is called a unimodular covering of P. The cone Cp over P is covered by the cones Cg,, ..., Cg, over the
simplices S;; Figure 8 illustrates this for the case d = 2. Hence, every lattice point in Cp at height m
can be written as a sum of m lattice points at height one, namely those which are located at height
one in the corresponding cone Cg,. In particular, all two-dimensional lattice polygons have the integer
decomposition property, since they admit a unimodular covering. In higher dimensions it is typically
very hard to determine whether a unimodular covering even exists.¢

Example 4. Reeve [10] describes an infinite family of tetrahedra whose members we now call the Reeve
tetrahedra; see Figure 9. Let

R, = conv((0,0,0),(1,0,0),(0,1,0),(1,1,r))

for some r € Z>1. The Reeve tetrahedron R, contains exactly four lattice points, has no interior lattice
points, and vol(R,) = r/6. Moreover, the number of lattice points in its m-th dilation is given by
r

Lg,(m) = 6m3+m2+ (2— g)m+1.

¢The unimodular coverings in Figures 7 and 8 have the property that the simplices intersect along common faces. Such
coverings are called triangulations. In dimension two, a unimodular triangulation always exists. However, there exist higher-
dimensional lattice polytopes that admit a unimodular covering but no unimodular triangulation [5, Example 10].
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Figure 9. The Reeve tetrahedron R;,.

It is readily seen that R, does not admit a unimodular covering when r > 1, as its four vertices do
not form an affine lattice basis in this case. This stands in contrast with the two-dimensional case,
where every empty triangle is unimodular. The existence of empty simplices whose vertices do not
form an affine basis is what makes the study of higher-dimensional lattice polytopes much richer —
and harder — than that of polygons. In particular, we should not expect a direct analogue of Pick’s
Theorem in dimension three or more.

We now show that R, does not satisfy the integer decomposition property. Let C, be the cone
over R,. The set of lattice points C, N Z* forms a semigroup with Z-basis given by

(O/ 0/ O/ 1)/ (1/ O/ O/ 1)/ (O/ 1/ 0/ 1)/ (1/ ]‘/ 1/ 1) if r = 1/ Or

(0/ 0/ 0/ l)/ (1/ O/ 0/ 1)/ (0/ 1/ 0/ 1)/ (1/ 1/ r/ 1)/
(1/ ]-/ 1/2)/ . '/(1/ ].,7’ - 1/2)
In particular, for r > 1 the point (1,1,1,2) € C, at height two cannot be written as the sum of two
points at height one.

ifr > 1.

3.2. The smooth case. Let e; € R? denote the i-th standard basis vector, and let us write

cone(X) = {Zn: Aix;

i=1

ne ZZO//\i € Rzo,xj € X}

for the convex cone generated by a (not necessarily finite) subset X ¢ R?. A cone C c R? is
called smooth if it can be identified with cone(ey, ..., e;) via a change of basis of Z%. In other words, it
is called smooth if there exists a lattice basis by, . . ., by of Z% with the property that the map Z¢ — 74
sending (x1,...,x3) — Zi:l xiby € Z% is invertible and sends cone(ey, . .., e4) to C.

A lattice polytope P c R is called smooth if cone(P — v) is smooth for every vertex v of P. Oda’s
Oberwolfach question now asks whether smoothness is a sufficient condition for a lattice polytope to
have the integer decomposition property.

Question 2 (Oda’s Oberwolfach Question [9]). Does every smooth lattice polytope have the integer
decomposition property?

An indication that this may indeed be the case lies in the fact that the smoothness property of a
polytope P ensures that each of its corner is covered by a dilation of a unimodular simplex, and in
the speculation that it should be possible to extend these corner covers sufficiently far inside so as to
yield a unimodular covering of the polytope P.

Despite many efforts to answer Question 2, it is still wide open. Moreover, there is currently
no general consensus on the likely answer. Substantial efforts have been made in order to find a
counterexample; for instance, such an effort is due to Bruns [2]. Meanwhile, the study of Oda’s
Oberwolfach question has led to a considerable number of beautiful results on lattice polytopes which
were obtained by a variety of authors [1,6-8].
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