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Goal

Goal
Generate Calabi-Yau fourfolds suitable for F-theory model
building.

Method
Use a genetic algorithm to generate 5-dimensional reflexive
polytopes.

Collaborators : Per Berglund, Yang-Hui He, Edward Hirst,
Vishnu Jejjala, Andre Lukas
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What is the state of physics in 2023 ?

Standard Model

The Standard Model of particle
physics describes the three
non-gravitational forces : strong
nuclear, weak nuclear, and
electromagnetic force - as well as
all observed elementary particles.

General Relativity

General relativity is a theoretical
framework that only focuses on
gravity and provides a description
of gravity as a geometric
property of space and time.
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Theory of Everything
A Theory of Everything (TOE) is an all-encompassing theoretical
framework of physics that fully explains all aspects of the universe.

A Grand Unified Theory (GUT) is a model in which, at high energies,
the three gauge interactions of the Standard Model comprising the
electromagnetic, weak, and strong forces are merged into a single
force.

Elli Heyes 5 / 31



We haven’t been beaten by the machines. . . yet
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String Theory

String theory is a theory in which
0-dimensional particles are
replaced by 1-dimensional
strings. The different vibrational
modes of the string give rise to
the different particle properties in
the Standard Model.

Supersymmetry is a spacetime
symmetry between two classes of
particles : bosons and fermions.
In supersymmetry, each particle
from one class would have an
associated particle in the other,
known as its superpartner.
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String Theory

Problem
String theory only works in 10 dimensions of spacetime, but we
live in 4 spacetime dimensions.

Solution
Hide the extra dimensions where no one can see them.
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Why string theorists love Calabi–Yau manifolds ?

Compactification means that the 10-dimensions of spacetime are
of the form :

M10 = R1,3 ×M6,

where R1,3 is the usual Minkowski space and M6 is some small
compact manifold.

We must satisfy the vacuum Einstein equations, which means
that the metric on M6 must be Ricci-flat. Furthermore, in
order to have the correct supersymmetry we also require that
M6 has holonomy group SU(3).

Definition
A Ricci-flat Kähler manifold with holonomy group SU(3) is a
Calabi-Yau manifold.
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M-Theory

In order to get minimal N = 1 4d supergravity after
compactification, one needs M-theory on 7-dimensional
G2-manifolds. See Ed’s talk for more on G2 manifolds.

M11 = R1,3 ×G2
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F-Theory

In order to get minimal N = 1 4d supergravity after
compactification, one needs F-theory on elliptically fibered
CY4-manifolds.

M12 = R1,3 × CY 4
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How to construct Calabi-Yau manifolds

Given an n-dimensional lattice polytope ∆, one can construct a toric
variety X∆ of complex dimension n. One constructs the normal fan
Σ∆ from the faces θ of ∆ and glues together the affine toric varieties
that arise from each cone σθ in the fan.

If ∆ is reflexive it follows that the zero locus of a generic section of
the anticanonical bundle −KX is a CY variety of dimension n− 1,
which is in general singular but whose singularities can be resolved by
triangulating the polytope.
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What are reflexive polytopes ?
Let M ∼= Zn and N = Hom(M,Z) be a dual pair of lattices with the
pairing ⟨·, ·⟩ : N ×M → Z. Let ∆ be a polytope in MR, then the dual
polytope ∆∗ in NR is defined as

∆∗ = {n ∈ NR|⟨n,m⟩ ≥ −1∀m ∈ ∆}.

A polytope is said to satisfy the interior point (IP) property when it
contains only one interior point at the origin.

A lattice polytope ∆ that satisfies the IP property is called reflexive
if its dual ∆∗ is also a lattice polytope satisfying the IP property.
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Classification of reflexive polytopes

Algorithm by for generating all reflexive polytopes :
1 Construct a set S of maximal polytopes, such that any

reflexive polytope is a subpolytope of a polytope in S.
2 Construct all subpolytopes of the maximal polytopes in S

and check for reflexivity.

Classification of reflexive polytopes :
There are 16 reflexive polytopes in 2d.
There are 4,319 reflexive polytopes in 3d.
There are 473,800,776 reflexive polytopes in 4d.
There are at least 185,269,499,015 reflexive polytopes in
5d.
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Equivalences between polytopes

Two polytopes ∆ and ∆̃ are called equivalent if there exist an
Nv ×Nv permutation matrix P and a G ∈ GL(n,Z) such that
their vertex matrices V and Ṽ are related by

Ṽ = GV P.

The normal form is a representative of this equivalence class.

NF−−→
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Genetic algorithms
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Genetic algorithms
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Environment

The GA environment in our case consists of lattice polytopes ∆
in n dimensions which are generated as the convex hull of m
vectors xa ∈ Zn, where a = 1, ...,m. These vectors are arranged
into an n×m matrix X = (x1, . . . , xm).

We convert the matrices X into a bitlists as follows :
1 Flatten the n×m vertex matrix X.
2 Subtract MIN from each entry.
3 Convert each integer entry into binary.
4 Prepend each binary number with zeros so that each binary

number is of length BINLEN.

The environment is therefore the set Fnbits
2 of all bitlists of

length nbits, where nbits = m×n× BINLEN, which is of size 2nbits .
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Environment

Example : MIN=-3, BINLEN=3

X =

(
−2 0 1 0 −1
1 1 0 −2 −1

)

1 [−2, 1, 0, 1, 1, 0, 0,−2,−1,−1]

2 [1, 4, 3, 4, 4, 3, 3, 1, 2, 2]

3 [1|1, 0, 0|1, 1|1, 0, 0|1, 0, 0|1, 1|1, 1|1|1, 0|1, 0]
4 [0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0]
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Fitness function

Let ∆ be a lattice polytope given in the half-space representation by
∆ = {m ∈ MR|⟨ui,m⟩ ≤ ai, i = 1, ..., k} for some u1, ..., uk ∈ NR and
a1, ..., ak ∈ R. Then ∆ is reflexive if and only if it has the IP property
and if ai = 1 for all i.

The fitness function, f : Fnbits
2 → R is given by :

f(∆) = w1 (IP(∆)− 1)− w2

k

k∑
i=1

|ai(∆)− 1|

− w3|Np(∆)−Np,0|

IP(∆) equals 1 if ∆ satifies the IP property and is 0 otherwise.

Np(∆) is the number of points of ∆ and Np,0 is the desired
number of points.

w1, w2, w3 ∈ R≥0 are weights.
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Selection method

A probability distribution pk : Pk → [0, 1], based on the fitness
function, is computed for the kth population Pk. The selection
method we employed is the so-called roulette wheel selection
where pk for an individual s ∈ Pk is defined by

pk(s) =
1

npop

(α− 1)
(
f(s)− f̄

)
+ fmax − f̄

fmax − f̄
,

where f̄ and fmax are the average and maximal fitness values on
Pk, respectively. The parameter α, typically chosen in the range
α ∈ [2, 5], indicates by which factor the fittest individual in the
population is more likely to be selected than the average one.
Based on this probability pk, npop/2 pairs are selected from the
population Pk.
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Process overview

1 Create a random population P0 of npop bitlists.
2 Evolve the population over ngen generations

P0 → P1 → · · · · · · → Pngen−1 → Pngen .

3 Extract all generated reflexive polytopes.
4 Remove redundancy in the list of reflexive polytopes by

computing the normal forms and deleting duplicates.
5 Repeat steps 1-4 until all reflexive polytopes are found.
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Results : 2d

We use MIN = −3 and BINLEN = 3 which gives us the vertex
coordinate range is [−3, 4] and set m = 6.

The environment contains ∼ 1011 states.

The genetic algorithm found all 16 reflexive polytopes in 1 run.

The fraction of states visited was ∼ 10−6.
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Results : 3d

We use MIN = −7 and BINLEN = 4 which gives us the vertex
coordinate range is [−7, 8] and set m = 14.

The environment contains ∼ 1051 states.

The genetic algorithm found all 4319 reflexive polytopes in
117251 runs.

The fraction of states visited was ∼ 10−40.
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Results : 4d

# points # refl. poly. # GA runs % states

6 3 5 ∼ 10−13

7 25 30 ∼ 10−16

8 168 60 ∼ 10−19

9 892 9378 ∼ 10−20

10 3838 9593 ∼ 10−24

Table – Search results for four-dimensional reflexive polytopes. The
number of lattice points is listed in the first column. The total
number of generated reflexive polytopes is given in the second column
and the number of genetic algorithm runs taken to reach this total is
provided in the third column. The last column provides an upper
bound on the fraction of states visiting during all GA runs.
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Results : 5d

# points # refl. poly. # GA runs % states

7 9 36 ∼ 10−22

8 115 1278 ∼ 10−24

9 1385 7520 ∼ 10−28

10 12661 31857 ∼ 10−31

11 87888 67382 ∼ 10−36

Table – Search results for small five-dimensional reflexive polytopes.
The number of lattice points is listed in the first column. The total
number of generated reflexive polytopes is given in the second column
and the number of GA runs taken to reach this total is provided in
the third column. The last column provides an upper bound on the
fraction of states visiting during all GA runs.
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Results : 5d h1,1 = 1

Formula for the Hodge number h1,1 of a Calabi-Yau hypersurface X
from a reflexive polytope ∆ is given as :

h1,1(X) = l(∆∗)− 6−
∑

codimΘ∗=1

l∗(Θ∗) +
∑

codimΘ=2

l∗(Θ∗) · l∗(Θ)

where l is the number of points, l∗ is the number of interior points, ∆
is the dual polytope to ∆, Θ is a face of ∆ and Θ∗ is a face of ∆∗.

Conjecture
There are precisely 15 five-dimensional reflexive polytopes that give
rise to four complex dimensional Calabi–Yau hypersurfaces with
Hodge number h1,1 = 1.
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Results : 5d targeted search

In eleven-dimensional supergravity compactified on CY fourfolds a
condition necessary for unbroken N = 1 supersymmetry is that the
Euler number χ of the CY fourfold must be divisible by
δ ∈ {24, 224, 504}.

To search for such cases, we modify our fitness function to be

f̃(∆) = w1 (IP(∆)− 1)− w2

k

k∑
i=1

|ai(∆)− 1| − w3

∑
δ

χ(∆) mod δ ,

where w3 is a weight and χ(∆) is the Euler number of ∆.

Setting the MIN = −3, BINLEN = 3 and m = 10 and running the GA
for 10 runs the GA finds 21 polytopes that satisfy the supersymmetry
breaking condition.
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Conclusions

GA generated all 16 2d and all 4319 3d reflexive polytopes.
GA generated all small (i.e. small number of points) 4d
reflexive polytopes.
Datasets of small 5d polytopes were generated using the
GA.
Generated 5d reflexive polytopes include new ones, leading
to new Calabi–Yau fourfolds.
Conjecture on the number of 5d reflexive polytopes giving
rise to Calabi-Yau fourfolds with h1,1 = 1.
Showcased the capability of a targeted search.
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Outlook
A reflexive polytope in general produces a singular toric variety
and therefore singular Calabi-Yau hypersurfaces. Resolving the
singularities can be done by finding a fine, regular, star
triangulation (FRST) of the reflexive polytope.

Can genetic algorithms generate triangulations ? Could we
combine the two genetic algorithms to generate
phenomenologically viable Calabi-Yaus, e.g. with h1,1 = 1, χ = 6
and K3 elliptically fibered.
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Thank You
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