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Ranks of elliptic curves



Diophant from Alexandria

Figure 1: Edition from 1621.

Arithmetic (Book IV, Problem 24): Find (positive and rational)

x i y such that

y(6− y) = x3 − x .
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Example of elliptic curve

Figure 2: C : y(6− y) = x3 − x

He sketched curve C and noticed a rational point (−1, 0). 3



A new point from old

Intersection of tangent line through point (−1, 0) and elliptic curve

C gives one solution (17/9, 26/27) to the problem!

Today we know that with this method (tangent chord process),

starting from the points (−1, 0) and (0, 0) (we call them

generators), we can obtain all rational points on C .
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Rational points on elliptic curve

De�nition
For a1, a2, a3, a4, a6 ∈ Q

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

is called elliptic curve over Q (provided that the discriminant

∆(a1, a2, a3, a4, a6) is nonzero).

We denote the set of rational points on E by E (Q). It is an abelian

group with respect to the operation previously mentioned (point at

in�nity is neutral element). We denote by N the conductor of

elliptic curve.
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Rank of elliptic curve

Theorem (Mordell)
E (Q) is a �nitely generated abelian group, i.e.

E (Q) ∼= Etors(Q)× Zr ,

where Etors(Q) is a �nite group of elements of �nite order and r is

non-negative integer called (algebraic) rank of elliptic curve.

Example
Rank of C (Q) is two.
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Computing rank of elliptic curve



Elliptic curves of high rank

• Rank is a mysterious quantity. Is the rank unbounded?

Current record is 28 (Elkies).

• Montgomery (1987) - elliptic curves of high rank can speed up

elliptic-curve factorization method (ECM)

7



Rank 28 example

y2 + xy + y = x3 − x2−

20067762415575526585033208209338542750930230312178956502x

+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429

P1 = [-2124150091254381073292137463, 259854492051899599030515511070780628911531]

P2 = [2334509866034701756884754537, 18872004195494469180868316552803627931531]

P3 = [-1671736054062369063879038663, 251709377261144287808506947241319126049131]

P4 = [2139130260139156666492982137, 36639509171439729202421459692941297527531]

P5 = [1534706764467120723885477337, 85429585346017694289021032862781072799531]

P6 = [-2731079487875677033341575063, 262521815484332191641284072623902143387531]

P7 = [2775726266844571649705458537, 12845755474014060248869487699082640369931]

P8 = [1494385729327188957541833817, 88486605527733405986116494514049233411451]

P9 = [1868438228620887358509065257, 59237403214437708712725140393059358589131]

P10 = [2008945108825743774866542537, 47690677880125552882151750781541424711531]

P11 = [2348360540918025169651632937, 17492930006200557857340332476448804363531]

P12 = [-1472084007090481174470008663, 246643450653503714199947441549759798469131]

P13 = [2924128607708061213363288937, 28350264431488878501488356474767375899531]

P14 = [5374993891066061893293934537, 286188908427263386451175031916479893731531]

P15 = [1709690768233354523334008557, 71898834974686089466159700529215980921631]

P16 = [2450954011353593144072595187, 4445228173532634357049262550610714736531]

P17 = [2969254709273559167464674937, 32766893075366270801333682543160469687531]

P18 = [2711914934941692601332882937, 2068436612778381698650413981506590613531]

P19 = [20078586077996854528778328937, 2779608541137806604656051725624624030091531]
.
.
.

P28 = [2230868289773576023778678737, 28558760030597485663387020600768640028531]
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Computing rank is hard

Determining the rank of elliptic curve is computationally expensive

task mainly because �nding rational points on elliptic curves is a

di�cult problem

A descent algorithms that are commonly used eventually reduce to

a naive point search on some auxiliary curves. Also, there is no

algorithm known to correctly compute the rank in all cases.

Is it possible to determine rank without �nding explicit

generators?
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Birch and Swinnerton-Dyer conjecture

For every prime p, de�ne ap = p + 1−#E (Fp).

For <(s) > 3/2 we de�ne Hasse-Weil L-function by absolutely

convergent in�nite product

L(E , s) =
∏

p prime

(
1− app

−s + p1−2s
)−1

.

By the Modularity theorem L(E , s) extends to an entire function.

Conjecture (BSD)
Order of vanishing of L(E , s) at s = 1 (the quantity known as

analytic rank) is equal to the rank of elliptic curve E .
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Heuristics for computing rank

As an alternative approach to descent algorithms, one can use rank

heuristics that are inspired by BSD conjecture. These heuristics (we

will call them Mestre-Nagao sums) help in identifying probable

candidates for elliptic curves of high rank.
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Mestre-Nagao sums

For example, one of these sums

S̃5(B) =
∑
p<B,

good reduction

log

(
p + 1− ap

p

)

has a property that exp(−S̃5(B)) is the partial product of LE (s)∏
p<B,

good reduction

(
1− app

−s + p1−2s
)−1

, (1)

evaluated at s = 1 (ignoring the primes of bad reduction). One

expects that S̃5(B) should be large if E has a large rank since then

the partial product should rapidly approach zero.

This sum was

used Elkies and Klagsbrun as a �rst step in �nding rank-record

breaking curves with �xed cyclic torsion Z/nZ for n = 2, 3, . . . 7.
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Approach by convolutional neural networks

In our work, we investigate a deep learning algorithm for rank

classi�cation based on convolutional neural networks (CNN).

These networks take as an input the conductor of the elliptic curve

together with the sequence of normalized ap-s (i.e. ap/
√
p) for p in

a �xed range (p < 10k za k = 3, 4, 5) and output the rank of the

elliptic curve.

This project was inspired by the paper He, Lee, Oliver: Machine

learning invariants of arithmetic curves. J. Symb. Comput.

115, 478�491 (2023) where the authors, among other things,

successfully used logistic regression for classifying elliptic curves of

rank zero and one.
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Mestre-Nagao sums and a fully connected neural networks

We compared the performance of our CNN algorithm to that of the

Mestre-Nagao sums (S0, S1, · · · S6 and Ω).

A priori, it is not clear how to decide on the rank of the elliptic

curve based on the value of its Mestre-Nagao sum, so we train a

simple fully connected neural network to do that task for us. Since

the answer critically depends on the conductor of the elliptic curve,

these networks, besides the Mestre-Nagao sum, take the conductor

of the elliptic curve as an input. Training these networks revealed

the optimal cuto� of the speci�c Mestre-Nagao sum for rank

classi�cation.
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List of Mestre-Nagao sums

These are some of the Mestre - Nagao sums we considered

S0(B) =
1

logB

∑
p<B,

good reduction

ap(E ) log p

p
,

S3(B) =
∑
p<B,

good reduction

−ap(E ) + 2

p + 1− ap(E )
log p,

S4(B) =
1

B

∑
p<B,

good reduction

−ap(E ) log p,

Ω is a neural network that takes as an input conductor of an elliptic

curve together with all seven sums sums (S0,S1, · · · ,S6).
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Training process



Two datasets

For training, we used two datasets

• LMFDB - contains 3, 824, 372 elliptic curves de�ned over Q,

distributed in 2, 917, 287 isogeny classes. It contains three

di�erent datasets: all curves of conductor less than 500, 000,

all curves whose conductor is 7-smooth, and all curves of

prime conductor p ≤ 300, 000, 000). Curves have rank

between 0 and 5

• Custom made dataset - contains 2, 074, 863 elliptic curves

de�ned over Q with trivial torsion and conductor less than

1030. These curves have rank between 0 and 10.
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Construction of custom dataset

• curves with random Weierstrass coe�cients for rank 0 and 1

• curves of higher rank were obtained as random specializations

of pencils of cubics through randomly selected k rational

points in the plane, for k = 2, 3, . . . , 8

• using PARI/GP ellrank we tried to compute ranks of all

previously generated curves (assuming the Parity conjecture)

and discarded curves for which PARI/GP couldn't �nd the

rank (e.g. all curves for which Sha(E )[4] is nontrivial)
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Bias of custom dataset

Dataset su�ers from bias as it is constructed by sampling the

rational points of small height in the pencil of cubics.

Consequently, it contains many elliptic curves with small canonical

height generators and hence small regulator.

This presents a problem, particularly for curves of small rank and

large conductor, since the regulator is typically expected to be large

under standard conjectures.
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S̃5 and the original BSD

The size of the regulator is signi�cant since the Mestre-Nagao sums

ultimately approximate a term whose size depends on both the rank

and the regulator.

For instance, from the original Birch and Swinnerton-Dyer

conjecture, ∏
p<B,

good reduction

p + 1− ap
p

≈ A log(B)r ,

it follows (by taking logarithms) that

S̃5(B) = logA + r log logB + o(1), where A is a constant that

conjecturally depends on the regulator of E (Goldfeld).
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Experiments

For each neural network (the CNN or one of the Mestre-Nagao

sums, in total 9) we have performed 24 tests by varying

a) dataset - LMFDB or custom,

b) range of ap-s - we considered (ap)p≤B for B = 103, 104, 105,

c) test curves - uniformly selected (20% from the dataset) or all

curves in the top conductor range (which is [108, 109] for the

LMFDB and [1029, 1030] for the custom dataset),

d) type of classi�cation - binary or all ranks (for the LMFDB the

rank range is from 0 to 5, and for the custom dataset from 0

to 10).

In binary classi�cation, curves are labeled as either of low or high

rank. For the LMFDB high rank means 4 (we did not consider 19

rank 5 curves), while for custom dataset high rank is 8, 9 or 10.
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Modeling rank classi�er using deep neural network

• architecture: a sequence of convolutional neural network layers

+ fully connected classi�cation layer in the end

• activation function: ReLU - pointwise f (x) := max(x , 0)

• loss function:

• weighted cross entropy loss

• weights re�ect relative size of classes - di�erent ranks

• gradient descent optimizer: Adam (a variant of SGD)

• autograd using Pytorch library

• input normalization

• train / validation / test set split

• quality of classi�cation was decided using Matthews

correlation coe�cient (or phi coe�cient)
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Architecture of CNN's

• Case B = 1000 - �rst 168 primes

• kernel size 33, ReLU activation function

• cca. 773,000 parameters

more layers

3 x 168 64 x 168 64 x 168

64 x 84

64 x 42 

64 x 21 64 x 1 

FC

5
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Matthews correlation coe�cient

• balanced measure of classi�cation quality

• even for classes of very di�erent sizes

• e.g. for binary classi�cation, MCC is computed using:

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + EP) · (TN + FN)

• TP - number of true positives

• FN - number of false negatives

• TN - number of true negatives

• FP - number of false positives

• MCC lies in the segment [−1, 1]

• MCC = 1 only in the case of perfect classi�cation

23
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Cuto�s for S5

Figure 3: Rank cuto�s of the classi�er S5 as a function of a conductor,

trained on the LMFDB with the uniform test set and p < 104. On the

x-axis are log
10

values of conductors and on the y -axis are values of the

sum S5. The unexpected shape of the cuto� between ranks 3 and 4 is

the consequence of a small number of rank 4 curves with a small

conductor, which are present in the dataset. 24



Comparison of di�erent classi�ers for LMFDB dataset with

uniform test set

Type of

classi�er
Number of ap-s used

p < 103 p < 104 p < 105

CNN 0.9507 0.9958 0.9992

S0 0.6823 0.8435 0.9068

S1 0.6848 0.8507 0.9301

S2 0.7277 0.8697 0.9359

S3 0.6933 0.8499 0.9142

S4 0.2678 0.3015 0.1525

S5 0.6132 0.7774 0.8463

S6 0.6969 0.8647 0.9381

Ω 0.8685 0.9602 0.9826 25



Confusion matrices of CNN and Ω for p < 105 and uniform

test dataset

CNN MCC = 0.9992 Ω MCC = 0.9826
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Comparison of di�erent classi�ers for LMFDB dataset with

top conductor range test set

Type of

classi�er
Number of ap-s used

p < 103 p < 104 p < 105

CNN 0.5669 0.9289 0.9846

S0 0.2880 0.5057 0.6545

S1 0.2791 0.4883 0.6658

S2 0.2790 0.4968 0.6730

S3 0.2897 0.5030 0.6574

S4 0.1352 0.1424 0.1850

S5 0.2960 0.3913 0.5261

S6 0.2632 0.4542 0.6416

Ω 0.4433 0.7013 0.8530
27



Confusion matrices of CNN and S0 for p < 104 and top con-

ductor range test dataset

CNN MCC = 0.9289 S0 MCC = 0.5057
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LMFDB dataset highlights

• for all rank classi�cation in uniform test set and p < 10000,

CNN (MCC=0.9958) misclass�ed only 0.25% of the curves

• the best Mestre-Nagao sum in the same mode, S2

(MCC=0.8697), missclassi�ed 8.1% of curves

• for all rank classi�cation and top conductor rank MCC of CNN

is 0.9289 while MCC of the best Mestre-Nagao sum S6 is

0.5057!
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Comparison of di�erent classi�ers for custom dataset with

uniform test set

Type of

classi�er
Number of ap-s used

p < 103 p < 104 p < 105

CNN 0.6129 0.7218 0.7958

S0 0.5738 0.6782 0.7462

S1 0.5780 0.6890 0.7592

S2 0.5649 0.6761 0.7521

S3 0.5551 0.6616 0.7361

S4 0.2893 0.2472 0.2251

S5 0.4987 0.5990 0.6696

S6 0.5230 0.6509 0.7361

Ω 0.5999 0.7069 0.7807
30



Comparison of di�erent classi�ers for custom dataset with top

conductor range test set

Type of

classi�er
Number of ap-s used

p < 103 p < 104 p < 105

CNN 0.2147 0.3019 0.3655

S0 0.2533 0.3233 0.3719

S1 0.2573 0.3291 0.3834

S2 0.2340 0.3118 0.3688

S3 0.2556 0.3189 0.3645

S4 0.1234 0.1228 0.1024

S5 0.2081 0.2858 0.3380

S6 0.1803 0.2757 0.3527

Ω 0.2622 0.3246 0.3905
31



the custom dataset highlights

• a classi�cation is much more challenging

• in all ranks classi�cation with p < 10000 and uniform range,

MCC of CNN is 0.7218 and it misclassi�ed 23% of curves,

while for 3% of the curves prediction missed true rank for more

than 1

• in the same mode, the best Mestre-Nagao sum S1 with

MCC = 0.6890 misclassi�ed 26% of the curves

• in the top conductor range with p < 10000, MCC of CNN is

0.3019 and it misclassi�ed 61% of the curves while for 12% of

the curves prediction missed true rank more than 1

• the best Mestre-Nagao sum in this mode, S2, has

MCC = 0.3291
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How does N and B in�uence the quality of classi�cation?

As a toy model for detecting rank-0 curves, we can numerically

evaluate L(E , 1) using the approximate functional equation given by

L(E , 1) = 2
∞∑
n=1

an
n
e−2πn/

√
N .

To ensure a small error of the approximation, we require B =
√
N

at a minimum.

Therefore, it make sense to investigate the dependence of the

quality of classi�cation of various models, as measured by the

MCC, on the quantity B/
√
N.
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The quality of CNN for di�erent B's
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Figure 4: MCC of the CNN as a function of log
10

(B/
√
N), for

B = 103, 104, 105 in red, green, and blue, respectively.
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Comparison of di�erent models
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Figure 5: MCC as a function of log
10

(B/
√
N), for B = 105 and three

di�erent models: the CNN, Ω, and S1 in red, green, and blue,

respectively.
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Classi�cation in families of elliptic curves

Consider the K3 elliptic surface with discriminant −163

y2 = x3 + (65536t4 − 17472t3 − 10176t2 + 18672t − 3535)x2

+ 1024(t + 1)2(15t − 8)2(31t − 7)2x ,

of Mordell-Weil rank 4 (over Q(t)) with Z/4Z torsion subgroup.

• sampled 808 curves with N < 1029 by substituting

t ∈ {−2000, . . . , 2000}
• discarded 37 curves because we were unable to compute their

rank.
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Confusion matrix of the CNN

The MCC of the CNN is equal to 0.2492.

Figure 6: Confusion matrix of the CNN for the K3 elliptic family and

p < 105. 37



Concluding remarks and the future work

• It is unclear why the CNN works much better than all of the

other Mestre-Nagao sum-based models on the curves from the

LMFDB. Did the CNN discover some new mathematics?

• How would the other invariants of elliptic curves (such as root

number or the size of Tate-Shafarevich group), if provided as

an input to the neural network, e�ect the quality of

classi�cation?

• What if we try to classify rank using the values of the

Mestre-Nagao sums for two di�erent B 's?

• Can we construct new improved Mestre-Nagao sums?
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Thank you for your attention!

More details:

Kazalicki, Vlah: Ranks of elliptic curves and deep neural networks,

Res. number theory 9, 53 (2023)

https://doi.org/10.1007/s40993-023-00462-w

https://github.com/domagojvlah/deepellrank
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