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Introduce the various tools of numerical algebraic geometry (NAG), in case 
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First example:
What are the solutions of the following polynomial system?
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Positive-Dimensional
Components

In Part II of the book, we return to the fundamental problem of “solving” a poly-
nomial system,

f(z) :=

⎡

⎢⎣
f1(z1, . . . , zN)

...
fn(z1, . . . , zN)

⎤

⎥⎦ = 0. (8.1)

As opposed to the case of systems of linear equations, where a nonempty so-
lution set will consist of exactly one linear space, the solution set of a polynomial
system can have several separate components and these may have different dimen-
sions23 (points, curves, surfaces, etc). Thus, the problem of “solving” a polynomial
system includes the detection of all such components no matter what dimension
each has. Solution components of dimension greater than zero (everything except
isolated points) are said to be “positive-dimensional.”

For example, consider the following system of three polynomials in the vari-
ables x, y, z:

f =

⎡

⎣
(y − x2)(x2 + y2 + z2 − 1)(x− 2)
(z − x3)(x2 + y2 + z2 − 1)(y − 2)

(z − x3)(y − x2)(x2 + y2 + z2 − 1)(z − 2)

⎤

⎦ . (8.2)

The solution set of three linear equations in three variables must be one point, one
line, or one plane. The complex solution set of (8.2) consists of a surface, four
curves, and a point. If we were to apply one of the homotopies presented in Part I
to solve this system, we would be assured to find the isolated solution, (2, 2, 2), but
there would be no guarantee of finding any points on the other components.

In brief, Part II presents how numerical algebraic geometry treats full solution
sets, including their positive-dimensional components. This chapter introduces the
basic concepts and shows results obtained with Bertini on some simple examples.
The next two chapters, Chapter 9 and Chapter 10, which go into details of the

23We gave a definition of the dimension of a component in §1.2.2.
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Motivation

First example:
What are the solutions of the following polynomial system?

Some possible answers:
* Six irreducible components:  a quadric surface (including a real sphere), a 
cubic curve, three lines, and a point.

* The varieties corresponding to six ideals in the prime decomposition of the 
ideal generated by these three polynomials.
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Motivation

The numerical algebraic geometry answer

* The dimension and degree of each 
component, along with numerical 
approximations (to any accuracy) of points 
on each component.

Two points on the surface (100 digits):
(-0.4469187417023529140259318861084152642522761203775702508795613274333890441038
0647845258282052961521515016038e0-0.61027106702196055085775829858637827555299623
122115745065781712904591769584277930555751052456356332676221105e0 i,  
0.130186783591153618246315571707107172353063370543126798291247040334221103460498
43791220186062839003161843226e1-0.9797631891954616377716585987110315815817548375
4924382806366007477291012750177378608011376259729818723123248e-1 i,  
0.195624822582750785283424400895290419183461513380547898566001915336427170760554
27892290316223611073692908373e0-0.7421827003933645822959459064358277029388028193
5139515678711527150051616817182335240552295390318031311036028e0 i) 

(0.18691048268638625630313816944536120811395321809278456366684479081843202313727
799953611320126942819039708996e1-0.226490845204459538609041495409730827634170922
46720177262052807338520510389147232300490374986170415492740129e1 i, 
0.157050929897910174981144311097991768128742234018715255047892491902413735130286
98617511572403647299128414405e1+0.1152332076074893022864178090389066888656393959
8476518971113242702704015015753728828143353557479198507278926e1 i, 
-0.18125837219266375393338740703575349297308046885970078389249899843465635726264
537913689216211075646254996340e1-0.133709855705737827168910651765975343791228921
48577601135972604026165978821952275526373960068495495133838546e1 i)



Game Plan

1. Motivation + example

2. Numerical algebraic geometry tools

A. Homotopy continuation 

B. Parameter homotopies

C. Numerical irreducible decomposition (NID)

D. Software options

3. Various applications
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Homotopy continuation

Given polynomial system                    (the target system) homotopy 
continuation is a 3-step process:

1. Choose and solve a polynomial system                      (the start 
system) based on characteristics of        but relatively easy to solve.

2.  Form the homotopy                              given by 

     so that                       and                      .

3.  Use numerical predictor-corrector methods to follow the solutions 
as   marches from 1 to 0, one solution at a time. 
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Homotopy continuation

* Skipping many details (predictor/corrector choices, non-square systems, 
polyhedral methods, adaptive steplength, adaptive precision, safety checks, 
endgames, certification, etc.) 

If you want more details:
DB-Hauenstein-Sommese-Wampler, Numerically solving polynomial systems with Bertini. SIAM, 2013.
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Guaranteed (with probability one, modulo numerical issues) to find 
approximations to all solutions that are isolated over the complex numbers.



Homotopy continuation

* Skipping many details (predictor/corrector choices, non-square systems, 
polyhedral methods, adaptive steplength, adaptive precision, safety checks, 
endgames, certification, etc.) 

If you want more details:
DB-Hauenstein-Sommese-Wampler, Numerically solving polynomial systems with Bertini. SIAM, 2013.

* Bottom line:  
Guaranteed (with probability one, modulo numerical issues) to find 
approximations to all solutions that are isolated over the complex numbers.

* Fun tangent:  What if you run homotopy continuation on a system with 
positive-dimensional components?
DB-Eklund-Hauenstein-Peterson, Excess intersections and numerical irreducible decompositions. 
23rd International Symposium on Symbolic and Numerical Algorithms for Scientific Computing 
(SYNASC), 2021  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3. Various applications



Main point:  We can be particularly efficient if we need to solve many nearly 
identical polynomial systems (same support, different coefficients).
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Parameter homotopies

Main point:  We can be particularly efficient if we need to solve many nearly 
identical polynomial systems (same support, different coefficients).

Idea:

If q’ is generic, these should 
require few wasted paths.
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Parameter homotopies

Main point:  We can be particularly efficient if we need to solve many nearly 
identical polynomial systems (same support, different coefficients).

Idea:

With many homotopies, 
numerical issues are more likely.
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Main point:  We can be particularly efficient if we need to solve many nearly 
identical polynomial systems (same support, different coefficients).

Idea:

Parameter homotopies

One option: try another angle.
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Solutions:  

    Dimension 2:  One surface
    Dimension 1:  Three lines and one cubic curve
    Dimension 0:  One point

We want to find some “witness points” on each of these sets.
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In Part II of the book, we return to the fundamental problem of “solving” a poly-
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f(z) :=

⎡

⎢⎣
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...
fn(z1, . . . , zN)

⎤

⎥⎦ = 0. (8.1)

As opposed to the case of systems of linear equations, where a nonempty so-
lution set will consist of exactly one linear space, the solution set of a polynomial
system can have several separate components and these may have different dimen-
sions23 (points, curves, surfaces, etc). Thus, the problem of “solving” a polynomial
system includes the detection of all such components no matter what dimension
each has. Solution components of dimension greater than zero (everything except
isolated points) are said to be “positive-dimensional.”
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The solution set of three linear equations in three variables must be one point, one
line, or one plane. The complex solution set of (8.2) consists of a surface, four
curves, and a point. If we were to apply one of the homotopies presented in Part I
to solve this system, we would be assured to find the isolated solution, (2, 2, 2), but
there would be no guarantee of finding any points on the other components.

In brief, Part II presents how numerical algebraic geometry treats full solution
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Recall:                                               , where:

                 is the dimension of    , 
                 cycles through possible dimensions of irreducible components,
                 is an index within dimension i, and the
                   are the irreducible components.
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For each positive-dimensional irreducible component,       , we aim to find 
numerical approximations to some number of generic points on      .
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Finding positive-dimensional solution sets



Key fact:  Given irreducible component       of dimension  , for almost every 
choice of linear space    of codimension  ,        intersects    in a set of a 
particular number of points.  That number is the degree of      .

So, to find deg(     ) points on      , we can append    linears to   .  We refer to 
this operation as slicing. 

To find points on all components, we can just loop through all reasonable 
values of   .
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Finding positive-dimensional solution sets



Problem 1:  We could pick up points on higher-dimensional components.
Problem 2:  We could find points on multiple i-dimensional components.  

Example:  Suppose there are two curves and a surface.  When we slice for 
the curves, we will find points on both curves and also on the surface.

Solution 1:  Start at the top dimension and work your way down.  Use a 
membership test on points in lower dimensions to see if they sit on the 
higher-dimensional components already found. 

Solution 2:  Carry out an equidimensional decomposition, using 
monodromy and the trace test.

Finding positive-dimensional solution sets



In fact, there is a clever way to string the homotopies together, called a 
cascade of homotopies.  (There are more recent approaches, too.)

All told, the goal is to have deg       witness points on each component       
     , yielding witness point set 
  .
For each component, put the linear functions, the witness points, and the 
original functions together and you have a witness set for the component:

Then, the numerical irreducible decomposition is the union of all 
such sets for all irreducible components: 

  .
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Finding positive-dimensional solution sets



From Sommese-Verschelde-Wampler, SIAM J. Num. An. ’01, the original cascade article.
See also Hauenstein-Sommese-Wampler, App. Math and Comp., ’11 for regen cascade.

Cascade of 
homotopies for 
computing the 
numerical irreducible 
decomposition of the 
illustrative example.

[Omitting many 
details!]

Numerical Irreducible Decomposition



Bertini Classic I/O

(input file)

Numerical Irreducible Decomposition



Bertini Classic I/O

(screen output)(input file)

Numerical Irreducible Decomposition



Game Plan

1. Motivation + example

2. Numerical algebraic geometry tools

A. Homotopy continuation 

B. Parameter homotopies

C. Numerical irreducible decomposition (NID)

D. Software options

3. Various applications



Don’t worry — this has been implemented:

  - Bertini:  S Amethyst, DB, J Hauenstein, A Sommese, C Wampler
 
  - HOM4PS-2/3:  TY Li, TR Chen, et al.

  - HomotopyContinuation.jl:  P Breiding, S Timme

  - NAG4M2:  A Leykin

  - Paramotopy:  S Amethyst, DB, M Niemerg

  - PHCpack:  J Verschelde

  - POLSYS GLP:  L Watson, et al

  - Others have come and gone, list may not be comprehensive.

Software



Game Plan

1. Motivation + example

2. Numerical algebraic geometry tools

A. Homotopy continuation / basic solving

B. Parameter homotopies

C. Numerical irreducible decomposition (NID)

D. Software options

3. Various applications



Various applications

Math:
Algebraic geometry (e.g., recovering exactness)
Dynamical systems 

Engineering:
Kinematics (e.g., mechanism design)
Optimal control
Geolocation

Science:
Systems biology (e.g., chemical reaction networks)
String theory
Computer vision

(Others, too….)



Math:
Algebraic geometry (e.g., recovering exactness)
Dynamical systems 

Engineering:
Kinematics (e.g., mechanism design)
Optimal control
Geolocation

Science:
Systems biology (e.g., chemical reaction networks)
String theory
Computer vision

(Others, too….)

Various applications



x = 0.7949333985,
y = 0.6066967050,

Given the point, 

what polynomials approximately vanish at this point?

Here’s one I can compute:  x2 + y2 - 1

Recovering Exactness



Given some point(s), find some polynomials of fixed degree d 
with “small” integer coefficients that approximately vanish at the 
point(s).

For example, if we fix degree 2 and can refine our point(s) to 
more digits of accuracy, what can we find?

[1] Recovering exact results from inexact numerical data in algebraic 
geometry.  DB, J Hauenstein, T McCoy, C Peterson, A Sommese.  
Experimental Mathematics 22(1), 2013.

[2] Numerical irreducible decomposition over a number field.  T.McCoy, 
C Peterson, A Sommese, J. Algebra & its Applications 17(10), 2018.

Recovering Exactness



Recovering Exactness

Main idea from [1]:

Transform (x,y) into V2(x,y) = [1, x, y, x2, xy, y2].
         (or homogeneous version)

Goal:  Find c = [a1,  a2,  a3,  a4,  a5,  a6]  so that 
c  V2(x,y)  =  a1 + a2 x + a3 y + a4 x2 + a5 xy + a6 y2   0.

Q:  How? 
A:  Lattice basis reduction methods are very good at this, e.g., LLL 
and its variants.

∈ ℤ6

· ≈



Recovering Exactness

Degree 1:  [539, 47, -950]  [1, x, y]   0.

Degree 2:  [-1, 0, 0, 1, 0, 1]  [1, x, y, x2, xy, y2]   0.

Degree 3:  
[0, 0, -1, 0, 0, 0, 0, 1, 0, 1]  [1, x, y, x2, xy, y2,x3, x2y, xy2, y3]   0.

Not terribly surprising:  -y + x2y + y3 = y(x2 + y2 - 1).

It’s easy to expand [-1, 0, 0, 1, 0, 1] up to degree 3 and check that
[0, 0, -1, 0, 0, 0, 0, 1, 0, 1] is very much in its span.

· ≈

· ≈

· ≈

x = 0.7949333985
y =  0.6066967050



Used Bertini to find a point on each irreducible component.
Going up to degree 7 with 238 digits of precision yielded:

Component 1:  

Component 2:  

Component 3:  

Same decomposition as computed via 
Gröbner bases in the paper where 
we found this example:

Direct methods for primary decomposition. 
D. Eisenbud, C. Huneke, W.  Vasconcelos. 
Inventiones Mathematicae 110, 1992.

Recovering Exactness



Math:
Algebraic geometry (e.g., recovering exactness)
Dynamical systems 

Engineering:
Kinematics (e.g., mechanism design)
Optimal control
Geolocation

Science:
Systems biology (e.g., chemical reaction networks)
String theory 
Computer vision

(Others, too….)

Various applications



Kinematics:  The study of mechanical linkages, ignoring forces.

         Mars rover          Robonaut 2         Submarine     Spent fuel rods
                                   (GM/NASA)

All of these machines involve robotic arms.  Other machines don’t:  

Kinematics

midwaysailor.com



A 2R (2 links with a rotational joint) planar linkage:

  

fixed 
(with rotational joint)

rotational joint

some tool
(welding iron, hand, etc.)

ⓧ

target for tool

Kinematics



Here’s some notation:

  
L1

L2

α1

α2

ⓧ (px,py)

Kinematics



L1

L2

α1

α2

ⓧ (px,py)

The Pythagorean theorem gives us equations to find the angles, given the target:

To get the x-coordinate of the tool to px:
   L1 cos(α1) + L2 cos(α2) = px              

Ditto for y:
   L1 sin(α1) + L2 sin(α2) = py 

Kinematics



Now we can just solve the 2x2 system (with L1, L2, px, py known numbers and 
variables α1, α2):    

  L1 cos(α1) + L2 cos(α2) = px              
  L1 sin(α1) + L2 sin(α2) = py 

Problem:  This isn’t a polynomial system!

Trick:  Rename the trig functions as variables and include trig identities to make 
a 4x4 polynomial system:

  L1 c1 + L2 c2 - px  = 0            
  L1 s1 + L2 s2 - py = 0
  c12 + s12 - 1 = 0
  c22 + s22 - 1 = 0

Kinematics



  L1 c1 + L2 c2 - px  = 0            
  L1 s1 + L2 s2 - py = 0
  c12 + s12 - 1 = 0
  c22 + s22 - 1 = 0

For example, if both links have length one and we want to reach (1,1), the 
system becomes:

  c1 + c2 - 1 = 0              
  s1 + s2 - 1 = 0
  c12 + s12 - 1 = 0
  c22 + s22 - 1 = 0
                  
for which the solutions are (c1, s1, c2, s2) = (0,1,1,0) and (1,0,0,1).

ⓧ (1,1)

(0,0)

Kinematics



  L1 c1 + L2 c2 - px  = 0            
  L1 s1 + L2 s2 - py = 0
  c12 + s12 - 1 = 0
  c22 + s22 - 1 = 0

For example, if both links have length one and we want to reach (1,1), the 
system becomes:

  c1 + c2 - 1 = 0              
  s1 + s2 - 1 = 0
  c12 + s12 - 1 = 0
  c22 + s22 - 1 = 0

for which the solutions are (c1, s1, c2, s2) = (0,1,1,0) and (1,0,0,1).

ⓧ ⓧ

Kinematics



9-point path synthesis problem:  How many mechanisms of a 
particular type (two planar 2R linkages connected to form a triangle) pass 
through nine specified points?

“Alt’s problem” from 1923:  Became known as Mt. Everest of Kinematics.

Partial solutions in 1963 (Roth & Freudenstein), 1989 (Tsai & Lu).

First complete solution:  1992 (Wampler), using homotopy continuation.

Latest part of the story:  
Brake, Hauenstein, Murray, Myszka, Wampler.  J. Mechanisms Robotics, 2016.

See also Sommese-Wampler, Algebraic Kinematics, Acta Numerica 20, 2011.

Mt. Everest



Math:
Algebraic geometry (e.g., recovering exactness)
Dynamical systems 

Engineering:
Kinematics (e.g., mechanism design)
Optimal control
Geolocation

Science:
Systems biology (e.g., chemical reaction networks)
String theory
Computer vision

(Others, too….)

Various applications



(project with C Nam, B Gyori, S Amethyst, J Gunawardena, started at AIM)

Chemical reaction networks



Basic stats 
2 polynomials in 2 variables  
8 non-dimensionalized parameters  
 (down from 13, thanks to Thomson-Gunawardena, 2009) 
Generic root count:  7 
Number of real solutions:  1 (monostable) or 3 (multistable)

Chemical reaction networks



Basic stats 
2 polynomials in 2 variables  
8 non-dimensionalized parameters  
 (down from 13, thanks to Thomson-Gunawardena, 2009) 
Generic root count:  7 
Number of real solutions:  1 (monostable) or 3 (multistable)

Chemical reaction networks



Basic stats 
2 polynomials in 2 variables  
8 non-dimensionalized parameters  
 (down from 13, thanks to Thomson-Gunawardena, 2009) 
Generic root count:  7 
Number of real solutions:  1 (monostable) or 3 (multistable)

Goal:  Study the region of multistability: 
  - isolated points? 
  - measure zero? 
   - volume? 
  - change in volume as parameters change? 
  - connected? 
  - convex? 

Chemical reaction networks



Goal:  Study the region of multistability: 
  - isolated points:  No!  (tracked along a line segment) 
  - measure zero:  No!  (checked in nbhd of a point) 
   - volume:  Depends 
  - change in volume as parameters change: Yes (see below) 
  - connected:  No 
  - convex: No

> 100 million  
runs of Bertini 

> 1 billion in paper

Chemical reaction networks



Compared to symbolic methods, numerical algebraic geometry scales 
better with dimension, worse with degree.  For more, see:

DB, W Decker, J Hauenstein, C Peterson, G Pfister, FO Schreyer, A Sommese, C Wampler.  
Comparison of probabilistic algorithms for analyzing the components of an affine algebraic 
variety.  Applied Math and Computation 231(C), 2014.

Numerical algebraic geometry might be useful for you at some point.  I 
would be happy to help.

Final thoughts



- Open access is free for submissions NLT 31 Dec 23
- Focus is on computation and applications of 
algebraic or discrete structures, preferably with novel 
mathematics and novel algorithms…papers in 
numerical algebraic geometry could fit
- Open to special issues

Final thoughts

- More established (first issue in 2017)
- Q1 journal
- Seeks papers that contribute both mathematically 
and within some application(s)



THANK YOU! 

Any opinions, findings, and conclusion or recommendations expressed in this material are those of the author 
and do not necessarily reflect the view of the US Naval Academy or the US government. 


