

Fujita vanishing, sufficiently ample line bundles, and cactus varieties

Jarosław Buczyński

Institute of Mathematics of Polish Academy of Sciences

24 February 2022

joint work with: Weronika Buczyńska, Łucja Farnik

Ample and very ample line bundles

X projective scheme (or variety) over $\Bbbk = \overline{\Bbbk}$,

L line bundle on X,

 $\phi_L: X \dashrightarrow \mathbb{P}(H^0(L)^*)$ the map determined by the global sections of L:

$$\phi_L(x)(s) := [s(x)], \text{ where } x \in X \text{ and } s \in H^0(L).$$

Definition

We say L is very ample if $\phi_L \colon X \hookrightarrow \mathbb{P}\left(H^0(L)^*\right)$ (if it is an embedding) and $L \supset \phi_L^* \mathcal{O}_{\mathbb{P}(H^0(L)^*)}(1)$.

Definition

We say L is ample if $L^{\otimes m}$ is very ample for some integer m > 0.

Things you probably know about (very) ampleness

• Legre ample, L'yery ample $\Longrightarrow L \otimes L'$ very ample (diagonal and Segre embeddings):

$$X \overset{\phi_{L \otimes L'}}{\longleftarrow} \mathbb{P} \left(H^0(L \otimes L')^* \right)$$

$$X \times X$$

$$\downarrow^{\phi_L \times \phi_{L'}}$$

$$\mathbb{P} \left(H^0(L)^* \right) \times \mathbb{P} \left(H^0(L')^* \right) \overset{\text{Segre}}{\longleftarrow} \mathbb{P} \left((H^0(L) \otimes H^0(L'))^* \right).$$

Things you probably know about (very) ampleness

- L very ample, L' very ample $\Longrightarrow L \otimes L'$ very ample (diagonal and Segre embeddings).
- ② L ample, L' ample $\Longrightarrow L \otimes L'$ ample (first item + definition of ample).
- ① L very ample, L' ample $\Longrightarrow L \otimes L'$ ample (second item + very ample is ample).
- lackbreak L very ample, L' ample $\Longrightarrow L\otimes L'$ very ample ??

= 3 × 4 + 4 VERS AMPLE - AMPC +

Curve of genus 3

Example

Consider a smooth plane curve $C = \{x^4 + y^4 + yz^3 = 0\} \subset \mathbb{P}^2$ of genus 3, and let $P = [0,0,1] \in C$. Then the hyperplane section y = 0 is the divisor 4P on C, thus the corresponding line bundle $\mathcal{O}_C(4P)$ is very ample and $\mathcal{O}_C(P)$ is ample. However, $\mathcal{O}_C(5P)$ is not very ample! (It follows from Riemann-Roch that

$$H^{0}(\mathcal{O}_{C}(5P)) = H^{0}(\mathcal{O}_{C}(P)) \cdot H^{0}(\mathcal{O}_{C}(4P)),$$

thus every section of $\mathcal{O}_{\mathcal{C}}(5P)$ vanishes at P.)

L	$L^{\otimes 2}$	L ^{⊗3}	L ^{⊗4}	L ^{⊗5}	L ^{⊗6}	L ^{⊗7}	L ^{⊗8}	<u> </u>
1	07	V. A (V.A	NOT V. A	NOT UA	V. A	ŲА	V. A.

High powers of ample bundles are very ample

- ullet Very ample, L' ample, then $L\otimes L'$ is ample but not necessarily very ample.
- Lample, then $L^{\otimes m}$ is very ample for all $m \gg 0$ (so it cannot happen that, say all even powers are very ample but all odd powers are not very ample). It follows from (a relative version) of Serre's vanishing theorem.

Sufficiently ample bundles are very ample

The group Pic(X) of line bundles on X can have "more dimensions" than just powers of a single line bundle.

⊙ \exists line bundle L such that \forall ample L' the product $(L \otimes L')$ is very ample.

Sufficiently ample

Definition

Let \mathcal{P} be a property of line bundles on X. We say that sufficiently ample line bundle satisfies \mathcal{P} if there exists a line bundle L_0 such that for any ample L the product $L_0 \otimes L$ satisfies \mathcal{P} . (Equivalently: for any L nef — see figure.)

Serre and Fujita vanishing

Let \mathcal{F} be a coherent sheaf on X.

Theorem (Serre vanishing)

For any ample line bundle L and $m \gg 0$ and any i > 0 we have

$$H^{i}(\mathcal{F}\otimes \mathbf{L}^{\otimes m})=0$$

Theorem (Fujita vanishing)

For a sufficiently ample line bundle L and any i > 0 we have

$$\left(H^{i}(\mathcal{F}\otimes L)=0.\right)$$

That is, there exists L_0 such that for any L that is equal to L_0 + ample, the higher cohomologies of $\mathcal{F} \otimes L$ vanish.

There are also relative versions of the same theorems.

CELATIVE FUTITA VANISHOUS PROD VARIETZE SHEAR XXY (FLAT OUT) A FOLMICY OF SHEAVES ON X FOR A SUFE AMPOS LON) -ND ANY (964) H (AT4 84) = 0

Examples of properties of sufficiently ample line bundles

Example

Sufficiently ample line bundle is very ample.

Example

The embedding $\phi_L(X) \subset \mathbb{P}\left(H^0(L)^*\right)$ by a sufficiently ample line bundle L is projectively normal. \times — NORMAC VARIETY.

Theorem (Sidman-Smith, 2011)

The embedding $\phi_L(X) \subset \mathbb{P}\left(H^0(L)^*\right)$ by a sufficiently ample line bundle L has ideal generated by 2×2 minors of a matrix with linear entries.

Matrices with linear entries

Write: $L \supset M \otimes (L \otimes M^*)$. We want both M and $(L \otimes M^*)$ to be sufficiently ample.

VARIETY

Secant varieties

CORVES 80

~2011

Conjecture (Eisenbud-Koh-Stillman, Sidman-Smith)

For any fixed r, the r-th secant variety to $\phi_L(X)$ for a sufficiently ample line bundle L has ideal generated by (r+1) with linear entries.

Definition

 $X \subset \mathbb{P}^N$, then the r-th secant variety of X is:

$$\sigma_r(X) := \overline{\bigcup \{\langle R \rangle \mid R \subset X \text{ finite smooth subscheme of length } \leqslant r \}}.$$

LINEAR SPAN

COUNTEREXAMPLES TO EUS RSS CONTECTURES IF X = SINGULA CAIANCE TO BE TR (OR HIGHER) CONJECTURE

Cactus varieties

Conjecture (Corrected)

For any fixed r, the r-th secant variety cactus variety to $\phi_L(X)$ for a sufficiently ample line bundle L has ideal generated by $(r+1) \times (r+1)$ minors of a matrix with linear entries.

Definition

 $X \subset \mathbb{P}^N$, then the r-th cactus variety of X is:

, then the 7-th cactus variety of λ is:

 $\mathfrak{K}_r(X) := \bigcup \{\langle R \rangle \mid R \subset X \text{ finite subscheme of length } \leqslant r\}$

$$K_{r}(X) \subset \{rk \leq r\}$$

X- Sanc7/1 17/4 Shux 7.6

Cactus varieties to sufficiently ample embeddings

Theorem (Buczyńska, B., Farnik)

X projective variety, r > 0 an interger. Then the r-th cactus variety of $\phi_L(X)$ is set-theoretically defined by $(r+1) \times (r+1)$ minors of a matrix with linear entries for any sufficiently ample line bundle L.

(Work in progress with Hanieh Keneshlou: we hope to have a scheme-theoretic or maybe even ideal-theoretic analogue.)

RODECTIVE S = OHOX CM - (WEAKLY) P.N. 15 GENERATOD B4 Rand W.PN) & HO (X, L m-1) ->> H HOCX L Ma/

SATISFIES 4 8 /2 THON Pic X RP:X

CONSTRUCTIONS DOUBLE GRADED LOEBRAS EASIER PHRT

The end

Thank you for attention!