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Outline and scope of the talk:

• Review: Vietoris-Rips filtration and Persistent Homology

• Example: Morphisms between Vietoris-Rips filtrations.

• Motivation for induced partial matchings/Block Functions.

• Review: of Bauer-Lesnick matching

• Quick introduction to the induced block function.

• Explore examples of point-clouds embedded in R2.
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Filtered Complexes: Vietoris-Rips filtration

• Consider a point sample X ⊆ Rn.

• Let r ≥ 0, VRr (X) is the maximal simplicial complex with edges

[x , y ] ∈ VRr (X) ⇐⇒ ∥x − y∥n ≤ 2r .

• Given a sequence a0 < a1 < · · · < an from R, there are inclusions

VRa0(X) ↪→ VRa1(X) ↪→ · · · ↪→ VRan(X)

↪→ ↪→

0 0.5 1 1.5 2

• Category R : objects a ∈ R, arrows a → b iff a ≤ b

• Filtered Complex : VR(X) : R → SpCpx
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Computation of Persistence Barcode

• Pick up a maximum radius R > 0

• Given σ ∈ VRR(X), define filt(σ) = max
{
∥x − y∥n/2 | x , y ∈ σ

}
.

• Given D ∈ Z≥0, Consider VRD
R (X), the D-skeleton given by

simplices σ ∈ VRR(X) such that dim(σ) ≤ D.

• Sort simplices from VRD
R (X) by increasing filtration values and

dimension, i.e. σ1 ≤ σ2 ⇒ filt(σ1) ≤ filt(σ2) and

dim(σ1) ≤ dim(σ2).

• Choose a field k ; e.g. Z11

• Perform a Gaussian elimination on the boundary matrix of VRD
R (X).

• We obtain the persistence barcode and representatives.
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Example of Computation of Persistent Homology

v0

v1

v2

v3

v0

v1

v2

v3

e0 e1

e2e3

v0

v1

v2

v3

σ0 σ1

e0 e1

e2e3

e4

Boundary Matrix:

e0 e1 e2 e3 e4 σ0 σ1

v0 −1 0 0 −1 0 0 0

v1 1 −1 0 0 −1 0 0

v2 0 1 −1 0 0 0 0

v3 0 0 1 1 1 0 0

e0 0 0 0 0 0 1 0

e1 0 0 0 0 0 0 −1

e2 0 0 0 0 0 0 −1

e3 0 0 0 0 0 −1 0

e4 0 0 0 0 0 1 1


→

{
Persistence Pairs

?

}
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Example of Computation of Persistent Homology

v0

v1

v2

v3

v0

v1

v2

v3

e0 e1

e2e3

v0

v1

v2

v3

σ0 σ1

e0 e1

e2e3

e4

Reduced Boundary Matrix: obtain persistence pairs and representatives:

e0 e1 e2 e3 e4 σ0 σ1

v0 −1 0 0 0 0 0 0

v1 1 −1 0 0 0 0 0

v2 0 1 −1 0 0 0 0

v3 0 0 1 0 0 0 0

e0 0 0 0 0 0 1 −1

e1 0 0 0 0 0 0 −1

e2 0 0 0 0 0 0 −1

e3 0 0 0 0 0 −1 1

e4 0 0 0 0 0 1 0


→



Persistence Pairs

(v1, e0)

(v2, e1)

(v3, e2)

(e4, σ0)

(e3, σ1)

Convention:

(positive, negative)


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Example: Interval decomposition

• For each pair (τ, σ), we obtain an interval I = [filt(τ),filt(σ)).

• I is nontrivial iff filt(τ) < filt(σ)

• filt(τ) is the birth value and filt(σ) is the death value of I .

Example

0 0.5 1 1.5 2

PH0 k21 k6 k k k
(Id6 | 0)

(
1 0 · · · 0

)
Id1 Id1

PH1 0 k k2 k 0
0

(
1

0

) (
0 1

)
0

• Homology: H0 “connected components”, H1 “holes”, etc.

• Persistent Homology : PHn(X) := Hn(VR(X); k) : R → Vectk 6/41



Persistence Modules and Morphisms

• Persistence Module: a functor V : R → Vectk . Sometimes written

as a pair (V , ρ) where ρ are the structure maps ρst : Vs → Vt for

all s < t.

• Morphism between Persistence Modules: Given persistence

modules (V , ρ) and (U, τ), then f : V → U is a set of linear maps

ft : Vt → Ut for all t ∈ R s.t. τst fs = ftρst for all s < t.

• Alternative names: “Persistence Morphism” or “Ladder Module”.

• Interval Module: k[a,b) : R → Vectk , with

k[a,b)(r) =

{
k , for r ∈ [a, b)

0, otherwise.
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A little more about Barcode Decompositions

• Let (V , ρ) be a persistence module.

• If V satisfies the descending chain condition for images and

kernels then

V ≃
⊕
I∈SV

(
⊕mI

kI
)
,

as proved in1.

• The barcode of V , B(V ), is a multiset (SV ,m) where SV is a set

of intervals and m : SV → Z≥0 ∪ {∞} is the multiplicity of bars.

• The representation of a multiset (S ,m) is the set

Rep (S ,m) = {(I , i) ∈ S × N : i ≤ mI )} .

1W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence

modules, Journal of Algebra and Its Applications, 14 (5) (2015)
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Example of (Representation of) Barcodes

Example

Consider U : R → Vectk such that

U ≃ k[1,2] ⊕ k[1,2] ⊕ k[2,3] .

Then its barcode is B(U) = {([1, 2], 2), ([2, 3], 1)} and the representation

of its barcode is RepB(U) = {[1, 2]1, [1, 2]2, [2, 3]1}, which can be

displayed as:

321
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Persistence Morphisms

• Let a morphism between persistence modules f : V → U.

Problem: f : V → U has indecomposables of wild type2; i.e. there

is no “barcode” for f .

Idea: Use the barcode decompositions B(V ) and B(U).

• A barcode basis for V is a choice V ≃
⊕

i∈Γ k[ai ,bi )

• Given a choice of bases for V and U, we might understand f by

means of an associatd matrix F .

Example

• Let X and Y be two finite subsets from Rn such that X ⊆ Y.

• This induces an embedding VR(X) ↪→ VR(Y).

• In turn, this induces a persistence morphism f : V → U, where

V = PHn(VR(X)) and U = PHn(VR(Y)) for some n ∈ Z≥0.

2E. Escolar, Y. Hiraoka. Persistence modules on commutative ladders of finite type,

Discrete and Computational Geometry, 55 (2014), pp. 100-157
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Associated Matrix Computation (Skip?)

Example

• Consider the reduced matrices RV and RU that result from

computing V = PH∗(VR(X)) and U = PH∗(VR(Y)) resp.

• Consider the cycle representatives of V , i.e. the submatrix R̃V

from RV that results from keeping the columns labelled by negative

simplices from nontrivial intervals.

• Note that the rows from R̃V correspond to simplices from VRD
R (X).

• Using ι : C∗(VR
D
R (X); k) ↪→ C∗(VRD

R (Y); k), obtain the matrix

product EV = MιR̃V , where Mι is the matrix associated to ι.

• Consider the matrix (RU | EV ) and reduce it; all columns from EV

should vanish.

• Tracking the additions, one gets the associated matrix of V → U.

• Caveat: One might need to do a little more work for “infinite bars”.
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Example: Subset of a bigger Point Cloud
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Example: Subset of a bigger Point Cloud

F =

 0 1

0 1

0 0


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Computing Images

• Let f : V → U be a persistence morphism with associated matrix F .

• Sort the intervals from B(V ) following the standard order:

[a, b) ≤ [c , d) iff a < c , or if a = c and d ≤ b .

• Sort the intervals from B(U) following the endpoint order:

[a, b) ≤ [c , d) iff b < d , or if b = d and a ≤ c .

• Consider F with rows and columns reordered.

• Let R be the Gaussian column reduction of F .

• The columns from R generate Im(f ) ⊆ U

• A pivot in a column associated to [a, b) and a row associated to

[c , d) leads to a bar [a, d) for B(Im(f )).

• Similarly one can compute kernels and quotients3

3Ch.4 Á Torras-Casas, Persistence Spectral Sequences, (2022) Cardiff University.
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Images and Kernels Illustration
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Downside of Images and Kernels (example)
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Downside of Images and Kernels (example)
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Motivation for the Induced Block Function (example)
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Block Functions and Partial Matchings

• A block function between B1 = (S1,m) and B2 = (S2, n) is a

function M : S1 × S2 −→ Z≥0 ∪ {∞} such that:∑
J∈S2

M(I , J) ≤ mI .

• Assignment: Mf : R1 → R2 between subsets R1 ⊆ RepB1 and

R2 ⊆ RepB2. For ease, we write Mf : RepB1 → RepB2.

• A partial matching is a bijection σ : R1 → R2.

• If a block function satisfies∑
I∈S1

M(I , J) ≤ nJ ,

it induces a partial matching RepB1 → RepB2.
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Example: A block function NOT inducing a partial matching

Example

B1 = (S1,m) = {([2, 4], 1), ([1, 5], 2)} and

B2 = (S2, n) = {([2, 3], 1), ([1, 4], 2)}
Consider M : S1 × S2 −→ Z≥0 ∪ {∞} which is zero except for

M([2, 4], [1, 4]) = 1 and M([1, 5], [1, 4]) = 2 .

M is a block function, since

M([2, 4], [1, 4]) = 1 ≤ m[2,4] and M([1, 5], [1, 4]) = 2 ≤ m[1,5]

however M does not induce a partial matching since

M([2, 4], [1, 4]) +M([1, 5], [1, 4]) = 3 ̸≤ n[1,4] = 2 .

1 2 3 4 5 1 2 3 4
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Example: A block function inducing a Partial Matching

Example

B1 = (S1,m) = {([2, 4], 1), ([1, 5], 2)} and

B2 = (S2, n) = {([2, 3], 1), ([1, 4], 2)}
Consider M : S1 × S2 −→ Z≥0 ∪ {∞} which is zero except for

M([2, 4], [1, 4]) = M([1, 5], [1, 4]) = 1 .

M is a block function inducing a partial matching

σM : RepB1 → RepB2 given by:

[2, 4]1 7→ [1, 4]1 and [1, 5]1 7→ [1, 4]2

while [2, 3]1 ∈ RepB2 remains unmatched.

1 2 3 4 5 1 2 3 4
21/41



The Bauer-Lesnick induced partial matching

• Let f : V → U be a persistence morphism.

• In 2015 Bauer and Lesnick introduced4 an induced partial matching

χf : RepB(V ) → RepB(U).

• χf is defined by using B(V ), B(U) and B(Im(f )):

1 2 3 4 5

V

Im(f )

U

[b, d ]

[b, c]

[a, c]

4U. Bauer, M. Lesnick. Induced matchings and the algebraic stability of persistence

barcodes, Journal of Computational Geometry, 6 (2) (2015), pp. 162-191
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Downside to the Bauer-Lesnick Partial Matching

• χf might be “blind” to f .

Example

Consider the persistence morphism f : V → U given by:

f =
(
k[2,3] → 0

)
⊕
(
Id : k[2,2] → k[1,2]

)
i.e. f : k[2,3] ⊕ k[2,2] → k[1,2] with associated matrix:

F =
(

0 1
)
.

One would expect: [2, 3]1 7−→ ∅ , [2, 2]1 7−→ [1, 2]1 .

However, Im(f ) ≃ k[2,2] and χf produces:

[2, 3]1
χf7−→ [1, 2]1 , [2, 2]1

χf7−→ ∅

• Additionally, when computing χf we might need to check equality

between double type variables (!).
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Quick Introduction to the Induced Block Function Mf

• Let f : V → U be a persistence morphism.

• There is an induced block funct.5 Mf from B(V ) to B(U) s. t.:

– Additivity: Given a direct sum of morphisms:

f 1 ⊕ f 2 : V 1 ⊕ V 2 −→ U1 ⊕ U2

We have that, Mf 1⊕f 2(I , J) = Mf 1(I , J) +Mf 2(I , J) .

– Pivots: Let f : kI → U with associated matrix C :

1 2 3 4 1 2 3 4

C =

[
1
1
1
0

]

then Mf (I , J) ̸= 0 where J the “pivot” that results from the

order: [a, b] ≤ [c , d ] iff b < d or, if b = d then a ≤ c .

5R. González-D́ıaz, M. Soriano-Trigueros, Á. Torras-Casas, Partial Matchings induced

by Morphisms between Persistence Morphisms, Comput. Geom., Vol. 112, 2023. 24/41



Revisiting the Example and additional property of Mf

Example

Consider the persistence morphism f : V → U given by:

f =
(
k[2,3] → 0

)
⊕
(
Id : k[2,2] → k[1,2]

)
then,

• by additivity Mf = Mg , where g = Id : k[2,2] → k[1,2]

• by the pivot property, Mf ([2, 2], [1, 2]) = 1.

Altogether Mf is zero everywhere except Mf ([2, 2], [1, 2]) = 1 . Thus,

Mf induces the expected matching:

[2, 3]1 7−→ ∅ , [2, 2]1 7−→ [1, 2]1 .

• Interval Order condition: given I = [a, b] and J = [c , d ], if

Mf (I , J) ̸= 0, then

c ≤ a ≤ d ≤ b .

25/41



Matching circles in the plane
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Matching circles in the plane

26/41



Matching circles in the plane
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Matching circles in the plane
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Matching circles in the plane
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Matching circles in the plane
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Matching circles in the plane
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Matching circles in the plane
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Matching circles in the plane
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Matching circles in the plane
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Example: Matrix computation

• Consider V ≃ k[2,3] ⊕ k[1,4] ⊕ k[2,5] and U ≃ k[0,3] ⊕ k[1,4].

• Order the intervals in B(V ) and B(U) following the endpoint order.

0 1 2 3 4 5

U

V

f

• Suppose that f is associated to the following matrix:

F =

 [2, 3] [1, 4] [2, 5]

[0, 3] 1 1 0

[1, 4] 0 1 1


• Let I = [a, b]. Consider FI , the reduced minor of F restricted to

columns associated to [c , d ] with c ≤ a and d ≤ b:

F[2,3] =

[
1

0

]
, F[1,4] =

[
1

1

]
, and F[2,5] =

[
1 1 0

0 1 0

]
• Mf is given by [2, 3] 7→ [0, 3] and [1, 4] 7→ [1, 4] and [2, 5] 7→ ∅. 26/41



Example: Subset of a bigger Point Cloud

F =

 0 1

0 1

0 0


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Example: Subset of a bigger Point Cloud
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Nested intervals and Mf

• Nested Intervals: [a, b] and [c , d ] are nested if a < c < d < b

• If for any set of intervals S ⊆ SV we have that∑
I∈S

Mf (I , J) > nJ ,

then there exists a pair of nested intervals in S .

• Corollary If there are no two nested intervals in SV then Mf

induces a partial matching.
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Example: Two subsets with the same intervals and image
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Example: Image computation for S1

• f1 : S1 ↪→ T with

B(PH1(VR(S1))) =
{
[0.6, 1.3], [0.5, 1.5], [0.6, 1.5]

}
and

B(PH1(VR(T ))) = {[0.4, 1.2], [0.5, 1.2]}.
• Order domain by standard order and codomain by endpoint order:

F =

 [0.5, 1.5] [0.6, 1.5] [0.6, 1.3]

[0.4, 1.2] 0 1 0

[0.5, 1.2] 1 0 1


• Obtain the reduction:

R =

 [0.5, 1.5] [0.6, 1.5] [0.6, 1.3]

[0.4, 1.2] 0 1 0

[0.5, 1.2] 1 0 0


• Image barcodes: B(Im(f1)) = {[0.5, 1.2], [0.6, 1.2]}.
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Example: Image computation for S2

• f2 : S2 ↪→ T with

B(PH1(VR(S2))) =
{
[0.6, 1.3], [0.5, 1.5], [0.6, 1.5]

}
and

B(PH1(VR(T ))) = {[0.4, 1.2], [0.5, 1.2]}.
• Order domain by standard order and codomain by endpoint order:

F =

 [0.5, 1.5] [0.6, 1.5] [0.6, 1.3]

[0.4, 1.2] 1 1 0

[0.5, 1.2] 1 0 1


• Obtain the reduction:

R =

 [0.5, 1.5] [0.6, 1.5] [0.6, 1.3]

[0.4, 1.2] 1 1 0

[0.5, 1.2] 1 0 0


• Image barcodes: B(Im(f2)) = {[0.5, 1.2], [0.6, 1.2]}.
• I.e. Im(f1) ≃ Im(f2) ≃ k[0.5,1.2] ⊕ k[0.6,1.2]
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Example: Computation of Mf1

• Now, sort both B(S1) and B(T ) by endpoint order.

• We have a matrix

F =

 [0.6, 1.3] [0.5, 1.5] [0.6, 1.5]

[0.4, 1.2] 0 0 1

[0.5, 1.2] 1 1 0


• Obtain the matrices:

F[0.6,1.3] =

[
0

1

]
, F[0.5,1.5] =

[
0

1

]
, F[0.6,1.5] =

[
0 0 1

1 0 0

]
,

• Assignment: [0.6, 1.3] 7→ [0.5, 1.2], [0.5, 1.5] 7→ [0.5, 1.2] and

[0.6, 1.5] 7→ [0.4, 1.2].
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Example: Computation of Mf2

• Now, sort both B(S2) and B(T ) by endpoint order.

• We have a matrix

F =

 [0.6, 1.3] [0.5, 1.5] [0.6, 1.5]

[0.4, 1.2] 0 1 1

[0.5, 1.2] 1 1 0


• Obtain the matrices:

F[0.6,1.3] =

[
0

1

]
, F[0.5,1.5] =

[
1

1

]
, F[0.6,1.5] =

[
0 1 0

1 0 0

]
,

• Assignment: [0.6, 1.3] 7→ [0.5, 1.2] and [0.5, 1.5] 7→ [0.5, 1.2].

• We might distinguish f1 and f2 based on Mf1 and Mf2
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OSM Data Example: Hotels and Restaurants in Seville

• There are 67 Hotels and 499 restaurants.
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Sample of 67 restaurants
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Sample of 100 restaurants
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Sample of 200 restaurants
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Future Work and Questions

• Can we obtain an alternative definition for an induced block funciton

M̃f which always induces a partial matching? yes, work in

progress.

• Optimal implementations for computing the associated matrix.

• Work with other filtrations; e.g. Block functions between alpha

complexes.

• Find stability conditions for Mf

• Find use-cases for this block function.
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