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Gromov-Witten Theory

Let X be a smooth projective variety and 3 € Hp(X,Z). The moduli space Mg (X, B)
is called the moduli space of stable maps and its points correspond to isomorphism
classes of stable n-pointed maps f : (C, p1, ..., pn) — X satisfying fi ([C]) = B.
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¥ = ca(ILj).
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by:
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where ev; : Mg n(X,8) — X are defined by ev;(f) = f(p;) which are called the
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is called the moduli space of stable maps and its points correspond to isomorphism
classes of stable n-pointed maps f : (C, p1, ..., pn) — X satisfying fi ([C]) = B.

The cotangent lines on the curves C at the ith marked point patch together to form a
line bundle IL; on Mg »(X, 3) and ith descendent class is defined by

¥ = ca(ILj).

For any 71, ...,v» in H¥(X,Q), the corresponding Gromov-Witten invariant is defined
by:

n
f vir H ev;“ (i) 7/’,-m'
[Mg,n(X.8)]" i1

where ev; : Mg n(X,8) — X are defined by ev;(f) = f(p;) which are called the
evaluation maps.

When all m; = 0, Gromov-Witten invariants are virtual counts of class 3, genus g curves
passing through Poincaré duals of the classes ;.
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Brief History & Motivation

e Genus-Zero Mirror Symmetry: Counting rational curves in a Calabi-Yau threefold
X (A-model) is equivalent to studying the variations of Hodge structures on its

mirror X (B-model).
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X (A-model) is equivalent to studying the variations of Hodge structures on its
mirror X (B-model).

e For all genera, Gromov-Witten theory defines a rigorous curve counting theory;
hence, the A-model makes sense in higher genus.

e Physicists Bershadsky, Cecotti, Ooguri and Vafa proposed a higher genus
B-model ('92,’93). Now known as BCOV theory. Holomorphic anomaly equations
(HAE) are central to BCOV theory.

In their papers, the following equations are described as holomorphic anomaly
equations:

— 1
9;0,F = Tr(-1)F ;G — EG,-j Tr(—1)F,

- _ - 187!
0;Fg = Cie®K G G¥* (DjDkFg_l +3 D DjFerFg,> .
r=1
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Brief History & Motivation

e The quintic threefold X5 € P*
- Genus-one by Zinger ('09),

- Genus-two by Guo-Janda-Ruan ('17).
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- The total space KP? of the canonical bundle of P? ('18),
- The formal quintic ('19).
- The orbifold [C3/Z3] ('19),

So far, these are all Calabi-Yau 3-folds as predicted by BCOV theory. Other people
proved HAE for some other 3-dimensional Calabi-Yau geometries...

e Pixton-Oberdieck: HAE for elliptic curves and K3-surfaces. ('18)
e Lho generalized KP? case to KP3. ('20)

e Oberdieck conjectured HAE for the Hilbert scheme of points of a K3 surface and
proved some special cases for every n > 1. ('22).
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Gromov-Witten Theory of [C"/Z,]

The cyclic group Z, acts naturally on C" by letting its generator 1 € Z, act via the
n x n matrix
i 2m/—1 2y /1
diag(e n ,...,e n ).
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weights
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and induces a T-action on [C"/Zj,].

HX o, (IC"/Z5]) has a canonical additive basis: {¢0, ..., pn—1}.

For ¢cys .-, ey € HE Orb ([C"/Zy]), consider the Gromov-Witten potential by
C /Z m+d
(et bem) = j H ev¥ (de) ] evi (o)
g m+d([Cn/Zn O) i=m+1

after the following specializations of equivariant parameters:

2ny/=1i w1 i
e 1 e = if nis even,

A= m/—Ti
Il if n is odd.

e
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© Let n > 4 be an even number with n = 2s, and g > 2. We have

2sL 0As_1 g

C 7 q @ i @
AT = Fld Ge 00 + 2 FE 6 ) FIT (6
i=1

7/33



Main Results

Theorem (Genlik, Tseng ("23))

@ The Gromov-Witten potential of [C"/Zn] lies in a certain polynomial ring:

C ] (ers- - bem) € Flensz,-

@ Let n > 3 be an odd number with n = 2s + 1, and g > 2. We have

Cst1 i}.[c"/zn] _

[C"/Zn]
@1 LA * 3Fa 1" (65,05) + 2 1) FIT 5 (09).

© Let n > 4 be an even number with n = 2s, and g > 2. We have

Cot1 0 [C/2a] _ £IC"/2] SN (C"/2,]
26l aTH]:g = .7:g7172 ((;5571,(1)5) + ,:Z; -Fgf;,l (¢571)]:,-’1 (¢S)

These are the first holomorphic anomaly equations in arbitrary dimension (n > 3) and
genera g = 2.
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defined by
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after the following specialization of equivariant parameters
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Main Results

Let KP"~1 — C"/Z, be the blow-up of the unique singular point of C"/Zj.

The crepant resolution conjecture predicts that [C"/Z,] and KP"~! have equivalent
Gromov-Witten theories.

Theorem (Genlik, Tseng ('23))

@ The Gromov-Witten potential of KP"~1 lies in a certain polynomial ring:
n—1
FEET (HY, .. H™) € Fypn1.
@ For g and m in the stable range 2g —2 + m > 0, we have

n—1
Fhal ™ (Gars s ben) = (<1180 (FEET (A, L HEm))

where T : Iy pn—1 — F[cn/z,] is a ring isomorphism.
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Stable graphs and M,

A stable graph I is described by the following data:
©Q Vr is the vertex set with a genus assignment g : Vi — Z>o,
@ Er is the edge set,
© Ly is the set of legs,

@ For each vertex v, let n(v) be the valence of the vertex. Then, the following
stability condition holds:
2g(v) —2+n(v) > 0.
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Stable graphs and M,

A stable graph I is described by the following data:
©Q Vr is the vertex set with a genus assignment g : Vi — Z>o,
@ Er is the edge set,
© Ly is the set of legs,

@ For each vertex v, let n(v) be the valence of the vertex. Then, the following
stability condition holds:
2g(v) —2+n(v) > 0.

There is a canonical morphism

i [ [ Mg(o),n(0) = Mem
Vr

with the image equal to the boundary stratum associated to the graph I'.
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Stable graphs and Mg

q: mgfl,n+2 - mg,n
A gluing map

I

ﬂ.' 5 Mn,s
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Stable graphs and Mg

q: Mg714,n+2 — Mg n

A gluing map W i
p:Mgnt1— Mgn

A forgetful map
4
s P
YV Y
m
My

I

=/

PG

2OrE

_ T
@\w"’ ﬁ'}.‘b

r: Mg n+1 X Mg, nyt1 — Mg A gluing map
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Cohomological Field Theories (CohFTs)

Let V be a finite dimesional Q-vector space, 7 be symmetric non-degenerate bilinear
form on V, and 1 € V be a distinguished element.
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Jsk

Qg1 (Viy ooy vin, 1) = p*Qgn (v, .-, vn)  and - Qo3 (vi, va, 1) = 1 (vi, v2) -

A CohFT Q defines a quantum product e on V by n(vi @ v, v3) = Qo 3(v1, v2, v3) .

A CohFT is semisimple if there exists a basis {¢;} of idempotents,

€ o€ = 6,’1'6,'.
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Let (Q, V,n,1) be a CohFT and

Givental-Teleman Classification of Semisimple CohFTs _
T(z) = Taz? + T323 +--- € V[[2]].
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T(2) = Taz? + 323 +--- € V[[Z]].
Then, one can produce a new CohFT TS, the translation of Q by T.

Let R be a matrix series

= i Rez" € Id + z - End(V)[[2]]
k=0

which satisfies the condition R(z) - R*(—z) = Id.

We define a new CohFT RQ:

(RQ)g,n = Z |Aut (F (H Cont(v 1_[ Cont(e) H Cont(/ )

reGg, veVr eckEr leLr
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Givental-Teleman Classification of Semisimple CohFTs

The topological part of Q is given by
w = (wg,m = Qg,m|H0(mgym)®(v*)®m)a

and it is a CohFT as well. A topological CohFT can be obtained from wp 3 by CohFT
axioms.
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Givental-Teleman Classification of Semisimple CohFTs

The topological part of Q is given by
w = (wg,m = Qg7m|H0(WgYm)®(v*)®M)a

and it is a CohFT as well. A topological CohFT can be obtained from wp 3 by CohFT
axioms.

Theorem (Givental Teleman Classification)

For a semisimple CohFT Q with unit, there exists a unique R-matrix which
reconstructs Q from its topological part w,

Q = R(T(w)) with T(z) = z((ld — R(z)) - 1) € V[[z]],

as a CohFT.

14/33



Summary for Semisimple CohFTs

—
0= (Qg,m)
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Genus-Zero Theory of [C"/Z]

The J-function for [C"/Z,] is defined by

— TS
1(©,2) = do + A & 2 o <<z(z_ ¢)>> (720}
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k=0 " bo<b<k
(by=(y
= g0+ 201 4 0(2)
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Genus-Zero Theory of [C"/Z,]

The J-function for [C"/Z,] is defined by

J(©,z2) = ¢0+7+Z¢<< P >>0rc1/zn].

By methods of Coates-Corti-Iritani-Tseng, we define the /-function for [C"/Z,] :

© Lk
I =Y 2 T1 s 0
k=0 b:0<b<k
(by=(ES
= g0+ 201 4 0(2)

Theorem (Mirror Theorem)

We have J (©(x), z) = I(x, z) with the mirror transformation ©(x) = (x).
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Genus-Zero Theory of [C"/Z]

Define the following series in C[[x]]:

L(x) = x (1 —(=1)" (X

)
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Genus-Zero Theory of [C"/Z,]

Define the following series in C[[x]]:

Lo =x (1- 17 (X)) 7.

n

Proposition

The I-function of [C"/Z,) satisfies the following Picard-Fuchs equation

n—1 n
D"l(x,z) + bL Z sk D¥I(x,2) = L—I(X,z)
L = zn

where D = x

e
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Genus-Zero Theory of [C"/Z,]

Define the following series in C[[x]]:

Lo =x (1- 17 (X)) 7.

n

Proposition

The I-function of [C"/Z,) satisfies the following Picard-Fuchs equation

n—1 n
D"l(x,z) + bL Z sk D¥I(x,2) = L—I(X,z)
L = zn

where D = xdi.
IX

We define the series C; € C[[x]] inductively as follows:

1
Co=lhh=1 and C =Dg; 1..L0l; where £&;= €D for i>1,

i

and £y is the identity.
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Genus-Zero Theory of [C"/Z,]

Define the following series in C[[x]]:

Lo =x (1- 17 (X)) 7.

n

Proposition

The I-function of [C"/Z,) satisfies the following Picard-Fuchs equation

n—1 n
D"l(x,z) + bL Z sk D¥I(x,2) = L—I(X,z)
L = zn

where D = xdi.
IX

We define the series C; € C[[x]] inductively as follows:
C=lh=1 and C =Dg; 1..Lol; where £, =—D for i>1,

and £y is the identity.

For any /| = 0, we further define

17/33



Genus-Zero Theory of [C"/Z,]

Proposition

For any i,j = 0, the quantum product is given by

K. .
e = T’; Ditj-
iKj
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Genus-Zero Theory of [C"/Z,]

Proposition

For any i,j = 0, the quantum product is given by

K. .
e = T’; Ditj-
iKj

The proof relies on the following generation argument:

C'+1
P10 hi = ———dit1,
G
and the following lemma was obtained by adapting methods of Zagier-Zinger for hyper-
geometric series.
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Genus-Zero Theory of [C"/Z,]

Proposition

For any i,j = 0, the quantum product is given by

diedj = ’*’ <z>,+,

The proof relies on the following generation argument:
i+1
1o = IC Pi+1,

and the following lemma was obtained by adapting methods of Zagier-Zinger for hyper-
geometric series.

We have the following identities for the series C; and K;
Q Cyin=Cyforallk>1
Q [l G=1L",
Q@ C=Coprkforalll<k<n.
Q Kyt = L"K, forall | =0, in particular K, = L",
Q@ KKy = L" and KiKiny(y = LTV forallo < /< n—1.
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R-Matrix equation

Now, we define the series A; € C[[x]] for 0 < i < n by

1(.DL DC,
(2 5)

i
r=0 ¢
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R-Matrix equation

Now, we define the series A; € C[[x]] for 0 < i < n by
1( oL & DG

A== i= -
L (' L 2¢

r=0

)

After some change of variables:

R,'J(Z) = 2 Rl-k’jzk N oted P,"j(Z)
k=0
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R-Matrix equation

Now, we define the series A; € C[[x]]

After some change of variables:
R,'J(Z) = Z R-k-Zk Aaad P,"j(Z) = Z P,-’jZ

b,
k=0

the flatness equation takes of the form

1
k k k—1 k—1
Pron(iy—1; = Pij + ZDPi,j + AP

19/33



Differential Ring & Its Simplification

For example for n = 6, the equations look like

PE; =Pl + 1 DPLS!

PX; =P, + %DP;‘;I + AP
PY; =Pf; + %DP};I + APy
PY; =P + %DP;;l + APy
Pf; =Pk + %DP;JTI + APy
PE; =Pf; + %Dpfjl + AsPf
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Differential Ring & Its Simplification

For example for n = 6, the equations look like

PE; =Pl + 1 DPLS!

PX; =P, + %ng’;l + AP
PY; =Pf; + %DP};I + APy
PY; =P + %DP;Jfl + APy
Pf; =Pk + %DP;‘JTI + AP
PE; =Pf; + %DPlﬁjl + AsPf

C[LE[DA] := C[LE][A1, ..., An_1, DAy, ..., DA,_1, D?Ay, ..., D?A,_1, ...]
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Differential Ring & Its Simplification

For example for n = 6, the equations look like

PE; =Pl + 1 DPLS!

PX; =P, + %ng’;l + AP
PY; =Pf; + %DP};I + APy
PY; =P + %DP;Jfl + APy
Pf; =Pk + %DP;‘JTI + AP
PE; =Pf; + %DPlﬁjl + AsPf

C[LE[DA] := C[LE][A1, ..., An_1, DAy, ..., DA,_1, D?Ay, ..., D?A,_1, ...]

We have P(’;j € C[L]. Hence, each P,."J lies in the differential ring C[LEY][DA]
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DA,

DA,

DA,|

BA,

DA,

N

DA,

A,

DA

DAJTAS
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Differential Ring & Its Simplification

A:={A,..,D"3A}y,... i

U{Ai, .., D" 2TTA} UL U {Ana).
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Differential Ring & Its Simplification

A:={A1,...,D"3A1}U,... U{A;,...,D"2TTA} U ... U{A_2}.

Lemma (1st Simplification)

C[LE'[DA] is a quotient of the ring C[LE][2A].
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Differential Ring & Its Simplification

A:={A1,...,D"3A1}U,... U{A;,...,D"2TTA} U ... U{A_2}.

Lemma (1st Simplification)

C[LE'[DA] is a quotient of the ring C[LE][2A].

Lemma (2nd Simplification)

For the series A;, we have the following
QO A =—-A,_jforall0<i<n,
Q Ay=A,=0, andA% =0 if n is even,

Q@ >/ A =0.
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Differential Ring & Its Simplification

A:={A1,...,D"3A1}U,... U{A;,...,D"2TTA} U ... U{A_2}.

Lemma (1st Simplification)

C[LE'[DA] is a quotient of the ring C[LE][2A].

Lemma (2nd Simplification)

For the series A;, we have the following
Q A =—-A,_forall0<i<n,
Q Ay=A,=0, andAg =0 if n is even,

Q > A =0

v

Lemma (3rd Simplification)

For any n = 3, we have

s—1 s—2
2DAs_1 = ) LAZ — > (n—2r)DA, — 2shg(L) if n=2s>4,
r=1 r=1
S s—1
DA; = ) LA? = > (n—2r)DA, — (25 + 1)fsy1(L) if n=2s+1>3.
r=1 r=1

A

= v - = =
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DA,

DA,

DA,|

BA,

DA,

N

DA,

DA,DA,

DA

DAJTAS

DA,

DA,

A,

DA,|

BA,

As

DA,
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A, DA, [DA,[DA DA, | ---
A, [DABASADA ---
A, [DA, DA, (DA, D"Ax T |"*s;mf!,(:'iuk0'\
Ay [DAJBABA[BA ---
As DAJBAJBA{DA| ---
Ao
W
A, [DA, [DA, [BA,
A; DA;'BAL

DA,

DA,

A,

DA,|

BA,

As

DA;
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A, DA, [DA,[DA DA, | ---
A, [DABAJBADA| -  _—
A, [DA, DA, (DA, D"Ax T |"*$;met,(:‘i ekion
Ay [DAJBABA[BA ---
As DAJBASBA DAL ---
1ot
W
A, |DA,[BA, DA,
— ~_
A, [DA,[BA, o Sim?!it‘a(h"wﬂ

DA,

DA,

A,

DA,|

BA,

As

DA;

DA,

A
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‘DA=
A, DA, [DA,[DA DA, | ---
Ax DA; 'B'Ax BAL D‘Al T —
A, [DA, DA, (DA, D"Ax T |‘*$imet,(:‘i etion
A, [DAJBABA[BA ---
As DAJBASDA DAL ---
Yot
W
A, |DA,[BA, DA,
— ~_
A, [DA,[BA, @t Simym‘.euh on

DA,

DA,

A,

DA,|

BA,

As

DA;

DA,

A
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Differential Ring & Its Simplification

We denote the set of remaining elements of the differential ring as &,,.
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We denote the set of remaining elements of the differential ring as &,.

Proposition

C[L*][DA] is a quotient of the ring C[L*'][&,].
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C[L*][DA] is a quotient of the ring C[L*'][&,].

We have a canonical lift of each Pfj to the free algebra C[L*!][&,].
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Differential Ring & Its Simplification

We denote the set of remaining elements of the differential ring as &,.

Proposition

C[L*][DA] is a quotient of the ring C[L*'][&,].

We have a canonical lift of each Pfj to the free algebra C[L*!][&,].

Example:

1
PE; = P§;+ ZDP&JTI € C[L*] since we have DL, P§; € C[L],
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We denote the set of remaining elements of the differential ring as &,.
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C[L*][DA] is a quotient of the ring C[L*'][&,].

We have a canonical lift of each Pfj to the free algebra C[L*!][&,].

Example:
1
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We denote the set of remaining elements of the differential ring as &,.

Proposition

C[L*][DA] is a quotient of the ring C[L*'][&,].

We have a canonical lift of each Pfj to the free algebra C[L*!][&,].

Example:
Pt =P§; + %DP&;I € C[L*!] since we have DL, P ; € C[L],
PEj =Pt + %ng,;l + AlPé‘;l e C[L][A1],
Py, =P+ %DP,{;I + APyt e CILH[AL, DAL, Ay,

24/33



Differential Ring & Its Simplification

We denote the set of remaining elements of the differential ring as &,.

Proposition

C[L*][DA] is a quotient of the ring C[L*'][&,].

We have a canonical lift of each Pfj to the free algebra C[L*!][&,].

Example:

1

Pgj = P+ DRyt eClL

L

*17 since we have DL, P&j e C[L],

1 _
Py, = P&+ 2 DPLH + ALPE e CILE (A,

L

1 4 _
Py; = Psj+ 2DPS Tt + APt e C[LFM[Ar, DAL, Ay,

L
1

P§; = PX;+ ZDPY ;" e C[L*!][A1, DAL, DAy, Ay,

L
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Differential Ring & Its Simplification

We denote the set of remaining elements of the differential ring as &,.

Proposition

C[L*][DA] is a quotient of the ring C[L*'][&,].

We have a canonical lift of each Pfj to the free algebra C[L*!][&,].

Example:
Pk, =P§; + %DP&;I € C[L*"] since we have DL, P§; € C[L],
PE; =Pt + %ng,;l + A1P5k,1‘.1 e C[LE[AL],
PY; = P§; + %DP"“JI + AgP, € C[LTM[Ar, DAy, Ag],
P3j = Psj+ %DPﬁj ' e C[LF][A1, DAL, D?Ay, Ag],

1 _ _
Pf; = P§; + ZDP;J. L — APyt e C[LTM[AL, DAL, D? Ay, D*Ay, Ag).
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Analysis of R-Matrix

The following two lemmas are crucial in the proof of holomorphic anomaly equations.
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Analysis of R-Matrix

The following two lemmas are crucial in the proof of holomorphic anomaly equations.

Lemma (Odd case)

Let n > 3 be an odd number with n = 2s + 1. We have the following identity

K
Pli _ 5 pk-1
= 0Oj.s go
(?As s+1,)
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Analysis of R-Matrix

The following two lemmas are crucial in the proof of holomorphic anomaly equations.

Lemma (Odd case)

Let n > 3 be an odd number with n = 2s + 1. We have the following identity

k
P’.,J. =& Pk71
= Oi,s i
(?As s+1,)

Lemma (Even case)

Let n = 4 be an even number with n = 2s. We have the following identity

k

ij o 5 Pk—l 46 Pk—l
= 0Oj;s i i,s—1 P
0Ac_1 s+1,j SiJ

25/33



Analysis of R-Matrix

The following two lemmas are crucial in the proof of holomorphic anomaly equations.

Lemma (Odd case)

Let n > 3 be an odd number with n = 2s + 1. We have the following identity

k
P",J. =& Pk71
= Oi,s i
(?As s+1,)

Lemma (Even case)

Let n = 4 be an even number with n = 2s. We have the following identity

k

i _ s pk—1 . k—1
E = 6,,5Ps+1’j + 6,,5_1PS’J. .

By Givental-Teleman classification of semisimple CohFTs, we have

FE N (Gerseben) = D) Contr (- be) -

reGPec (n)
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Reconstruction of Gromov-Witten Potential

Proposition (and Its Corollaries)

The contribution Contr (¢¢;, ..., ¢c,) of a decorated stable graph T € GDeC( ) is

|AT1(r)| Y. [ Cont(o) [ Conti(e) [ | Contt (1
A

€Z§gr) veVE eeEr leLr

where with A = (a1,...,am, b1, ..., b |) where

_ 2g—2+n(v)+k
2

ContrA(n) — Z 77(ep('ﬂ)vep(u))

= k!
XL e Bl Yty o) (e +1) o) (e +4)
Mg(o),n(o)+k
where
Ko (=% k —kp(b)
o) (2) = 3 Tz with Tpoye = ——Pg ()¢ :

k=2
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Reconstruction of Gromov-Witten Potential

Proposition (and Its Corollaries)

The contribution Contr (¢¢,, ..., ¢c,) of a decorated stable graph T € Ggf,f,(n) is
1 A A A
TGl > [ Contf(v) [ Contf(e) [ | Contf (1)
A

eZl;“gl') veVE eeEr leLr

where with A = (a1,...,am, b1, ..., b |) where

Contf—\(n) is a just polynomial in Pg’j
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Reconstruction of Gromov-Witten Potential

Proposition (and Its Corollaries)

The contribution Contr (¢¢,, ..., ¢c,) of a decorated stable graph T € GDec( ) is

|AT1(F)| Z H Cont (v 1_[ Cont (e) H Cont (I
A

eZl;“gl') veVE eeEr leLr

where with A = (a1,...,am, b1, ..., b |) where

Cont# (v) € C[L]
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Reconstruction of Gromov-Witten Potential

Proposition (and Its Corollaries)

The contribution Contr (¢¢,, ..., ¢c,) of a decorated stable graph T € GDeC( ) is

|AT1(F)| Z H Cont (v 1_[ Cont (e) H Cont (I
A

eZEgr) veVE eeEr leLr

where with A = (a1,...,am, b1, ..., b |) where

Cont# (v) € C[L],

be -1 be1+j+1 beo—j
Cont (e) w 2(_1)]”23 PInv(r),p(Ul)Pr,p(Ug)
n = =0 ¢(ber+j+1+Inv(r))p(01) ¢ (be2—j+r)p(v2)
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Reconstruction of Gromov-Witten Potential
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The contribution Contr (¢¢,, ..., ¢c,) of a decorated stable graph T € GDec( ) is

|AT1(F)| Z H Cont (v 1_[ Cont (e) H Cont (I
A

eZl;“gl') veVE eeEr leLr

where with A = (a1,...,am, b1, ..., b |) where

Cont (v) € C[L],
Cont (¢) € C[LE[S],
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Reconstruction of Gromov-Witten Potential

Proposition (and Its Corollaries)

The contribution Contr (¢¢,, ..., ¢c,) of a decorated stable graph T € GDeC( ) is

|AT1(F)| Z H Cont (v 1_[ Cont (e) H Cont (I
A

eZEgr) veVE eeEr leLr

where with A = (a1,...,am, b1, ..., b |) where

Contf (v) € C[L],
Cont? (¢) € C[LE][Sn],

ae(r)
(—=1)® Kinv(cypy) PInv(ce(,)),p(l/([))
n L nvieg(ny) C(ae([)+InV(Cz([)))P(V([))’

Cont2 (1) =

26/33



Reconstruction of Gromov-Witten Potential

Proposition (and Its Corollaries)

The contribution Contr (¢¢;, ..., ¢c,) of a decorated stable graph T € GDec( ) is

|AT1(F)| Z H Cont (v 1_[ Cont (e) H Cont (I
A

eZl;“gl') veVE eeEr leLr

where with A = (a1,...,am, b1, ..., b |) where

Cont (v) € C[L],
Contf (e) € C[LE[S],

Cont (1) € C[LE[G,][Cy, - - -, Co1]
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Reconstruction of Gromov-Witten Potential

Proposition (and Its Corollaries)

The contribution Contr (¢¢,, ..., ¢c,) of a decorated stable graph T € GDeC( ) is

|AT1(F)| Z H Cont (v 1_[ Cont (e) H Cont (I
A

eZEgr) veVE eeEr leLr

where with A = (a1,...,am, b1, ..., b |) where
Cont(v) € CL],
Contf (¢) € C[LE][S,],
Cont (1) € C[LF[&4][C, - -, Co1] = Ficnyz,)
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Reconstruction of Gromov-Witten Potential

Proposition (and Its Corollaries)

The contribution Contr (¢¢,, ..., ¢c,) of a decorated stable graph T € GDeC( ) is
1
TAue()] Z H Cont (v 1_[ Cont (e) H Cont (I
Aezggr) veVr eeEr leLp
where with A = (a1,...,am, b1, ..., b |) where
Cont{*(v) € C[L],
Contf (¢) € C[LE[S],
Cont (I) € C[LE[S,][€n] = Flcnza)-

Recall
FE" bers o ben) = D) Contr (b dbey) -

reGPec ()

Theorem (Finite Generation Property)

(C/Z

We have Fg o/ ™™ (¢cys - bem) € Fenyz,-
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Reconstruction of Gromov-Witten Potential

Since Cont (v) € C[L] we have the following vanishing:

dCont2 (v)

aA n—1

=0.
%=1
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Reconstruction of Gromov-Witten Potential

Since Cont{ (v) € C[L] we have the following vanishing:

dContA (v)

OA| 1)

=0.

Recall those two crucial lemmas:

Lemma (Odd case)

Let n > 3 be an odd number with n = 2s + 1. We have the following identity

k
P _ 5 pk1
= Ui,s 7e
aAs s+1,)

v

Lemma (Even case)

Let n > 4 be an even number with n = 2s. We have the following identity

k

i _ § Pkl L5 pk—1
A Yis d i,s—1 R oo
0As_1 s+1,j SiJ

A
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Reconstruction of Gromov-Witten Potential

Since Cont{ (v) € C[L] we have the following vanishing:

dCont2 (v)
0A

=0.
1252

Those two crucial lemmas result in the following two crucial lemmas :)

Let n > 3 be an odd number with n = 2s + 1, then we have

be1 beo
(—1)Pertbe PSJrl»P(Ul) P5+17P(“2)

2s +1  ((berts+1)p(er) (beats+1)p(v2) °

0
A Cont (¢) =

A

Let n = 4 be an even number with n = 2s, then we have

— 7 Cont®
oA, 1 ontr (¢)
b beo be be
_ (SL)batbe PobipenPeren G e )
2s ¢(ber+s+1)p(01) ¢ (bea+5)P(v2) ¢(be1+5)P(01) ¢ (bea+s+1)p(v2)

€

27/33



Proof of HAE

For .Fg[Cn/Zn], the graph contributions are like this:

= 1
tr = ————— Z
Conr | t( )|

[ Cont (o) [ Contf(e)
AEZI;E)F) vEVF

ceEr

Q>
28/33



Proof of HAE

For Fé[’c"/z,,]y the graph contributions are like this:

— # on A o1 A
Contr = At ) > [ Contf(o) [T Cont(e)

F(I) veV, ¢cE
€Z-y r r

For n = 2s + 1 (the odd case), we see

0Contr 1 A 0 A
=—— Cont* (b)) — Conty (e)
0As [Aut()| Ae%m nle_\/[r 0As ele_E[r
>0
1 GCOHt ®
= Z 1_[ Cont (v) H Cont (¢) ——— 11—~
|AUt(r)| Ae ZF(I’) veVr ceEr aA
e#£T
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Proof of HAE

For fé[’c"/z,,]y the graph contributions are like this:

— # on A o1 A
Contr = At ) > [ Contf(o) [T Cont(e)

EZI;%F) veVr eceEr

For n = 2s + 1 (the odd case), we see

0Contr _ 1 A A
oA, TAw(D)| R Z 1_[ Cont (v) 6A H Contf (¢)

EZ};EP veVr ceEr
1 8Cont|— ®
=m Z 1_[ Cont (v) H Cont (e A
Ae ZF(I’) veVr ceEr
e#£T

Idea: Taking derivative wrt As equivalent to breaking an edge into two legs.
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Proof of HAE

For fé[’c"/z,,]y the graph contributions are like this:

— # on A o1 A
Contr = At ) > [ Contf(o) [T Cont(e)

EZI;%F) veVr eceEr

For n = 2s + 1 (the odd case), we see

0Contr _ 1 A A
oA, TAw(D)| R Z 1_[ Cont (v) 6A H Contf (¢)

EZ};EP veVr ceEr
1 8Cont|— ®
=m Z 1_[ Cont (v) H Cont (e A
Ae ZF(I’) veVr ceEr
e#£T

Idea: Taking derivative wrt As equivalent to breaking an edge into two legs.

Contrg (¢s,¢s) or Contry (¢s) Contpz (¢s)
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Proof of HAE

For fé[’(c"/z,,]y the graph contributions are like this:

— # on A o1 A
Contr = At ) > [ Contf(o) [T Cont(e)

EZI;%F) veVr eceEr

For n = 2s + 1 (the odd case), we see

oContr 1 2 1_[ ContA(n)— H Cont{ (¢)

0As [Aut()| AZED) VeV 0As el
1 8Cont ®
= Cont{ (b Cont{ (¢) —— 1=~
|Aut()| 2 [ Conti (o) T] comfi( A
Ae ZF(I’) veVr ceEr
e#£T

Idea: Taking derivative wrt As equivalent to breaking an edge into two legs.

Contrg (¢s,0s) or Contry (¢s) Contrz (¢s)

i1

C. n 7 1 " 1 - n
st1 0 4fc e 2 LRI (4 60y 4 52 CV2a) (45) IS ().

(2s + 1)L 0As ™ & 27 e-12
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Genus-Zero Theory of KP"—+

The I-function of KP"~1 is

—
I g, 2) = Y g (-1

nd—1

ey (nH + kz)
d=0

[T_1((H + kz)m — Hr)

1PN G4
29/33



Genus-Zero Theory of KP"—*

The I-function of KP"~1 is

nd—1

n— H + k.

K g, = Y gy Mo (KD
d=0 Hk:l((H + kz)" — H")

The J-function of KP"~1 is

Kpn—1 = d H S
J 2) =1 2(z— ) HJV
(Q,2) + Z Z Q <z(z—1l))>o,1,d e

Jj=0d#0
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Genus-Zero Theory of KP"—+

The I-function of KP"~1 is

IK]P"_

1 "d 1(nH—',—kz)
,z) = d -1 nd .
(002 = L OV (v ke )

The J-function of KP"~1 is

JKP”*I(Q,z) _ 1+n§:1 Z Qd< > HJ
2(z —9) 0,1,d

j=0d0

The mirror theorem implies the equality
eH log Q/ZJK]P’"_1 (Q, Z) _ eH log q/le[P’"_1 (q7 2)7

subject to the change of variables (mirror map)

logQ =logg+ n Z qd(_l)ndw
d>1 (d)n
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Define

Genus Zero Gromoy Witten Theory of K
’
LK™ = (1= (—n)"q) Y7 € 1+ qCq].

1PN G4
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Genus-Zero Gromov-Witten Theory of KP"—*

Define -
LK = (1= (=n)"q) ™" € 1+ qC[q].

. . . —1 —1
With an analogous approach to [C"/Z,], we also introduce the series C,.K]Pn , K,.K]P”

A,KJP’"_1 lying in C[[q]].
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Genus-Zero Gromov-Witten Theory of KP"—*

Define -
LK = (1= (=n)"q) ™" € 1+ qC[q].

. . —1 —1
With an analogous approach to [C"/Z,], we also introduce the series CiK]Pn , K,.K]Pn

AIK[P’"_1 lying in C[[q]].

For all i,j = 0, the quantum product is given by

KK]P"71

i j i+J i+j
HeH = — 1 Hi+J
Kpn—1 Kpn—1
K! K]
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Genus-Zero Gromov-Witten Theory of KP"—*

Define -
LK = (1= (=n)"q) ™" € 1+ qC[q].

. . . —1 -1
With an analogous approach to [C"/Z,], we also introduce the series CiK]Pn , KiK]Pn

AIK[P’"_1 lying in C[[q]].

For all i,j = 0, the quantum product is given by

KK]P"71

i j i+J i+j
HeH = — 1 Hi+J
Kpn—1 Kpn—1
K! K]

The flatness equations for KP"~1 reads as

KkKP'—L ok KPTL 1 k—1,Kp"—1 KP"—1 pk—1,KP"—1
Ton(i)—1,; = Fij [KP7—1 Dypn-1P; A Py :
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Matching R-matrices

Consider the following identification
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Matching R-matrices

Consider the following identification

qg=x"".
This results in

nlKP" —pLIC"/Za]  \yhere p" = —1

1PN G4
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Matching R-matrices

Consider the following identification

q=x
This results in - .,
nlKP"™ s —pL[C"/Z0]  \yhere p" = —1.
Also, we get
d 1 d 1
Dypn—1 = q— = ——x— = —=Drcn/z. 1.
Kpn—1 qdq nde o o[C"/Z]
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Matching R-matrices

Consider the following identification

This results in o :
nlKP"™ s —pL[C"/Z0]  \yhere p" = —1.

Also, we get

The series —\/—IP([;C;/Z"] (z) and P(’ﬁnil (pz) match after identification.
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Matching R-matrices

In addition, we formally identify the following:

C[K]P”_l P Ci[‘C"/Zn]7
n

YR N
p

1PN G4
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Matching R-matrices

In addition, we formally identify the following:

KBt _ P ~[C/Z)
i n ! ’

ey )

The matrix series —/—1P[C"/Znl(z) and prP! (pz) match after identifications.
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Matching R-matrices

In addition, we formally identify the following:

CREt L, P Iz
1 n i )

et L,

The matrix series —/—1P[C"/Znl(z) and prP! (pz) match after identifications.

The identifications above define a ring isomorphism:

T : ]FK]P’"*l g F[C”/Z,,]'
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Matching R-matrices

In addition, we formally identify the following:

KBt _ P ~[C/Z)
i n ! ’

ey )

The matrix series —/—1P[C"/Znl(z) and prP! (pz) match after identifications.

The identifications above define a ring isomorphism:

T : ]FK]P’"*l g F[C”/Z,,]'

By the Givental-Teleman classification the Gromov-Witten potential of KP"~1 is given
by
FEET (e, HeYy =) Contf®T (HAL L HEm)
reGRec (n)
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Crepant Resolution Correspondence for [C"/Z;]

For each graph I € GDeC ¢ (n), the contribution Contf—ﬂl”ni1 (He, ..., H™) is given by
ContA (v ContA ¢ Cont2
|Aut N ZF [ )11 @1 r(
(r) veVr ceEr l[eLp

ContA (v) € C[(LKP" 1)+,
n—1 n—1
Cont (¢) € C[(LKP" ") £1][&K®" ™,
n—1 n—1 n—1
Contf (1) € C[(LKF" ) F[&K*" ™ ][ek™" ] = Fypns
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Crepant Resolution Correspondence for [C"/Z;]

For each graph I € GDeC ¢ (n), the contribution Con‘cf—ﬂl”ni1 (He, ..., H™) is given by
ContA (v ContA ¢ Cont2
|Aut N ZF [ )11 @1 r(
(l’) veVr ceEr l[eLp

ContA (v) € C[(LKP" 1)+,
n—1 n—1
Cont (¢) € C[(LKP" ") £1][&K®" ™,
n—1 n—1 n—1
Contf (1) € C[(LKF" ) F[&K*" ™ ][ek™" ] = Fypns

Theorem (Finite generation property for KP"~1)

n—1 n—1 n—1 n—1
Fam  (H, . Hm) e CULF ) F SR 1[eh™ ] = Fypna
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Crepant Resolution Correspondence for [C"/Z;]

For each graph I € GDeC ¢ (n), the contribution Con‘cK]P> (Hcl, ..., Hm) is given by
|Aut F)| Z H Cont (v) H Cont (e) H Cont (1)
F(I') veVE ecEr leLr

ContA (v) € C[(LKP" )£,
Cont(¢) € q(LK“”"‘l)ﬂ][GnK“”"‘l],
Contf (1) € C[(LK®" ) E[&KF" ][k ] = Fpo

Theorem (Finite generation property for KP"~1)

FEET (A, HomY e CLRTT)E[SKP TR T = Frpoa

Theorem (Crepant Resolution Correspondence)

For g and m in the stable range 2g — 2 + m > 0, the ring isomorphism T yields

n—1
FEn " (fers - $em) = (1) QMY (FRET (e, Hm))

————————————=— =
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