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Introduction

Definition (Semistable degeneration)

A proper, flat, surjective morphism π : X → ∆ so that

• fibers away from 0 are smooth,

• the fiber over 0 is normal crossings,

• π vanishes to order exactly 1 along each component.

Such degenerations are well studied for curves and surfaces; in particular for K3
surfaces.

Theorem (Kulikov–Persson–Pinkham):

π : S → ∆ a semistable degeneration whose smooth fibers are K3, and all of the
components of S0 = π−1(0) are Kähler, and so that KS′ = 0. Then S0 of one of the
following three types:

(Type I) smooth K3 surface.

(Type II) a chain of surfaces meeting in smooth elliptic curves (ex. degenerate
quartic to a union of cubic and a plane, resolve).

(Type III) a union of rational surfaces whose dual intersection complex is a
triangulation of the 2-sphere (ex. degenerate a quartic to a tetrahedron of planes,
resolve).
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Distinguishing features

Monodromy

If St is a smooth fiber of π, we can distinguish the three types based on the action of
monodromy on H2(St ;Q), denote this by T .

Clemens, Landman: for a semistable degeneration, T is unipotent.

Let π : S → ∆ be a degeneration of K3 surfaces then, if N = logT :

(Type I) ⇐⇒ N = 0
(Type II) ⇐⇒ N2 = 0,N 6= 0
(Type III) ⇐⇒ N3 = 0,N 6= 0

Limit mixed Hodge structures

(Type I) H2(S∞;Q) ∼= H2(S0;Q)

(Type II) GrW1 H2(S∞;Q) ∼= GrW3 H3(S∞;Q) ∼= H2(E ;Q),
GrW2 H2(S∞;Q) ∼= Q18

(Type III) GrW0 H2(S∞;Q) ∼= GrW4 H2(S∞;Q) ∼= Q, GrW2 H2(S∞;Q) ∼= Q20.
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Log Calabi–Yau surfaces

Let X be a component of a the central fiber, S0 of a semistable degeneration of K3
surfaces, let Y be its intersection with the singular locus of S0.

Such a pair is
log Calabi–Yau, which, for us, means that Y is snc and anticanonical.

Geometry

(Type I) smooth K3 surfaces,

(Type II) One of
Smooth rational surface with smooth anticanonical elliptic curve,
Ruled surface over an elliptic curve with a pair of sections.

(Type III) Rational surface with an anticanonical cycle of curves.

Classification of log Calabi–Yau surface pairs

• Smooth rational surfaces with smooth anticanonical (Friedman, Miranda): Take
either (P2,E), (Fn,E), n = 0, 1, blow up points in E .

• Ruled surfaces over elliptic curves: Start with PE (O ⊕ L), blow up points in one
of the two sections.

• Rational surface with anticanonical cycle (Gross, Hacking, Keel): Blow up of toric
surface pair (X∆,D∆) in a collection of (smooth) points in D∆.
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Summary

• There’s a complete classification of the components of degenerations of K3
surfaces.

• These all come from a well-understood collection of pairs by a simple blow-up
process.

• The types of mixed Hodge structures on the cohomology of the pairs Hi (X \Y ;Q)
and the limit mixed Hodge structure on H2(S∞;Q) have similar properties.
I Smooth rational surface with smooth anticanonical,

Gr2
W H2(X \ Y ) ∼= Qb2−2, Gr3

W H2(X \ Y ) ∼= H1(Y ), H3(X \ Y ) ∼= 0

I Ruled surface over elliptic curve,

Gr2
W H2(X \ Y ) ∼= Qb2−2, Gr3

W H2(X \ Y ) ∼= H1(Y ), H3(X \ Y ) ∼= Q

I Smooth rational surface with nodal anticanonical,

Gr2
W H2(X \ Y ) ∼= Qb2−1, Gr4

W H2(X \ Y ) ∼= Q, H3(X \ Y ) ∼= 0.
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I Smooth rational surface with smooth anticanonical,

Gr2
W H2(X \ Y ) ∼= Qb2−2, Gr3

W H2(X \ Y ) ∼= H1(Y ), H3(X \ Y ) ∼= 0

I Ruled surface over elliptic curve,

Gr2
W H2(X \ Y ) ∼= Qb2−2, Gr3

W H2(X \ Y ) ∼= H1(Y ), H3(X \ Y ) ∼= Q

I Smooth rational surface with nodal anticanonical,

Gr2
W H2(X \ Y ) ∼= Qb2−1, Gr4

W H2(X \ Y ) ∼= Q, H3(X \ Y ) ∼= 0.



Generalization to higher dimensions

Higer dimensions: K3  hyperkähler

Degenerations of hyperkähler manifolds: there is a similar trichotomy on the level of
mixed Hodge structures.

Let V → ∆ be a semistable degeneration of hyperkähler manifolds. Limit mixed Hodge
structure on H2(V∞;Q) takes the following forms;

(Type I) Pure Hodge structure of weight 2, h2,0 = 1

(Type II) GrW1 H2(V∞;Q) ∼= GrW3 H3(V∞;Q) ∼= H2(E ;Q),
GrW2 H2(V∞;Q) ∼= Qb2−4

(Type III) GrW0 H2(V∞;Q) ∼= GrW4 H2(V∞;Q) ∼= Q,
GrW2 H2(V∞;Q) ∼= Qb2−2.

Geometric classification (Kollár–Laza–Saccà–Voisin)

Assume V is minimal and dlt.

• In type I, the central fiber can be made smooth after base change.

• In types II, III, the dual intersection complex of the central fiber is of dimension
dimVt/2 or dimVt respectively.
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Goals

Study the geometry of the components of the central fibers of degenerations of
hyperkähler manifolds.

This (potentially) could be used to address the problem of construction of
hyperkähler manifolds. If we can construct degenerate hyperkähler manifolds,
we may smooth them (Hanke).

This is also interesting in its own right. This leads to “logarithmic” versions
of holomorphic symplectic manifolds which appear frequently in representation
theory (cluster varieties, character varieties etc.)

Study their cohomology rings.

Mixed analogues of structural results on the cohomology of hyperkähler vari-
eties (Verbitsky). New proofs of results of Soldatenkov, sheds light on Nagai’s
conjecture.
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Log symplectic pairs

Definition

A pair consisting of a smooth variety X of dimension 2d and a snc divisor Y is called
log symplectic if there is some

σ ∈ H0(X ; Ω2
X (logY ))

so that σd ∈ Ω2d
X (logY ) = KX (Y ) is nonvanishing.

The dimension of a holomorphic
symplectic variety is always even.

Examples

• If X is a surface, then the pair (X ,Y ) is log symplectic if and only if Y is
anticanonical and simple normal crossings.

• If Y = ∅, then X is just called holomorphic symplectic. Examples include S [n] and
Kumn(A) for A an abelian surface, S a K3 surface.

• (Ran) Resolution of Hilbert schemes of points on a surface with a smooth
anticanonial divisor.
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Good degenerations

Definition

A good degeneration is a semistable degeneration V → ∆ so that there is an element

σ ∈ H0(V,Ω2
V/∆(logV0))

which is nondegenerate (that is, σd is nonvanishing).

The smooth fibers of a good degeneration are holomorphic symplectic.

Proposition

Let X be an irreducible component of the central fiber of a good degeneration, and let
Y be the intersection of X with the singular locus of V0. Then (X ,Y ) is a log
symplectic pair.

Proof. Take the residue of d log π ∧ σ.

Remark

Not very many examples of good degenerations are known beyond dimension 2; Nagai
has constructed some in dimension 4.
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Pure weight

The Deligne decomposition

There is a functorial decomposition of any mixed Hodge structure (V ,F •,W•), called
the Deligne decomposition, which breaks up V ⊗ C into pieces I p,q.

Definition

We say that a log symplectic form σ has pure weight w if the corresponding element

of H2(X \ Y ;C) is contained in I 2,w .

Theorem (H.)

Let π : V → ∆ be a good degeneration of hyperkähler manifolds. Then if X is an
irreducible component of V0, and D is the intersection of X with the singular locus of
V0, then (X ,Y ) admits a log symplectic form of pure weight w .

Remark

There’s a correspondence between the type of degeneration and w ;

Type I =⇒ w = 0, Type II =⇒ w = 1, Type III =⇒ w = 2.
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Consequences

Remark

This is sort of an odd definition, but, geometrically, it has nice consequences,
analogous to the results of KLSV.

• If (X ,Y ) is a log symplectic pair with log symplectic form of pure weight 0, then
Y is empty.

• If (X ,Y ) is a log symplectic pair with log symplectic form of pure weight 1 then
dim dual intersection complex of Y = dimC X/2− 1.

• If (X ,Y ) is log symplectic pair with log symplectic form of pure weight 2 then
dim dual intersection complex of Y = dimC X − 1.

In fact, this recovers the result of KLSV above in the case where dlt is weakened to
semistable.

Remark

There are many log symplectic pairs which are not of pure weight. Let S1 is a K3
surface and (S2,E) is a pair consisting of a smooth rational surface S2 and E is a
smooth anticanonical elliptic curve. Then (S1 × S2, S1 × E) is log symplectic with no
symplectic form of pure weight.
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semistable.

Remark

There are many log symplectic pairs which are not of pure weight. Let S1 is a K3
surface and (S2,E) is a pair consisting of a smooth rational surface S2 and E is a
smooth anticanonical elliptic curve. Then (S1 × S2, S1 × E) is log symplectic with no
symplectic form of pure weight.



Examples

Toric varieties

• XΣ a smooth toric variety of dimension 2d , determined by a fan Σ ⊆ M ⊗ R.

• C∗2d the big torus inside of XΣ.

• Choose coordinates (z1, . . . , z2d) on C∗2d and let

ω =
∑
i<j

αijd log zi ∧ d log zj .

• (XΣ,YΣ) composed of XΣ and its toric boundary is a log symplectic pair of pure
weight 2 if [αij ] is nondegenerate.
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• Let E is a smooth elliptic curve, which is embedded in P4 and has degree 5.

• Let Sec(E) be its secant variety (the closure of the union of all lines passing
through pairs of points in E). Then Sec(E) is a quintic hypersurface, which is
singular along a subvariety V which is biregular to Sym2(E).

• Let XE = BlVP4 and let YE be the union of the proper transform of Sec(E) and
the exceptional divisor. Then (XE ,YE ) is a log symplectic pair of pure weight 1
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New examples from old

Symplectic leaves

The log symplectic form σ on X produces a Poisson structure on X .

This Poisson
structure has a big open symplectic leaf, given by X \ Y . A component Y ′ of Y is
foliated by symplectic leaves which can be detected as codimension 1 subsets Z of Y ′

where
ResY (σ)|Z = 0.

Theorem (H.)

Let (X ,Y ) be a log symplectic pair, assume that σ is of pure weight w . Let Z be the
smooth closure of a smooth symplectic leaf of σ of codimension 2 which is contained
in a component of Y and intersects the singular locus of Y transversally. Then

(BlZX ,YZ ), b : BlZX → X , YZ = proper transform ofY

is log symplectic, and b∗σ is of pure weight w .
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Blowing up toric varieties

Combinatorial description of symplectic leaves (Hacking–Keel)

Log symplectic form: ω! nondegenerate alternating pairing α on M.

Toric boundary divisor D ! a ray in Σ ! a primitive element of M.

Therefore α(ρ,−) ∈ N: ! monomial function fα,ρ on the big torus C∗2d ⊆ XΣ.

The intersection of the closure of the fibers of this monomial function fα,ρ and the
divisor determined by ρ are symplectic leaves.

Blowing up leaves

Choose Σ, α, so that leaves intersect properly for generic fibers of fα,ρ. Blow up leaves
corresponding to all ρ.

Each blow up gives a new “cluster chart”(Gross–Hacking–Keel); the resulting variety
looks like a cluster variety.

If α the adjacency matrix of an acyclic quiver, and Σ is the standard simplex, this
produces the corresponding acyclic cluster variety.
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Blowing up the Feigin–Odeskii example

Description of symplectic leaves (Pym)

There are two components of YE ; a resolution of of Sec(E) and the exceptional divisor
of the blow up of P4 in Sym2(E).

1. Resolution of Sec(E) is a P1 bundle over Sym2(E).

2. Exceptional divisor is a P1 bundle over Sym2(E).

Sym2(E) is a P1 bundle over E (adding pairs of points is the map, fibers are quotients
of E by involution).

=⇒ Both components are iterated P1 bundles over E . Symplectic leaves are the
fibers of this bundle.

Blowing up the leaves

We can now choose an arbitrary number of distinct leaves in each component.
Blowing up repeatedly produces an infinite number of topologically distinct log
symplectic pairs of pure weight 1.
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Classification?

This brings up the following question

Question

Can we write down a finite number of families of log symplectic pairs from which all
others can be produced by the blow up procedure that we’ve been discussing?

Remark

It seems overly optimistic to think that the situation is as simple as the 2-dimensional
case; there’s likely subtle phenomena occurring in codimension greater than 2.

Moreover, it seems that the normal crossings condition is too strong for any real
applications, but it is used because it’s easier to compute with mixed Hodge structures
when the boundary is normal crossings.
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Cohomology of log symplectic pairs of pure weight 2

There are three main properties of the cohomology rings of log symplectic pairs of
pure weight 2.

Proposition (H.) (Symmetry)

If (X ,Y ) is a log symplectic pair with symplectic form σ, cup product with σ induces
isomorphisms.

σd−p : GrpFHp+q(X \ Y ) −→ Gr2d−p
F H2d−p+q(X \ Y ), ∀p, q.

Definition

A mixed Hodge structure is Hodge–Tate if GrW2n+1 = 0 for all n, and if W and F are
opposed – this means that

dim GrW2i Hj(X \ Y ;Q) = dim Grj−i
F Hj(X \ Y ;C).

if m ≤ n. In other words, I p,q(H j(X \ Y )) = 0 unless p = q.

Theorem (H.) (Simplicity)

If (X ,Y ) is a log symplectic pair of pure weight 2, then Hi (X \ Y ;Q) has Hodge–Tate
mixed Hodge structure.
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More properties

Corollary

If (X ,Y ) is log symplectic of pure weight 2, then H∗(X \ Y ;Q) has the
curious hard Lefschetz property.

Corollary (Vanishing)

Let (X ,Y ) be a log symplectic pair of pure weight 2 so that 2d = dimX . Then
Hi (X \ Y ) = 0 if i > 2d .

These results are largely formal, and they can be extended the the cohomology rings of
limit mixed Hodge structures of good degenerations.

Theorem (Soldatenkov)

Let π : V → ∆ be a good degeneration of Type III. Then the limit mixed Hodge
structure on Hi (V∞;Q) is Hodge–Tate for all i .

Remark

All of these results have analogues for pure weight 1 which are a bit more difficult to
state.
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structure on Hi (V∞;Q) is Hodge–Tate for all i .

Remark

All of these results have analogues for pure weight 1 which are a bit more difficult to
state.
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