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Deep learning and the recipe of success
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Deep learning and the recipe of success
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Can we make these three components scalable?
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Sparsity: a good old friend

Sparse Deep Neural Networks

Usual Deep Neural Networks

Sparse Deep Neural Networks
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x Over-parameterization — storage problems
x Extremely data hungry — large training sets
x Memorization of training data — privacy leakage

& Small parametric models (with high sparsity)
I Fewer learned parameters — fewer training data
@ Reduce privacy 1ssue

Sounds good. Then how can | train a sparse neural network?




Network .
type

Sparsity ]

Dense I o oo 000000

Minimize
Wy.....W,,b

such that:

Minimize
Wy...., Wb

1Y — W,...W,X — b||2

W. are sparse matrices

1Y — W,...W,X — b

Sparsity in Deep Neural Networks

0={(W,b)|i=1,...,N)

f(x;0) = Wy

..o(Wx+b))+by

Minimize:
0

such that:

Fo= Y LX), )
=1

1= )
W, are sparse matriges

\ \:\,(;/“ 7
e AR IR <%
TN\ g\

Minimize: 7, := Y L(f(6,x), )

=1

. v

Linear

Nonlinear

Activation function



Questions for Sparse Neural Networks

- Does the training problem of sparse neural

networks always admit an optimal solution?

Is it polynomially tractable to train sparse
neural networks?

Tractability

What does the landscape of loss function

Landscape . : .
look like? (e.g., does it have local minima?, etc.)

Strategy: First “m Then @




From sparsity in Deep Learning to Matrix Factorisation

Given A and %j some sets of sparse matrices, solve:

N
' — D2 ' . () s
yoimin A HW |2 subject to: WV € &,Vj € {1,...,N}
]:
 k-sparse per row,
+ f=sphisednspens NEL%?I Netwdrk pgrsspasseccMatmx Factorisation

» k-sparse in total

Minimize ||Y — W,...W X —b||% Minimize ||A — W,...W,||%
W,...,W,b W, W,




bpaxssuppbt hatoxizatimrization

Special case of sparse matrix factorization

SPARSE MATRIX
FACTORISATION

‘N=2
(&, &,): set of matrices whose supports
are included in given sets [/ and J

FIXED SUPPORT
MATRIX
FACTORISATION




Fixed support matrix factorization (FSMF)

SUPPORT CONTRAINTS

~N v OO
S| O |9
~w | O v O

-a|-a | o
oo =]~

I: inside support outside support




Overview of our reasoning

.

Fixed support
Matrix

Sparse

Sparse Matrix Deep Neural

Factorization

Factorization Networks

« Tractability « Tractability

Landscape @& Fixed Landscape Linear Landscape
support activation

_|_
No bias

S ©

Tractability @

S ©
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Further motivation for sparse matrix factorization

Why sparse matrix tfactorisation?

Fast linear operator: it A ~ W,...W, then Ax = W,...W x

A

/O\(r;) nonzero entries

n
log n factors

T'he Discrete Fourier 'Iranstormation sparse factorisation and 1ts O(nlog n) tast algorithm

Dictionary learning: given a dataset Y, find atoms D and look-up table X
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Plan of the talk

Fixed Support
Matrix Factorisation

Existence of Butterfly
optimal solutions in parameterization
sparse RelLU neural in sparse deep

networks training neural networks
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Results on (FSMF)

- I = Does (FSMF) always admit an optimal solution?
- (? Is (FSMF) polynomially tractable?

- I~ What does the landscape of L(X, Y) look like?
(e.g., does it have local minima?, etc.)

15



Non-existence of optimal solutions

(FSMF) does not always admit an optimal solution

A — n X n
L 1 k
| Ii)?Im‘imum is zero: X;, = | & ,YkT = (O k),likaY;;r =A.
1 -1

I~ Infimum is not attained: There is no feasible (X, Y) suchthat A = XY

(Gene H. Golub and Charles F. Van Loan, Matrix Computations)
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Equivalence between existence - closedness
ORIGINAL
1 Change of variable31
EQUIVALENT

PROJECTION OF A ONTO THE SET 93]’]

Optimal solutions exist if and only if @I,J Is closed

17



Deciding the closedness of &, ;

Given (I, ), decide the closedness of &, ;.

REMINDER: &, := {XY' | supp(X) C I, supp(Y) C J}

—
P is
closed? H

closure of 9’“
I The emptyness of a semi-algebraic set is decidable (using Quantifier
Elimination Algorith m) _ (S. Basu, R. Pollack, M-F Roy, Algorithms in Real Algebraic Geometry)

P 1] |

\ semi-algebraic

set

il i
gJI 14

is

()f' The complexity is doubly exponential (w.r.t. the sizes of 1, J and the matrix).
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NP-hardness

For arbitrary support constraint (I, J), (FSMF) is NP-hard.

PROOF: | Rank-one matrix Completionis reducible to (FSMF).

2171177

2712|714/ 0 This problem is NP-hard.

219171711 (N.Gillis, F. Glineur, SIAM Journal on
Matrix Analysis and Applications)

51712197
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Tractability

Tractability with structured supports

An example ot tractable instances

Unconstrained Matrix Factorisation

When there is no constraint on the supports of (X, Y)
Minimize L(X,Y) = ||A — XY'||2

XE Rn)(r, YE Rm)(r
r
< - > m
A - g . .
: Best rank r approximation
A=n X of the matrix A.
\ (S. Burer, R. D.C. Monteiro, Mathematical Programming)

I 7= Algorithm: Using (Truncated) Singular Value Decomposition.

Can (Truncated) Singular Value Decomposition still work in constrained cases?

20



Tractability

Tractability with structured supports (cont)

Rank one contribution supports kth column of X K&l moesi 1

EIRCEF

< [ < [ .

. rank-one support

No support
constraint

With support
constraint

Z€r0S
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Tractability with structured supports (cont)

What 1s special about unconstrained matrix tactorization?

y! = X1Y1 = X2Y2 = X3Y3

No support .
constraint

Il All rank-one supports are identical

If all rank-one supports are pairwise disjoint or identical, then the
corresponding instance of (FSMF) is polynomially tractable.

22



Tractability with structured supports (cont)

If all rank-one supports are pairwise disjoint or identical, then the
corresponding instance of (FSMF) is polynomially tractable.

> rank 2

+ +

> rank 1

rank-one supports

I 7 Algorithm: Using (Truncated) Singular Value Decomposition for
submatrices of the target matrix.
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Landscape

Litteratures on the landscape of L(X, Y)

LX,Y)=||A-XY"|%

Has been studied for:

I 7 Linear and shallow neural networks
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(Q. Li, Z. Zhu, G. Tang, The nonconvex geometry of low-rank matrix = nt?:%%z?é%%&? \\'f'f.‘z??’/’

optimization, Information and Inference, 2018) a ) =

(Z. Zhu, D. Soudry, Y.C. Eldar, M.B. Wakin, The global optimization
geometry of shallow linear neural networks, JMIV, 2019)

(L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden- Local Minima
layer neural network optimization landscapes, JMLR, 2019)

Global Minima

Saddle Point

What does the landscape look like in the constrained cases?

24



Landscape

Unconstrained matrix factorization

LX,Y)=||A=XY"|]%

L7 There is no spurious local minimum for any A.

L7 There is no spurious local valley for any A.

Do these properties still hold in constrained cases?

25



Benign landscape of tractable instances

min |[A — XYTHfD subject to: supp(X) C I,supp(Y) CJ
XY

If (1, J) satisfies the condition of Theorem Il, then there is no spurious
local minima and spurious local valleys.

26



Summary on (FSMF)

&: ——————————— — e ——————— ———————— — e e e e e —— — e ——————— — ‘ﬁ

There are instances (A [, J) which (FSI\/IF) admits no |

optimal solution. I
| — — —_— — — —

NP-hardness -For arbitrary (1, J), (FSMF) is NP-hard to solve.

&:t ——————— E— e e ——— ———————— R e ————————— e e e e — e ———————— E— e ——————— R e ‘T

| . - - |
| Tractability For certain structured (/, J), (FSMF) has a polynomial |

| algorithm.

LT:-_, = e e S —— e e — e — - e ———— e = e S ————— e —

-With the same family of structured (Z, J), loss function of
(FSMF) has no local minima.

(Q-T. Le, E. Riccietti, R. Gribonval, SIAM Journal of Matrix Analysis and Applications, 2023)

Benign landscape

27



Existence of optimal
solutions in RelLU
sparse neural network
training




Sparse ReLU Neural Networks Training

Optimization problem of Sparse Neural Networks

Given data set Y := (X, Y) and %j some sets of sparse matrices, solve:

Min(i,)m(i,)ze 1Y — WWs(...a(WIX + bWy + ) + b™)|%
W’ pY
subject to: WY e &,Vje{l,..,N}

L7 6 is the ReLU activation function: o(x) = max(x,0).

lf):‘ In practice, %j is usually chosen as the set of kK-sparse matrices.
(J. Frankle, M. Carbin, ICLR 2019), (S. Han, H. Mao, W-J. Dally, ICLR 2016)

lf? We consider quadratic loss function for simplification. Our argument
works for any coercive loss function.

29



Non-existence of optimal solutions - ill-posedness

1Hi TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST
Tensor deCompOSFtlon LOW-RANK APPROXIMATION PROBLEM

VIN DE SILVA* AND LEK-HENG LIMT

(order at least three)

ILL-POSEDNESS

Low-Rank Matrix Approximation
Matrix Completion with Weights or Missing Data is NP-hard

Nicolas Gillis' and Francois Glineur!

Matrix rigidity and the ill-posedness of
Robust PCA and matrix completion*

Robust Principle
Component Analysis

Jared Tanner'* Andrew Thompson® Simon Vary'

( ) -
m / - ",‘

(Classical) Neural Best k-Layer Neural Network Approximations

Network Training Lek-Heng Lim' . Mateusz Michatek?? . Yang Qi*

How about the training problem of sparse RelLU neural networks?

30



Fixed support sparse ReLU neural networks

Given data set ¥ := (X, Y), solve:

GENERAL

l

FIXED SUPPORT

31



DEJA VU: closedness vs existence of optimal solutions

The support constraint (/;, ..., ;) makes the training problem always

admit optimal solutions if and only if for all input sets X, the image
of the function 6 := {(W', b))} » WNs(...o(WDX + D) 4+ ) + bWV
IS closed.

32



Sufficient condition for the existence of optimal solutions

THEOREM |V

For two-layer neural networks (N = 2) with output dimension equal to one, any
support constraint makes the training problem always admit optimal solutions.

(Q-T. Le, E. Riccietti, R. Gribonval, preprint, 2023)

COROLLARY |

For two-layer neural networks (N = 2) with output dimension equal to one, the
constraints &, := {X | ||X||p < k;},j = 1,2 makes the training problem always

admit optimal solutions.

33



Necessary condition for the existence of optimal solutions

THEOREM V

For two-layer neural networks (N = 2) with support constraint (/,J), if the
training problem always admits optimal solutions, then| %, ;|is closed.

(Q-T. Le, E. Riccietti, R. Gribonval, preprint, 2023) /

P = (XY" | supp(X) C I, supp(Y) C 'jis Is decidable

THEOREM VI

For fixed support neural networks with support constraint/(/y, ..., I), if the

training problem always admits optimal solutions, ’chenl@,1 I |

34



Necessary condition for the existence of optimal solutions

THEOREM

For two-layer neural networks (N = 2) with support constraint (Z,J), if the
training problem always admits optimal solutions, then 93], 7 1s closed.

The condition is just necessary because when there is no constraint on the
support, the training problem is ill-posed for certain data set.

(L-H. Lim, M. Michalek, Y. Qi, Constructive Approximation 2019)
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Butterfly
lon In

parameterizat
sparse neural networks
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Introduction to butterfly parameterization

127
Discrete Fourier Transform (DFT): Y, = Z e N knxn, k=0,.,N—-1
n=0

y = Fyx Fy = (e Wk

)k,ne{(),...,N—l}
Algebraic properties of the Fourier kernel:

N2l o oNpol
_‘ LLTT km l ﬂk LLTT km
yk — Z e N/2 x2m4+ e N Z e N/2 x2m+1
- m=0 m=0 The Cooley - Tukey
N2l o izﬂkN/Z—l oy algorithm (radix-2)
Yi+NI2 = Z e V2 Xop|—e Z € N Xomt
m=0

DFT on even indices 37 DFT on odd indices



Matrix factorization of DFT

o (F NXe + Dypl N/2x0) :
NX =

FnpXe = DyplinpX, Do ° 7 21,
N2 — e N
B (IN/Z Dy ) (FN/2 0 )
Inp  —Dyp 0 Fyp/L
Unrolling the recursion: Permutation matrix
F 0
FN _ BN N/2
0 F N/2
N/4
— B (BN/Z N/4 (PN/Z 0 )P
= Dby N
0 BN/2 BN/4 0 P N/2

BN/4

38



Matrix factorization of DFT

=

Assume that N = 2% , . '
)N 1 1 _ support constraint in
ﬂpp(x ) — sz—l ® ( 1 1 ]\z; ) blnal"y matrl'xform

O(N log N)

For N = 16:

supp(XV) supp(X?) supp(X©) supp(X®)

39



Butterfly parameterization in Sparse Neural Networks

Classical neural networks » Butterfly sparse neural networks

X+ b

O(N log N)
Parameterization Number of factors Matrix size Introduced by
Butterfly L 2L 2t T. Dao et. al., 2019
Kaleidoscope 2L 2L s 2L T. Dao et. al., 2020
Monarch 2 m X n T. Dao et. al., 2022
Deformable butterfly flexible mXn R. Lin et. al., 2022

Supports of factors are fixed, sparse and very structured.
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Interpretation of butterfly parameterization

Among all existing parameterization, which one should we choose”?

&

&

test top 1 after tuning on val
o
-

—*= conv=4, factor=2, rank=[2, 4, 8]
conv=4, factor=4, rank=[2, 4, 8]
== conv=[0, 1, 2, 4, 5], factor=2, rank=1

o
w

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1 - params_debfly / params_dense

Trade-off between performance and compression

41



Approximation a matrix by butterfly parameterization

min ||A - wh W), st W9 is butterfly (1)
w L wE

I 7 Generalized version of (FSMF) with structured supports.

7 Existing algorithm: hierarchical factorization - butterfly algorithm.

(Michielssen & Boag, 1996); (O'Neil, Woolfe & Rokhlin, 2010); (Liu et. al. 2021)

/A\ No theoretical guarantee yet.

Hypothesis class of matrix:

B = {WD_ WD | Infimum of (1) = 0}

42



Analysis of butterfly parameterization

THEOREM VI

If £ is the best error approximation of (1), the butterfly algorithm yields
a solution whose distance to A is smaller than (25! — 1)E*

Algebraic description of 93:

Low rank

|

Controlled by
Partition 1 » the supports -« Partition 2

ﬁ Also known as complementary low-rank matrices in the literature.
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Contribution and future works

TAKE AWAY MESSAGE

| ink between sparse matrix factorization and its variant (FSMF) with sparse RelLU
neural networks.

* Necessary/Sufficient condition for the existence of optimal solutions sparse RelLU
neural networks.

* Butterfly parameterization in sparse deep neural networks

POSSIBLE IMPROVEMENT?

* Better algorithms to decide the ill-posedness of (FSMF).
* A full characterization of ill-posedness of sparse RelLU neural networks.
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https://faust.inria.fr/

https://arxiv.org/abs/2112.00386
https://arxiv.org/abs/2306.02666

THANK YOU
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Analysis of butterfly parameterization

The supports of all existing factors have the form:

supp(WHYCcl ®1,.,.Q1,

dl

EXAMPLE:
Parameterization Support forms
Bu.tterﬂy sz—l X 12><2 X Iif
Kaleidoscope ’
Monarch 1,,®I.and 1, ®1.,
Deformable butterfly I ®1,.,.Q1,

The product of two consecutive factors remains butterfly .
supp(WOWHHY 1 . ®1,...Q1,

/\ This does not include the Kaleidoscope parameterization.

(I

46



And Fixed Support Matrix Factcgrization

A

LU decomposition

A =

< ——- >

A
X T
v

Low rank approximation

=1y

=

=

T

Hierarchical matrix

(a) Sty

47

(b) S

(c) S (d) Si¥

Butterfly matrix factorization



Question for sparse neural networks

Problem formulation

Feed forward networks: 0={(W,b)|i=1,...,N}
f(x;0) = Wyo(...00Wx+ b)) + by

Training:

Conventional Deep Neural Networks Sparse Deep Neural Networks

n . o L
Minimize: &, := Y L(f(6.x). ) Minimize: 7y := ZL(f(H, X, ¥i)
i=1 such that: W, are $parse matrices

Existing algorithms / approaches tor Sparse Deep Neural Networks training:

*Pruning & Retraining, Lottery Ticket Hypothesis anetal, 1pL 2015), (zhu et al., 2017), (Jonathan et al., 2019)
'Regularisation lO or ll (Bengio et al., 2013), (Yu et al., 2017), (Collins et al., 2014), (Liu et al., 2015)
.Bayesian / Variational appro aches ( Neklyudov et al., 2017), (Ullrich et al., 2017), (Louizos et al., 2017)
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