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Deep learning and the recipe of success

Huge parametric models 
(over-parameterization) Massive data set

High computing 
powers (GPUs)
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Deep learning and the recipe of success
Huge parametric 

models

Massive dataset

High computing 
powers (GPUs)
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 Can we make these three components scalable?



Sparsity: a good old friend
Sparse Deep Neural Networks

Sparse Deep Neural NetworksUsual Deep Neural Networks

Over-parameterization  storage problems  

Extremely data hungry  large training sets

Memorization of  training data  privacy leakage

→
→

→

Small parametric models (with high sparsity)

Fewer learned parameters  fewer training data

Reduce privacy issue

→

Sounds good. Then how can I train a sparse neural network?
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Sparsity in Deep Neural Networks

Sparsity

Dense

Linear Nonlinear Activation function

Network 
type
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ℒθ :=
n

∑
i=1

L( f(θ, xi), yi)

such that:  Wi are sparse matrices

Minimize: 
θ

ℒθ :=
n

∑
i=1

L( f(θ, xi), yi)Minimize: 
θMinimize

WN,…,W1,b
∥Y − WN…W1X − b∥2

F

Minimize
WN,…,W1,b

∥Y − WN…W1X − b∥2
F

such that:  Wi are sparse matrices

θ = {(Wi, bi) ∣ i = 1,…, N}

f(x; θ) = WNσ(…σ(W1x + b1)) + bN



Questions for Sparse Neural Networks
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 Does the training problem of sparse neural 
networks always admit an optimal solution?

 Is it polynomially tractable to train sparse 
neural networks?

 What does the landscape of loss function 
look like? (e.g., does it have local minima?, etc.)

Tractability

Existence of optimal 
solutions

Landscape

First ThenStrategy:



From sparsity in Deep Learning to Matrix Factorisation

  Linear Sparse Neural Network    Sparse Matrix Factorisation= ≅

Sparse Matrix Factorisation

Linear Sparse Neural Network Sparse Matrix Factorisation

Minimize
WN,…,W1

∥A − WN…W1∥2
FMinimize

WN,…,W1,b
∥Y − WN…W1X − b∥2

F

min
W(N),…,W(1)

∥A −
N

∏
j=1

W( j)∥2
F  subject to:  W( j) ∈ ℰj, ∀j ∈ {1,…, N}

Given  and  some sets of sparse matrices, solve:A ℰj

• -sparse per row, 

• -sparse per column

• -sparse in total

k
k
k

Choice of sparse matrices set  ℰj
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Fixed support matrix factorization

min
X,Y

∥A − XY⊤∥2
F  subject to:  supp(X) ⊆ I, supp(Y) ⊆ J

SPARSE MATRIX 
FACTORISATION

FIXED SUPPORT 
MATRIX 

FACTORISATION

• 

• : set of matrices whose supports 
are included in given sets  and 

N = 2
(ℰ1, ℰ2)

I J

Sparse matrix factorization
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Special case of  sparse matrix factorization

min
W(N),…,W(1)

∥A −
N

∏
j=1

W( j)∥2
F  subject to:  W( j) ∈ ℰj, ∀j ∈ {1,…, N}



Fixed support matrix factorization (FSMF)

min
X,Y

∥A − XY⊤∥2
F  subject to:  supp(X) ⊆ I, supp(Y) ⊆ J

SUPPORT CONTRAINTS
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Overview of our reasoning

Sparse 
Deep Neural 

Networks

Fixed support 
Matrix 

Factorization

Linear 
activation

+         
No bias
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Sparse Matrix 
Factorization

Fixed 
support

Tractability

Existence of optimal 
solutions

Landscape

Tractability

Existence of optimal 
solutions

Landscape

Tractability

Existence of optimal 
solutions

Landscape



Further motivation for sparse matrix factorization
Why sparse matrix factorisation?
Fast linear operator: if   then A ≈ W1…WJ Ax = W1…WJx

Dictionary learning: given a dataset , find atoms  and look-up table Y D X

The Discrete Fourier Transformation sparse factorisation and its  fast algorithmO(n log n)
log n factors

n

n

O(n) nonzero entries
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Fixed Support 
Matrix Factorisation

Existence of  
optimal solutions in 
sparse ReLU neural 

networks training

Butterfly 
parameterization 

in sparse deep 
neural networks
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Plan of the talk



Fixed support matrix 
factorization
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Results on (FSMF)

 Does (FSMF) always admit an optimal solution?
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min
X,Y

L(X, Y) = ∥A − XY⊤∥2
F  subject to:  supp(X) ⊆ I, supp(Y) ⊆ J

 Is (FSMF) polynomially tractable?

 What does the landscape of  look like? 
(e.g., does it have local minima?, etc.)

L(X, Y)

Tractability

Existence of optimal 
solutions

Landscape



Non-existence of optimal solutions
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(FSMF) does not always admit an optimal solution

A = ⇥

n

n n

A = (0 1
1 0)

n = 2

 Infimum is zero:  Xk = (
1
k 0
1 −1), Y⊤

k = (1 k
0 k), lim XkY⊤

k = A .

 Infimum is not attained: There is no feasible  such that .(X, Y) A = XY⊤

(Gene H. Golub and Charles F. Van Loan, Matrix Computations)

Existence of optimal solutions



Equivalence between existence - closedness
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min
X,Y

∥A − XY⊤∥2
F  subject to:  supp(X) ⊆ I, supp(Y) ⊆ JORIGINAL 

FORMULATION

min
B∈𝒫I,J

∥A − B∥2
F  where 𝒫I,J := {XY⊤ ∣ supp(X) ⊆ I, supp(Y) ⊆ J}EQUIVALENT 

FORMULATION

Change of variables

PROJECTION OF  ONTO THE SET A 𝒫I,J

 Optimal solutions exist if  and only if   is closed𝒫I,J

Existence of optimal solutions



Deciding the closedness of 𝒫I,J
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Given , decide the closedness of .(I, J) 𝒫I,J

 is 
closed?
𝒫I,J  

is empty?
𝒫I,J∖𝒫I,J

closure of 𝒫I,J

 The emptyness of a semi-algebraic set is decidable (using Quantifier 
Elimination Algorithm).

REMINDER: 𝒫I,J := {XY⊤ ∣ supp(X) ⊆ I, supp(Y) ⊆ J}

semi-algebraic 
set

(S. Basu, R. Pollack, M-F Roy, Algorithms in Real Algebraic Geometry)

 The complexity is doubly exponential (w.r.t. the sizes of  and the matrix).I, J

Existence of optimal solutions



NP-hardness
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For arbitrary support constraint , (FSMF) is NP-hard.(I, J)

THEOREM I

PROOF: Rank-one matrix completion is reducible to (FSMF).

? ? ?

? ? 0

1???

5 ? 2 9 ?

2 1

2 4

9

925

1 =

⇥
This problem is NP-hard.

(N.Gillis, F. Glineur, SIAM Journal on 
Matrix Analysis and Applications )

Tractability



Tractability with structured supports
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An example of  tractable instances

Unconstrained Matrix Factorisation

Minimize
X∈ℝn×r,Y∈ℝm×r

L(X, Y) = ∥A − XY⊤∥2
F

When there is no constraint on the supports of (X, Y)

A = ⇥

r
m

n
Best rank  approximation 

of the matrix .
r

A
(S. Burer, R. D.C. Monteiro, Mathematical Programming)

 Algorithm: Using (Truncated) Singular Value Decomposition.

 Can (Truncated) Singular Value Decomposition still work in constrained cases?

Tractability



Tractability with structured supports (cont)
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Rank one contribution supports

XY > = X1Y
>
1 X3Y

>
3X2Y

>
2

⇥ ⇥ ⇥I J>

No support
constraint

+ +XY > = X1Y
>
1 X3Y

>
3X2Y

>
2

⇥ ⇥ ⇥I J>

I J>

No support
constraint

With support
constraint

+ +

th column of k X th column of k Yrank at most 1

⇥

XY > = X1Y
>
1 X3Y

>
3X2Y

>
2

⇥ ⇥ ⇥I J>

I J>

No support
constraint

With support
constraint

+ +

⇥

XY > = X1Y
>
1 X3Y

>
3X2Y

>
2

⇥ ⇥ ⇥I J>

I J>

No support
constraint

zeros rank-one support

With support
constraint

+ +

⇥ ⇥ ⇥

XY > = X1Y
>
1 X3Y

>
3X2Y

>
2

⇥ ⇥ ⇥I J>

I J>

No support
constraint

zeros rank-one support

With support
constraint

+ +

Tractability



Tractability with structured supports (cont)
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What is special about unconstrained matrix factorization?

All rank-one supports are identical

THEOREM II

If all rank-one supports are pairwise disjoint or identical, then the 
corresponding instance of (FSMF) is polynomially tractable. 

Tractability



Tractability with structured supports (cont)
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THEOREM II

If all rank-one supports are pairwise disjoint or identical, then the 
corresponding instance of (FSMF) is polynomially tractable. 

+ +

 Algorithm: Using (Truncated) Singular Value Decomposition for 
submatrices of the target matrix.

rank-one supports

rank 2

rank 1

Tractability



Litteratures on the landscape of L(X, Y)
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L(X, Y) = ∥A − XY⊤∥2
F

 Linear and shallow neural networks

 Matrix sensing, phase retrieval, 
matrix completion.

 Has been studied for:

(Q. Li, Z. Zhu, G. Tang, The nonconvex geometry of low-rank matrix 
optimization, Information and Inference, 2018)

(Z. Zhu, D. Soudry, Y.C. Eldar, M.B. Wakin, The global optimization 
geometry of shallow linear neural networks, JMIV, 2019)

(L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-
layer neural network optimization landscapes, JMLR, 2019)

 What does the landscape look like in the constrained cases?

Landscape
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Unconstrained matrix factorization

L(X, Y) = ∥A − XY⊤∥2
F

 There is no spurious local minimum for any .A
 There is no spurious local valley for any .A

 Do these properties still hold in constrained cases?

Landscape
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Benign landscape of tractable instances
Reminder: Fixed Support Matrix Factorization

min
X,Y

∥A − XY⊤∥2
F  subject to:  supp(X) ⊆ I, supp(Y) ⊆ J

THEOREM III

If  satisfies the condition of Theorem II, then there is no spurious 
local minima and spurious local valleys.

(I, J)

Landscape



Summary on (FSMF)

•For arbitrary , (FSMF) is NP-hard to solve.(I, J)

(Q-T. Le, E. Riccietti, R. Gribonval, SIAM Journal of Matrix Analysis and Applications, 2023)

NP-hardness

•There are instances  which (FSMF) admits no 
optimal solution.

(A, I, J)Existence of optimal 
solutions

•For certain structured , (FSMF) has a polynomial 
algorithm.

(I, J)Tractability

•With the same family of structured , loss function of 
(FSMF) has no local minima.

(I, J)Benign landscape
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Existence of optimal 
solutions in ReLU 

sparse neural network 
training

28



Sparse ReLU Neural Networks Training
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Optimization problem of  Sparse Neural Networks

Minimize
W( j),b( j)

∥Y − W(N)σ(…σ(W(1)X + b(1)) + …) + b(N)∥2
F

 subject to:  W( j) ∈ ℰj, ∀j ∈ {1,…, N}

Given data set  and  some sets of sparse matrices, solve:𝒟 := (X, Y) ℰj

  is the ReLU activation function: .σ σ(x) = max(x,0)

 In practice,  is usually chosen as the set of -sparse matrices.ℰj k
(J. Frankle, M. Carbin, ICLR 2019), (S. Han, H. Mao, W-J. Dally, ICLR 2016)

 We consider quadratic loss function for simplification. Our argument 
works for any coercive loss function.



Tensor decomposition 
(order at least three)

Matrix Completion

Robust Principle 
Component Analysis 

(Classical) Neural 
Network Training

Non-existence of optimal solutions - ill-posedness

30

 How about the training problem of sparse ReLU neural networks?



Fixed support sparse ReLU neural networks

min
W( j),b( j)

∥Y − W(L)σ(…σ(W(1)X + b(1)) + …) + b(L)∥2
F

 subject to:  W( j) ∈ ℰj, ∀j ∈ {1,…, N}

Given data set , solve:𝒟 := (X, Y)

min
W( j),b( j)

∥Y − W(N)σ(…σ(W(1)X + b(1)) + …) + b(N)∥2
F

 subject to:  supp(W( j)) ∈ Ij, ∀j ∈ {1,…, N}

GENERAL

FIXED SUPPORT
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DÉJÀ VU: closedness vs existence of optimal solutions

Given a support constraint , does optimal 
solutions always exist for all data set  for the 

corresponding training problem ?

(I1, …, IN)
𝒟

The support constraint  makes the training problem always 
admit optimal solutions if and only if for all input sets , the image 
of the function   

is closed.

(I1, …, IN)
X

θ := {(Wi, bi)} ↦ W(N)σ(…σ(W(1)X + b(1)) + …) + b(N)

32



Sufficient condition for the existence of optimal solutions

For two-layer neural networks ( ) with output dimension equal to one, any 
support constraint makes the training problem always admit optimal solutions.

N = 2

THEOREM IV 

For two-layer neural networks ( ) with output dimension equal to one, the 
constraints  makes the training problem always 
admit optimal solutions.

N = 2
ℰj := {X ∣ ∥X∥0 ≤ kj}, j = 1,2

COROLLARY I 

33

(Q-T. Le, E. Riccietti, R. Gribonval, preprint, 2023)



Necessary condition for the existence of optimal solutions

THEOREM V 

For two-layer neural networks ( ) with support constraint , if the 
training problem always admits optimal solutions, then  is closed.

N = 2 (I, J)
𝒫I,J

this is decidable

THEOREM VI

For fixed support neural networks with support constraint , if the 
training problem always admits optimal solutions, then  is closed.

(I1, …, IN)
𝒫I1,…,IN

34

(Q-T. Le, E. Riccietti, R. Gribonval, preprint, 2023)

𝒫I,J := {XY⊤ ∣ supp(X) ⊆ I, supp(Y) ⊆ J}



Necessary condition for the existence of optimal solutions

THEOREM 

The condition is just necessary because when there is no constraint on the 
support, the training problem is ill-posed for certain data set.

(L-H. Lim, M. Michalek, Y. Qi, Constructive Approximation 2019)
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For two-layer neural networks ( ) with support constraint , if the 
training problem always admits optimal solutions, then  is closed.

N = 2 (I, J)
𝒫I,J



Butterfly 
parameterization in 

sparse neural networks
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Introduction to butterfly parameterization
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Discrete Fourier Transform (DFT): yk =
N−1

∑
n=0

e− i2π
N knxn, k = 0,…, N − 1

y = FNx FN = (e− i2π
N kn)k,n∈{0,…,N−1}

Algebraic properties of the Fourier kernel:

yk =
N/2−1

∑
m=0

e− i2π
N/2 kmx2m + e− i2π

N k
N/2−1

∑
m=0

e− i2π
N/2 kmx2m+1

The Cooley - Tukey 
algorithm (radix-2)

yk+N/2 =
N/2−1

∑
m=0

e− i2π
N/2 kmx2m − e− i2π

N k
N/2−1

∑
m=0

e− i2π
N/2 kmx2m+1

DFT on even indices DFT on odd indices



Matrix factorization of DFT
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FNx = (FN/2xe + DN/2FN/2xo

FN/2xe − DN/2FN/2xo)
= (IN/2 DN/2

IN/2 −DN/2) (FN/2 0
0 FN/2) PNx

DN/2 =

1
e− i2π

N

e− i2π
N 2

⋱
e− i2π

N ( N
2 − 1)

Unrolling the recursion:

FN = BN (FN/2 0
0 FN/2) PN

= BN (BN/2 0
0 BN/2)

BN/4
BN/4

BN/4
BN/4

(PN/2 0
0 PN/2) PN

= …

Permutation matrix



Matrix factorization of DFT
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Assume that :N = 2L FN = X(1)…X(L)P
supp(X(ℓ)) ⊆ I2ℓ−1 ⊗ (1 1

1 1) ⊗ I N
2ℓ

support constraint in 
binary matrix form

supp(X(1)) supp(X(2)) supp(X(3)) supp(X(4))

For :N = 16
O(N2) O(N log N)



Butterfly parameterization in Sparse Neural Networks
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x + bx + b
Classical neural networks Butterfly sparse neural networks

Parameterization Number of factors Matrix size Introduced by

Butterfly L T. Dao et. al., 2019

Kaleidoscope 2L T. Dao et. al., 2020

Monarch 2 T. Dao et. al., 2022

Deformable butterfly flexible R. Lin et. al., 2022

2L × 2L

2L × 2L

m × n

m × n

  Supports of factors are fixed, sparse and very structured.

O(N2) O(N log N)



Interpretation of butterfly parameterization
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 Among all existing parameterization, which one should we choose?

Trade-off between performance and compression



Approximation a matrix by butterfly parameterization
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min
W(1),…,W(L)

∥A − W(1)…W(L)∥F s.t. W(ℓ) is butterfly (1)

 Existing algorithm: hierarchical factorization - butterfly algorithm.

  No theoretical guarantee yet. 

ℬ := {W(1)…W(L) ∣ Infimum of (1) = 0}

 Generalized version of (FSMF) with structured supports.

(Michielssen & Boag, 1996); (O'Neil, Woolfe & Rokhlin, 2010); (Liu et. al. 2021)

  Hypothesis class of  matrix:



Analysis of butterfly parameterization
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Algebraic description of : ℬ

Partition 1 Partition 2 

Low rank

Controlled by 
the supports

 Also known as complementary low-rank matrices in the literature.

THEOREM VII

If  is the best error approximation of , the butterfly algorithm yields 
a solution whose distance to  is smaller than  

E* (1)
A (2L−1 − 1)E*



Contribution and future works

•Better algorithms to decide the ill-posedness of (FSMF).

•A full characterization of ill-posedness of sparse ReLU neural networks.

TAKE AWAY MESSAGE
•Link between sparse matrix factorization and its variant (FSMF) with sparse ReLU 
neural networks.

•Necessary/Sufficient condition for the existence of optimal solutions sparse ReLU 
neural networks.

•Butterfly parameterization in sparse deep neural networks

POSSIBLE IMPROVEMENT?
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THANK YOU
https://arxiv.org/abs/2306.02666
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https://arxiv.org/abs/2112.00386
https://faust.inria.fr/



Analysis of butterfly parameterization
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  The supports of all existing factors have the form:

supp(W(ℓ)) ⊆ Ia ⊗ 1b×c ⊗ Id

Parameterization Support forms
Butterfly

Kaleidoscope
Monarch

Deformable butterfly Ia ⊗ 1b×c ⊗ Id

I2ℓ−1 ⊗ 12×2 ⊗ I N
2ℓ

1a×b ⊗ Ic and Ib ⊗ 1c×d

EXAMPLE:

  The product of two consecutive factors remains butterfly .

supp(W(ℓ)W(ℓ+1)) ⊆ Ia′￼
⊗ 1b′￼×c′￼

⊗ Id′￼

  This does not include the Kaleidoscope parameterization.



And Fixed Support Matrix Factorization

A = ⇥ A = ⇥ r

r

LU decomposition Low rank approximation

Hierarchical matrix Butterfly matrix factorization
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Question for sparse neural networks
Problem formulation

Feed forward networks: θ = {(Wi, bi) ∣ i = 1,…, N}
f(x; θ) = WNσ(…σ(W1x + b1)) + bN

ℒθ :=
n

∑
i=1

L( f(θ, xi), yi)

such that:  Wi are sparse matrices

Minimize: 
θ

Existing algorithms / approaches for Sparse Deep Neural Networks training: 
•Pruning & Retraining, Lottery Ticket Hypothesis 

•Regularisation   

•Bayesian/ Variational approaches

l0 or l1

Sparse Deep Neural NetworksConventional Deep Neural Networks

ℒθ :=
n

∑
i=1

L( f(θ, xi), yi)Minimize: 
θ

Training:

(Han et al., IPL 2015), (Zhu et al., 2017), (Jonathan et al., 2019)

(Bengio et al., 2013), (Yu et al., 2017), (Collins et al., 2014), (Liu et al., 2015)

( Neklyudov et al., 2017), (Ullrich et al., 2017), (Louizos et al., 2017)
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