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Joint work with Carlos Améndola and Jose Rodriguez

1 / 41



Table of Contents

1 Problem Set Up

2 (Numerical) Algebraic Geometry Primer

3 Density Estimation for Gaussian Mixture Models

4 Applications in High Dimensional Statistics

2 / 41



Problem Set Up
Density Estimation

A common problem studied in statistics is density estimation

Given N samples from a distribution p (unknown), can we estimate p?

Need to assume p is from some family of distributions

Theorem (Chapter 3 [GBC16])

A Gaussian mixture model is a universal approximator of densities, in the sense that any
smooth density can be approximated with any specific nonzero amount of error by a Gaussian
mixture model with enough components.
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Gaussian Mixture Models

A random variable X � N (µ, σ2) is a Gaussian random variable if it has density

f (x jµ, σ2) =
1p
2πσ2

exp
(
� (x � µ)2

2σ2

)
.

X is distributed as a mixture of k Gaussians if it is the convex combination of k Gaussian
densities
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Figure: N (0, 1) density (left) and 0.2N (�2, 0.5) + 0.8N (2, 0.5) density (right).
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Density Estimation
MLE

Given iid samples, y1, . . . , yN , distributed as the mixture of k Gaussians, how to recover
parameters µi , σ

2
i , λi?

Idea 1 : Maximum likelihood estimation

argmaxµ,σ2,λ

N∏
j=1

k∑
i=1

λi
1√
2πσ2i

exp
(
�

(yj � µi )2

2σ2i

)

Iterative algorithms (EM) can find local optima

Local optima can be arbitrarily bad and random initialization will converge to these bad
points with probability 1� e�Ω(k) [JZB+16]
No bound on number of critical points [AFS16]
Need to access all samples at each iteration
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Density Estimation
Method of Moments

Idea 2 : Method of moments

The method of moments estimator is consistent
Gaussian mixture models are identifiable from their moments
IF you can solve the moment equations, then can recover exact parameters

6 / 41



Density Estimation
Method of Moments

Idea 2 : Method of moments

The method of moments estimator is consistent

Gaussian mixture models are identifiable from their moments
IF you can solve the moment equations, then can recover exact parameters

6 / 41



Density Estimation
Method of Moments

Idea 2 : Method of moments

The method of moments estimator is consistent
Gaussian mixture models are identifiable from their moments

IF you can solve the moment equations, then can recover exact parameters

6 / 41



Density Estimation
Method of Moments

Idea 2 : Method of moments

The method of moments estimator is consistent
Gaussian mixture models are identifiable from their moments
IF you can solve the moment equations, then can recover exact parameters

6 / 41



Method of Moments

For i � 0, the i�th moment of a random variable X with density f is

mi = E[X i ] =

∫
R
x i f (x)dx

For parameterized distributions, moments are functions of parameters

Ex. The first few moments of a N (µ, σ2) random variable are:

m1 = µ, m2 = µ2 + σ2, m3 = µ3 + 3µσ2
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Method of Moments

Consider a statistical model with p unknown parameters, θ = (θ1, . . . , θp) and the
moments up to order M as functions of θ

m1 = g1(θ), . . . ,mM = gM(θ)

Method of Moments:
1 Compute sample moments

mi =
1

N

N∑
j=1

y i
j

2 Solve gi (θ) = mi for i = 1, . . . ,M to recover parameters
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Method of Moments
Gaussian Mixture Models

The moments of the Gaussian distributions are M0(µ, σ
2) = 1, M1(µ, σ

2) = µ,

M`(µ, σ
2) = µM`�1 + (`� 1)σ2M`�2, ` � 2

The moments of mixtures of k Gaussians are

m` =
k∑

i=1

λiM`(µi , σ
2
i ), ` � 0
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Method of Moments
k = 1

When k = 1 this is just density estimation for N (µ1, σ
2
1)

The moment equations are

1 = λ1

m1 = λ1µ1

m2 = λ1(µ
2
1 + σ21)

There is a unique solution given by

λ1 = 1, µ1 = m1, σ21 = m2 �m2
1
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Method of Moments
k = 2

When k = 2, the first 6 moment equations are

1 = λ1 + λ2

m1 = λ1µ1 + λ2µ2

m2 = λ1(µ
2
1 + σ21) + λ2(µ

2
2 + σ22)

m3 = λ1(µ
3
1 + 3µ1σ

2
1) + λ2(µ

3
2 + 3µ2σ

2
2)

m4 = λ1(µ
4
1 + 6µ21σ

2
1 + 3σ41) + λ2(µ

4
2 + 6µ22σ

2
2 + 3σ42)

m5 = λ1(µ
5
1 + 10µ31σ

2
1 + 15µ1σ

4
1) + λ2(µ

5
2 + 10µ32σ

2
2 + 15µ2σ

4
2)

Obervation: If (λ1, µ1, σ21, λ2, µ2, σ
2
2) is a solution, so is (λ2, µ2, σ

2
2, λ1, µ1, σ

2
1)

This symmetry is called label swapping
For a k mixture model, solutions will come in groups of k!
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Method of Moments
History Detour

The study of mixtures of Gaussians dates back to Karl Pearson in 1894 studying
measurements of Naples crab populations [Pea94]

Figure: Pearson’s crab data

Pearson reduced this to finding roots of degree 9 polynomial in the variable x = µ1µ2
Framework: Solve square polynomial system to get finitely many potential densities then
select one closest to the next sample moments
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Identifiability

Different notions of identifiability based on fiber of map:

ΦM : ∆k�1 � Rk � Rk
>0 ! RM

(λ, µ, σ2) 7! (m0, . . . ,mM)

1 Algebraic: For what M is jΦ�1
M (m)j <1 for almost all m 2 Im(ΦM)?

3k � 1 [ARS18]

2 Statistical: For what M does jΦ�1
M (m)j = k! for all m 2 Im(ΦM)?

4k � 2 [KMV12]

3 Rational: For what M is jΦ�1
M (m)j = k! for almost all m 2 Im(ΦM)?

Theorem (L., Améndola, Rodriguez)

Mixtures of k univariate Gaussians are rationally identifiable from moments m1, . . . ,m3k+2.

Conjecture: Gaussian mixture models are rationally identifiable from m1, . . . ,m3k
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Theorem (L., Améndola, Rodriguez)

Mixtures of k univariate Gaussians are rationally identifiable from moments m1, . . . ,m3k+2.

Conjecture: Gaussian mixture models are rationally identifiable from m1, . . . ,m3k

13 / 41



Identifiability

Different notions of identifiability based on fiber of map:

ΦM : ∆k�1 � Rk � Rk
>0 ! RM

(λ, µ, σ2) 7! (m0, . . . ,mM)

1 Algebraic: For what M is jΦ�1
M (m)j <1 for almost all m 2 Im(ΦM)?

3k � 1 [ARS18]

2 Statistical: For what M does jΦ�1
M (m)j = k! for all m 2 Im(ΦM)?

4k � 2 [KMV12]

3 Rational: For what M is jΦ�1
M (m)j = k! for almost all m 2 Im(ΦM)?
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Method of Moments Framework

1 Solve moment equations

1 = m0

m1 = m1

...

m3k�1 = m3k�1

over the complex numbers to get finitely many complex solutions

2 Filter out statistically meaningful solutions (real solutions with λi � 0, σ2i > 0)

3 Select statistically meaningful solution agreeing with moments m3k ,m3k+1,m3k+2

Question: How do I solve a square system of polynomial equations?

14 / 41



Method of Moments Framework

1 Solve moment equations

1 = m0

m1 = m1

...

m3k�1 = m3k�1

over the complex numbers to get finitely many complex solutions

2 Filter out statistically meaningful solutions (real solutions with λi � 0, σ2i > 0)

3 Select statistically meaningful solution agreeing with moments m3k ,m3k+1,m3k+2

Question: How do I solve a square system of polynomial equations?

14 / 41



Method of Moments Framework

1 Solve moment equations

1 = m0

m1 = m1

...

m3k�1 = m3k�1

over the complex numbers to get finitely many complex solutions

2 Filter out statistically meaningful solutions (real solutions with λi � 0, σ2i > 0)

3 Select statistically meaningful solution agreeing with moments m3k ,m3k+1,m3k+2

Question: How do I solve a square system of polynomial equations?

14 / 41



Method of Moments Framework

1 Solve moment equations

1 = m0

m1 = m1

...

m3k�1 = m3k�1

over the complex numbers to get finitely many complex solutions

2 Filter out statistically meaningful solutions (real solutions with λi � 0, σ2i > 0)

3 Select statistically meaningful solution agreeing with moments m3k ,m3k+1,m3k+2

Question: How do I solve a square system of polynomial equations?
14 / 41



Table of Contents

1 Problem Set Up

2 (Numerical) Algebraic Geometry Primer

3 Density Estimation for Gaussian Mixture Models

4 Applications in High Dimensional Statistics

15 / 41



Algebraic Geometry Primer

Let f1, . . . , fm 2 R[x1, . . . , xn]. The (complex) variety of F = hf1, . . . , fmi is

V(F ) = fx 2 Cn : f1(x) = 0, . . . , fm(x) = 0g

Interested in case when n = m and jV(F )j <1
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Algebraic Geometry Primer
Bezout Bound

Consider jV(F )j <1. Question: How big is jV(F )j?

Theorem (Bezout)

jV(F )j � d1 � � � dn where di = deg(fi )

Can be strict upper bound when fi are sparse

Theorem (BKK Bound [Ber75, Kho78, Kou76])

jV(F ) \ (C�)nj � MVol(Newt(f1), . . . ,Newt(fn))

In general, not easy to compute the mixed volume (#P hard)
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Finding All Complex Solutions
Homotopy Continuation

Idea: Solving most polynomial systems is hard, but some are easy

HT =


2(x2x3 � x1x4) + 3x3 = 0

2(x1x4 � x2x3) + 4x4 = 0

x21 + x23 = 1

x22 + x24 = 1

HS =


x21 = 1

x22 = 1

x23 = 1

x24 = 1

Can I map my solutions from HS to HT ?

Define Ht := (1� t)HS + tHT and compute Ht as t ! 1
Called following homotopy paths

Typically use predictor-corrector methods
Predict: Take step along tangent direction at a point
Correct: Use Newton’s method
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Homotopy Continuation Visual

Figure: The homotopy Ht = (1� t)HS + tHT (left)[KW14] and the predictor corrector step (right)
[BT18]
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Homotopy Continuation
Start System

Want to pick a start system, HS , such that
1 The solutions of HS are easy to find
2 The number of solutions to HS � the number of solutions to HT

If jV(F )j � d1 � � � dn then a total degree start system is suitable. i.e.

HS = hxd11 � 1, . . . , xdnn � 1i

If MVol(Newt(f1), . . . ,Newt(fn))� d1 � � � dn then a polyhedral start system is suitable

There exists an algorithm that finds this binomial start system [HS95]
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Examples of Start Systems

F = hx2 � 3x + 2, 2xy + y � 1i

Total degree: hx2 � 1, y2 � 1i

Polyhedral: hx2 + 2, y � 1i
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Back to Gaussian Mixture Models

There are three special cases of Gaussian mixture models commonly studied in the
statistics literature:

1 The mixing coefficients are known
2 The mixing coefficients are known and the variances are equal
3 Only the means are unknown
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Main Result

Theorem (L., Améndola, Rodriguez [LAR21])

In all cases, Gaussian mixture models are algebraically identifiable using moment equations of
lowest degree. Moreover, the mixed volume of each of set of equations is given below.

Known mixing
coefficients

Known mixing coefficients
+ equal variances

Unknown
means

Moment equations m1, . . . ,m2k m1, . . . ,mk+1 m1, . . . ,mk

Unknowns µi , σ
2
i µi , σ

2 µi
Mixed volume (2k � 1)!!k! (k+1)!

2
k!

Mixed volume tight Yes for k � 8 Yes for k � 8 Yes
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Classes of Gaussian Mixture Models
Solving the Polynomial Systems

Mixed Volume Bezout Bound

Known mixing coefficients (2k � 1)!!k! (2k)!

Known mixing coefficients + equal variances (k+1)!
2

(k + 1)!

Unknown means k! k!

Our proofs of the mixed volume in the first two cases give a start system that tracks
mixed volume number of paths

In the final case if λi =
1
k and σ2i are equal, there is a unique solution up to symmetry
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Gaussian Mixture Models
In high dimensions

A random variable X 2 Rn is distributed as a multivariate Gaussian with mean µ 2 Rn

and covariance Σ 2 Rn�n, Σ � 0, if it has density

fX (x1, . . . , xnjµ,Σ) = ((2π)n det(Σ))�1/2 exp
(
� 1

2
(x � µ)TΣ�1(x � µ)

)

Figure: Gaussian density in R2 with mean µ =

[
0
0

]
and covariance Σ =

[
1 0
0 1

]
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Example
k = n = 2

Suppose X � λ1N (µ1,Σ1) + λ2N (µ2,Σ2) where

µ1 =

(
µ11
µ12

)
, Σ1 =

(
σ111 σ112
σ112 σ122

)
µ2 =

(
µ21
µ21

)
, Σ2 =

(
σ211 σ212
σ212 σ222

)
.

The moment equations up to order 3 are
m00 = λ1 + λ2

m10 = λ1µ11 + λ2µ21

m01 = λ1µ12 + λ2µ22

m20 = λ1(µ
2
11 + σ111) + λ2(µ

2
21 + σ211)

m11 = λ1(µ11µ12 + σ112) + λ2(µ21µ22 + σ212)

m02 = λ1(µ
2
12 + σ122) + λ2(µ

2
22 + σ222)

m30 = λ1(µ
3
11 + 3µ11σ111) + λ2(µ

3
21 + 3µ21σ211)

m21 = λ1(µ
2
11µ12 + 2µ11σ112 + µ12σ111) + λ2(µ

2
21µ22 + 2µ21σ212 + µ22σ211)

m12 = λ1(µ11µ
2
12 + µ11σ122 + 2µ12σ112) + λ2(µ21µ

2
22 + µ21σ222 + 2µ22σ212)

m03 = λ1(µ
3
12 + 3µ12σ122) + λ2(µ

3
22 + 3µ22σ222)
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Higher Order Moments
Application of Univariate Results

Key Observation: The m0,0,...,0,it ,0,...0�th moment is the same as the it�th order

moment for the univariate Gaussian mixture model
∑k

`=1 λ`N (µ`t , σ`tt)

Density estimation for high dimensional Gaussian mixture models becomes multiple
instances of one dimensional problems

Advantage: Only track the best statistically meaningful solution
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Algorithm
Density Estimation for High Dimensional Gaussian Mixture Models

Input: A set of sample moments m1

Output: Parameters λ` 2 R, µ` 2 Rn, Σ` � 0 for ` 2 [k] such that m are the moments
of distribution

∑k
`=1 λ`N (µ`,Σ`)

1 Solve the general univariate case using sample moments m0,...,0,1, . . . ,m0,...,0,3k�1 to get
parameters λ`, µ`,1 and σ`,1,1

2 Select statistically meaningful solution with moments m0,...,0,3k ,m0,...,0,3k+1,m0,...,0,3k+2

3 Using the mixing coefficients λ` solve the known mixing coefficients case n � 1 times to
obtain the remaining means and variances

4 Select the statistically meaningful solution closest to next sample moments

5 The covariances are linear in the other entries, solve this linear system

1Sample moments need to be in the same cell as the moments of the true density
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Example: (k , n) = (2, 2)

Suppose X � λ1N (µ1,Σ1) + λ2N (µ2,Σ2) where

µ1 =

(
µ11
µ12

)
, Σ1 =

(
σ2
111 σ112
σ112 σ2

122

)
µ2 =

(
µ21
µ21

)
, Σ2 =

(
σ2
211 σ212
σ212 σ2

222

)
.

Given sample moments

[m10,m20,m30,m40,m50,m60] = [�0.25, 2.75, �1.0, 22.75, �6.5, 322.75]

[m01,m02,m03,m04,m05] = [2.5, 16.125, 74.5, 490.5625, 2921.25]

[m11,m21] = [0.8125, 7.75]
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Example (cont.)
Algorithm in Action

Step 1: Solve general case to obtain λ`, µ`1, σ
2
`11 for ` = 1, 2

1 = λ1 + λ2

�0.25 = λ1µ11 + λ2µ21

2.75 = λ1(µ
2
11 + σ2

111) + λ2(µ
2
21 + σ2

211)

�1 = λ1(µ
3
11 + 3µ11σ

2
111) + λ2(µ

3
21 + 3µ21σ

2
211)

22.75 = λ1(µ
4
11 + 6µ211σ

2
111 + 3σ4

111) + λ2(µ
4
21 + 6µ221σ

2
211 + 3σ4

211)

�6.5 = λ1(µ
5
11 + 10µ311σ

2
111 + 15µ11σ

4
111) + λ2(µ

5
21 + 10µ321σ

2
211 + 15µ21σ

4
211)

(Up to symmetry) two statistically meaningful solutions:

(λ1, λ2, µ11, µ21, σ
2
111, σ

2
211) = (0.25, 0.75, 0,�1, 3, 1)

(λ1, λ2, µ11, µ21, σ
2
111, σ

2
211) = (0.967, 0.033, �0.378, 3.493, 2.272, 0.396)

Step 2: First solution has m60 = 322.75, second has m60 = 294.686
Select first solution
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2
111, σ

2
211) = (0.967, 0.033, �0.378, 3.493, 2.272, 0.396)

Step 2: First solution has m60 = 322.75, second has m60 = 294.686
Select first solution
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Example (cont.)
Algorithm in Action

Step 3: Using λ1 = 0.25, λ2 = 0.75 solve

2.5 = 0.25 � µ12 + 0.75 � µ22
16.125 = 0.25 � (µ212 + σ2

122) + 0.75 � (µ222 + σ2
222)

74.5 = 0.25 � (µ312 + 3µ12σ
2
122) + 0.75 � (µ322 + 3µ22σ

2
222)

490.5625 = 0.25 � (µ412 + 6µ212σ
2
122 + 3σ4

122) + 0.75 � (µ422 + 6µ222σ
2
222 + 3σ4

222)

One statistically meaningful solution

(µ12, µ22, σ
2
122, σ

2
222) = (�2, 4, 2, 3.5 )

Step 4: Choose only statistically meaningful solution
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Example (cont.)
Algorithm in Action

Step 5: Solve the linear system

0.8125 = 0.25 � (2 + σ112) + 0.75 � σ212
7.75 = 0.25 � (�4 + 2 � σ112) + 9

There is one solution

(σ112, σ212) = (0.5, 0.25)

Estimate that our samples came from density

0.25 � N
([�1
�2

]
,

[
1 0.5
0.5 2

])
+ 0.75 � N

([0
4

]
,

[
3 0.25

0.25 3.5

])
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Analysis of Algorithm
Computational Complexity

Steps 3 and 4 can be run in parallel

Need to track Nk + (2k � 1)!!k! � (n� 1) homotopy paths where Nk = # of paths needed
for a general k mixture model

Number of homotopy paths is linear in n

Even simpler in cases where some of the parameters are known
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Analysis of Algorithm
Parameter Recovery

Figure: Two Gaussian mixture densities with k = 3 components and the same first eight moments.

Figure: Individual components of two Gaussian mixture models with similar mixture densities.
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Computational Results
Density Estimation for High Dimensional Gaussian Mixture Models

We perform the method of moments on the mixture of 2 Gaussians in Rn with diagonal
covariance matrices

n 10 100 1,000 10,000 100,000

Time (s) 0.17 0.71 6.17 62.05 650.96

Error 7.8� 10�15 4.1� 10�13 5.7� 10�13 3.0� 10�11 1.8� 10�9

Normalized Error 1.9� 10�16 1.0� 10�15 1.4� 10�16 7.3� 10�16 4.5� 10�15

Table: Average running time and numerical error for a mixture of 2 Gaussians in Rn
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Conclusion

Gave new rational and algebraic identifiability results for Gaussian mixture models

Gave upper bound for number of solutions to univariate Gaussian k mixture moment
systems in three cases

Applied these results to efficiently do density estimation in high dimensions

Thank you! Questions?

Paper: ‘Estimating Gaussian mixture models using sparse polynomial moment systems’

arXiv:2106.15675
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[ARS18] Carlos Améndola, Kristian Ranestad, and Bernd Sturmfels, Algebraic identifiability of Gaussian mixtures, Int. Math. Res. Not. IMRN (2018), no. 21,
6556–6580. MR 3873537

[Ber75] David N. Bernstein, The number of roots of a system of equations, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 1–4. MR 0435072
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