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Problem Set Up

Density Estimation
@ A common problem studied in statistics is density estimation
@ Given N samples from a distribution p (unknown), can we estimate p?

@ Need to assume p is from some family of distributions

Theorem (Chapter 3 [GBC16])

A Gaussian mixture model is a universal approximator of densities, in the sense that any
smooth density can be approximated with any specific nonzero amount of error by a Gaussian
mixture model with enough components.
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Gaussian Mixture Models

o A random variable X N (u,0?) is a Gaussian random variable if it has density

. 1 (x p)?

2\ _ 7

o) — s e ()

o X is distributed as a mixture of k Gaussians if it is the convex combination of k Gaussian
densities

-4 -2 2 4 -4 -2 2 4

Figure: N (0,1) density (left) and 0.2N( 2,0.5) 4+ 0.8N (2,0.5) density (right).
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Density Estimation

MLE

@ Given iid samples, y1, ..., yn, distributed as the mixture of k Gaussians, how to recover
parameters yi;, 01-2, Ai?

o Ildea 1 : Maximum likelihood estimation

k
argmax, ;2 HZ)\,
j=1i=1 \/

o lterative algorithms (EM) can find local optima

e Local optima can be arbitrarily bad and random initialization will converge to these bad
points with probability 1 e (¥ [JZB*16]

o No bound on number of critical points [AFS16]

o Need to access all samples at each iteration
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Density Estimation

Method of Moments

o Idea 2 : Method of moments

o The method of moments estimator is consistent
o Gaussian mixture models are identifiable from their moments
o IF you can solve the moment equations, then can recover exact parameters
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@ Fori 0, the i th moment of a random variable X with density f is

m; = E[X'] = /Rx"f(x)dx
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Method of Moments

@ Fori 0, the i th moment of a random variable X with density f is

m; = E[X'] = /Rx"f(x)dx

@ For parameterized distributions, moments are functions of parameters

e Ex. The first few moments of a N (1, 2) random variable are:

mo=p,  m=p’+o°  mz=p’+3u0’

7/4
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moments up to order M as functions of 6
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Method of Moments

o Consider a statistical model with p unknown parameters, 6 = (61, ...,60,) and the
moments up to order M as functions of 6

my = g1(9), e,y = gM(O)

o Method of Moments:
@ Compute sample moments

1N
mi= DY
j=1
@ Solve g;(f) =mm; for i =1,..., M to recover parameters
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Method of Moments

Gaussian Mixture Models

o The moments of the Gaussian distributions are Mo(u, 0?) =1, My(u, 0?) = p,
My(p,02) = uMy, 1+ (¢ 1)a*M, 5, ‘2

@ The moments of mixtures of k Gaussians are

k
my = ZA,’M@(/L,’,U?), K 0
i=1
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Method of Moments

k=1

@ When k = 1 this is just density estimation for N (y1,0%)

@ The moment equations are

1=X
my = A
my = Mi(pd + 03)

@ There is a unique solution given by

— I —
A1 =1, Bl = ma, o =my mj
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k=2

@ When k = 2, the first 6 moment equations are

1=XM+X
my = A + Azp2
My = M(pi + 07) + Xa(pi3 + 03)
3 = A1(pi + 3107) + Ao + 3p1203)
My = Ai(pf + 6p507 + 307) + Xa(p3 + 6p505 + 303)
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Method of Moments

k=2

@ When k = 2, the first 6 moment equations are

1=+ A
my = A1 + Aop2
My = M(pi + 07) + Xa(pi3 + 03)
3 = A1(pi + 3107) + Ao + 3p1203)
My = Ai(pf + 6p507 + 307) + Xa(p3 + 6p505 + 303)
M5 = A1(p3 + 10p307 + 15p107) + Ao (13 + 10305 + 15120%)
o Obervation: If ()\1,“1,0%, )\g,uz,ag) is a solution, so is (Az,uz,ag,Al,ul,Jf)

e This symmetry is called /abel swapping
e For a k mixture model, solutions will come in groups of k!

11/41



Method of Moments

History Detour

@ The study of mixtures of Gaussians dates back to Karl Pearson in 1894 studying
measurements of Naples crab populations [Pea94]

Pearson Crab Data
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Frequency

Ratio of body length

Figure: Pearson’s crab data
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Method of Moments

History Detour

@ The study of mixtures of Gaussians dates back to Karl Pearson in 1894 studying
measurements of Naples crab populations [Pea94]

Pearson Crab Data
100

Frequency

Ratio of body length
Figure: Pearson’s crab data

@ Pearson reduced this to finding roots of degree 9 polynomial in the variable x = pju2

o Framework: Solve square polynomial system to get finitely many potential densities then

select one closest to the next sample moments 1241
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&y : Ay 1 RF R, ERM
()‘7/“670-2)! (m07"'7mM)

@ Algebraic: For what M is j,,'(m)j < 1 for almost all m 2 Im(®4)?
o 3k 1[ARS1§]

@ Statistical: For what M does jo,,'(m)j = k! for all m 2 Im(®p)?
o 4k 2 [KMV12]

© Rational: For what M is jo,,'(m)j = k! for almost all m 2 Im(®)?

Theorem (L., Améndola, Rodriguez)

Mixtures of k univariate Gaussians are rationally identifiable from moments my, ..., m3xio.

@ Conjecture: Gaussian mixture models are rationally identifiable from my, ..., m3y
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Method of Moments Framework

@ Solve moment equations

m3, 1= M3k 1

over the complex numbers to get finitely many complex solutions
@ Filter out statistically meaningful solutions (real solutions with \; 0,02 > 0)
© Select statistically meaningful solution agreeing with moments msg, M3x11, M3k42

Question: How do | solve a square system of polynomial equations?
14/41
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Algebraic Geometry Primer

o Let f1,...,fm 2 R[x1,...,xn]. The (complex) variety of F =hfy,... fuiis

@ Interested in case when n=mand JV(F)j < 1
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Algebraic Geometry Primer
Bezout Bound

e Consider jV(F)j < A. Question: How big is jV(F)j?

Theorem (Bezout)
IV(F)j & d, where d; = deg(f;)

@ Can be strict upper bound when f; are sparse

Theorem (BKK Bound [Ber75, Kho78, Kou76])

V(F)N(C )" MVol(Newt(f), ..., Newt(f,))

@ In general, not easy to compute the mixed volume (#P hard)

17/41
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Finding All Complex Solutions

Homotopy Continuation

@ Idea: Solving most polynomial systems is hard, but some are easy

2(X2X3 X1X4)+3X3 =0 X1 =

2(x1xg  xo0x3)+4x4 =0 X2 =
Hy = g142 2X3) 4 Hs = 22

E+x2=1 xZ =1

@ Can | map my solutions from Hs to H7?

o Define H; := (1 t)Hs + tHt and compute Hy ast ¥ 1
o Called following homotopy paths

@ Typically use predictor-corrector methods
o Predict: Take step along tangent direction at a point
o Correct: Use Newton's method
18/41



Homotopy Continuation Visual

predictor. o Tk+1

i / corrector
i (Newton's method)

T a(tin)

0

Figure: The homotopy H; = (1
[BT18]

t

tr e o thi1
Aty

t)Hs + tHt (left)[KW14] and the predictor corrector step (right)
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Homotopy Continuation

Start System

@ Want to pick a start system, Hg, such that

@ The solutions of Hs are easy to find
@ The number of solutions to Hs  the number of solutions to H

e If jV(F)j di dythen a total degree start system is suitable. i.e.

H5:hx{11 1,...,x% 1i

r'n

o If MVol(Newt(f;),...,Newt(f,)) di  d, then a polyhedral start system is suitable

@ There exists an algorithm that finds this binomial start system [HS95]
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Examples of Start Systems

F=hx* 3x+2 2xy+y i

Total degree: hx?> 1, y* 1i

Polyhedral: hx®+2, y 1i
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Back to Gaussian Mixture Models

@ There are three special cases of Gaussian mixture models commonly studied in the
statistics literature:
© The mixing coefficients are known
@ The mixing coefficients are known and the variances are equal
© Only the means are unknown
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Main Result

Theorem (L., Améndola, Rodriguez [LAR21])

In all cases, Gaussian mixture models are algebraically identifiable using moment equations of
lowest degree. Moreover, the mixed volume of each of set of equations is given below.

Known mixing | Known mixing coefficients | Unknown
coefficients + equal variances means
Moment equations || m1, ..., mo mi, ..., Mgs1 muy, ..., mg
Unknowns Wiy a,-2 i, o2 i
Mixed volume (2k  1)1k! (k1) k!
Mixed volume tight || Yes for k 8 | Yesfor k 8 Yes
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Solving the Polynomial Systems

Mixed Volume

Bezout Bound
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Known mixing coefficients + equal variances
Unknown means

2k 1)IK!
(k+1)!

2
k!
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(k +1)!
k!
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Classes of Gaussian Mixture Models

Solving the Polynomial Systems

Mixed Volume

Bezout Bound

Known mixing coefficients
Known mixing coefficients + equal variances

Unknown means

2k 1)IK!
(k+1)!

2
k!

(2k)!
(k +1)!
k!

@ Our proofs of the mixed volume in the first two cases give a start system that tracks

mixed volume number of paths

@ In the final case if \; = % and a,-2 are equal, there is a unique solution up to symmetry

25/41
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Gaussian Mixture Models

In high dimensions

@ A random variable X 2 R" is distributed as a multivariate Gaussian with mean pu 2 R"
and covariance X 2 R" ", ¥ 0, if it has density

(X, - - xnitts £) = ((27)" det(E)) 1/2exp( %(X WTE Hx u))

0.10
0.05

0.00}

5 0

Figure: Gaussian density in R? with mean p = {0] and covariance ¥ = {1 O]

0 01
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Example

k=n=2
Suppose X A1N (1, X1) + A2N (p2, X2) where
_ (M1 _ (o111 0112
= (Mu) ’ L= (0112 0122)
_ [ H21 _ (0211 0212
H2 = (M21) ’ = (0212 0222) '
The moment equations up to order 3 are
moo = A1+ A2

mio = A1pa1 + Aapo1
mo1 = A1p12 + Aopon
moo = M (p2y 4 o111) + A3y + o211)

mi1 = M(paapi2 + o112) + Aa(p21p22 + 0212)

moz = A1 (p3s + 0122) + A2 13y + 0222)

m3o = M (3 + 3pa10111) + Ao (13 + 3p210011)

mpp = Al(ﬂﬁ#u + 2p110112 + p12o111) + >\2(M§1u22 + 21210212 + p220211)
mi2 = M (p11 3y + 110122 + 20120112) + Aa(po1 30 + 1210202 + 24220212)
mos = A1(p3s + 3p120122) + Ao (p3s + 3p220222)
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= (Mu) ’ L= (0112 0122)
_ [ H21 _ (0211 0212
H2 = (M21) ’ = (0212 0222) '
The moment equations up to order 3 are
moo = A1+ A2

m1o = A1p11 + A2pi21

mo1 = A1p12 + Aap2

mo = M (pdy + o111) + Aa(p3y + oo11)

mi1 = M(paapi2 + o112) + Aa(p21p22 + 0212)
moz = A1 (13, + 0122) + Ao (pd, + 0222)

m3o = A1 (p3; + 3p110111) + Ao (pdy + 3p210211)

(13
= M (g 12 + 2110112 + p120111) 4 Aa(pdy po2 4 2p210212 + pr220211)
mi2 = M (p11 3y + 110122 + 20120112) + Aa(po1 30 + 1210202 + 24220212)
)\1(

His + 3p120122) + >\2(#22 + 3p220222) 2041



Higher Order Moments

Application of Univariate Results

e Key Observation: The mgg . 00,0 th momentisthe same as the i; th order
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Higher Order Moments

Application of Univariate Results

e Key Observation: The mgg . 00,0 th momentisthe same as the i; th order
moment for the univariate Gaussian mixture model 25:1 AeN (por, oott)

@ Density estimation for high dimensional Gaussian mixture models becomes multiple
instances of one dimensional problems

@ Advantage: Only track the best statistically meaningful solution

30/41
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Algorithm

Density Estimation for High Dimensional Gaussian Mixture Models

Input: A set of sample moments m?

Output: Parameters Ay 2 R, uy 2 R", ¥, 0 for £ 2 [k] such that m are the moments
of distribution 25:1 AeN (e, Zg)
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Algorithm

Density Estimation for High Dimensional Gaussian Mixture Models

Input: A set of sample moments m?

Output: Parameters Ay 2 R, uy 2 R", ¥, 0 for £ 2 [k] such that m are the moments
of distribution 25:1 AeN (e, Zg)

@ Solve the general univariate case using sample moments mo . 01,...,Mp,. 03k 1 to get
parameters Ay, f1g1 and oy11

@ Select statistically meaningful solution with moments Mg . 0.3k, Mo,....0.3k+1, Mo,...,0,3k+2

© Using the mixing coefficients Ay solve the known mixing coefficients case n 1 times to
obtain the remaining means and variances

@ Select the statistically meaningful solution closest to next sample moments

© The covariances are linear in the other entries, solve this linear system

!Sample moments need to be in the same cell as the moments of the true density
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Example: (k,n) = (2,2)

@ Suppose X AN (,ul, Zl) + XN (,u2, 22) where

2
H11 o o112
M1 = ( ) Y= My
H12 0112 Ojpp

2
o = p21 ¥, = (721 ‘7512
s .
21 0212 Oy
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Example: (k,n) = (2,2)

@ Suppose X A1N(p1,X1) + A2N (p2, X2) where

2
_ M1l S — 0117 0112
Ha (#12) ’ ! (UIH 0%22)
2
_ [ H21 _ (0511 0212
- T, = .
He (uzl) ’ 2 <0212 U%zz)
@ Given sample moments

[mlo,mzo,mgo,ﬁ40,ﬁ50,ﬁ50] :[ 0.25, 2.75, 1.0, 22.75, 6.5, 322.75]
[mo1, Mo2, Moz, Moa, Mos] = [2.5, 16.125, 74.5, 490.5625, 2921.25]
[M11, m21] = [0.8125, 7.75]

32/41



Example (cont.)

Algorithm in Action

e Step 1: Solve general case to obtain Ay, jue1, 0%, for £ =1,2

1=+ %
0.25 = A\jpa1 + Aopo1
2.75 = M(p3; + ofn) + N (131 + o311)
L= i(pdy + 3pnioin) + Na(3; + 3u210%1;)
22.75 = Mi(uiy + 6pf1oin + 30111) + Aa(udy + 6u310%11 + 30%311)
6.5 = A1 (pfy + 10p31071, + 15u110711) + Ao (p3; + 10p31031; + 15210%4)
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Example (cont.)

Algorithm in Action

e Step 1: Solve general case to obtain Ay, jue1, 0%, for £ =1,2

1=+ %
0.25 = A\jpa1 + Aopo1
2.75 = M(p3; + ofn) + N (131 + o311)
L= i(pdy + 3pnioin) + Na(3; + 3u210%1;)
22.75 = Mi(uiy + 6pf1oin + 30111) + Aa(udy + 6u310%11 + 30%311)
6.5 = A1 (pfy + 10p31071, + 15u110711) + Ao (p3; + 10p31031; + 15210%4)

e (Up to symmetry) two statistically meaningful solutions:

(A1, A2, a1, o1, 0311, 031) = (0.25, 0.75, 0, 1, 3, 1)
(A1, A2, pa1, p21, 051, 051 ) = (0.967, 0.033, 0.378, 3.493, 2.272, 0.396)

@ Step 2: First solution has mgg = 322.75, second has mgy = 294.686

@ Select first solution
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Example (cont.)

Algorithm in Action

@ Step 3: Using A\; = 0.25, A\p = 0.75 solve

25=0.25 pi2+0.75 pux»
16.125 = 0.25 (u2, + 0395) +0.75 (3 + 0355)
745 =025 (i + 3m120%5) +0.75 (3, + 31220%2)
490.5625 = 0.25 (s + 6132075 +3015) +0.75 (13 + 613,055 + 30%5)
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@ One statistically meaningful solution

(M12>,U22aa%2270322) :( 2, 4, 2, 3'5)
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Example (cont.)

Algorithm in Action

@ Step 3: Using A\; = 0.25, A\p = 0.75 solve

25=0.25 pi2+0.75 pux»
16.125 = 0.25 (u2, + 0395) +0.75 (3 + 0355)
745 =025 (i + 3m120%5) +0.75 (3, + 31220%2)
490.5625 = 0.25 (s + 6132075 +3015) +0.75 (13 + 613,055 + 30%5)

@ One statistically meaningful solution

(M12>,U22aa%2270322) :( 2, 4, 2, 3'5)

@ Step 4: Choose only statistically meaningful solution
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Example (cont.)

Algorithm in Action

o Step 5: Solve the linear system

0.8125=0.25 (2+ 0112) +0.75 o212
7.75=025 ( 442 o0112)+9
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@ There is one solution

(0112, 0212) = (0.5, 0.25)
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Example (cont.)

Algorithm in Action

o Step 5: Solve the linear system

0.8125=0.25 (2+ 0112) +0.75 o212
7.75=025 ( 442 o0112)+9

@ There is one solution
(0112, 0212) = (0.5, 0.25)

@ Estimate that our samples came from density
1 1 05 0 3 025
025 N [ 2] ’ [0.5 2 ] )+075 N( M ! [0.25 3.5] )
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Analysis of Algorithm

Computational Complexity

@ Steps 3 and 4 can be run in parallel
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Analysis of Algorithm

Computational Complexity

@ Steps 3 and 4 can be run in parallel

@ Need to track Ny + (2k 1)!1k! (n 1) homotopy paths where Ny = # of paths needed
for a general k mixture model

@ Number of homotopy paths is linear in n

@ Even simpler in cases where some of the parameters are known
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Analysis of Algorithm

Parameter Recovery

Figure: Individual components of two Gaussian mixture models with similar mixture densities.
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Computational Results

Density Estimation for High Dimensional Gaussian Mixture Models

@ We perform the method of moments on the mixture of 2 Gaussians in R"” with diagonal
covariance matrices

n 10 100 1,000 10,000 100,000

Time (s) 0.17 0.71 6.17 62.05 650.96
Error 78 10 41 10 57 101 30 10 18 10°
Normalized Error [ 1.9 10 ® 10 10 ® 14 10 ® 73 1016 45 10

Table: Average running time and numerical error for a mixture of 2 Gaussians in R”
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Conclusion

@ Gave new rational and algebraic identifiability results for Gaussian mixture models

@ Gave upper bound for number of solutions to univariate Gaussian k mixture moment
systems in three cases

@ Applied these results to efficiently do density estimation in high dimensions

Thank you! Questions?
Paper: ‘Estimating Gaussian mixture models using sparse polynomial moment systems’

arXiv:2106.15675
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