Action of the Cremona group on a CAT(0) cube complex

Algebraic Geometry Seminar of the University of Nottingham

9 June 2021

Anne LONJOUUniversité Paris-Saclay

joint work with Christian Urech

Cremona group of rank n

Let k be any field.

The <u>Cremona group</u> of rank n, denoted by $Bir(\mathbb{P}_k^n)$, is the group of birational transformations of \mathbb{P}^n .

•
$$f \in \operatorname{Bir}(\mathbb{P}^n_k) \leadsto f: \mathbb{P}^n \longrightarrow \mathbb{P}^n$$

$$[x_0 : \ldots : x_n] \longmapsto [f_0 : \ldots : f_n],$$

where $f_i \in k[x_0, \dots, x_n]$ homogeneous of same degree and without common factor $+ f^{-1}$ of the same form.

Cremona group of rank n

Let k be any field.

The <u>Cremona group</u> of rank n, denoted by $Bir(\mathbb{P}_k^n)$, is the group of birational transformations of \mathbb{P}^n .

•
$$f \in Bir(\mathbb{P}^n_k) \leadsto f: \mathbb{P}^n \longrightarrow \mathbb{P}^n$$

 $[x_0 : \ldots : x_n] \longmapsto [f_0 : \ldots : f_n],$

where $f_i \in k[x_0, \dots, x_n]$ homogeneous of same degree and without common factor $+ f^{-1}$ of the same form.

- $\deg(f) = \deg(f_i)$.
- $\cap \{f_i = 0\}$ set where f is not well defined.

Cremona group of rank n

Let k be any field.

The <u>Cremona group</u> of rank n, denoted by $Bir(\mathbb{P}_k^n)$, is the group of birational transformations of \mathbb{P}^n .

•
$$f \in \operatorname{Bir}(\mathbb{P}^n_k) \leadsto f: \mathbb{P}^n \longrightarrow \mathbb{P}^n$$

$$[x_0 : \ldots : x_n] \longmapsto [f_0 : \ldots : f_n],$$

where $f_i \in k[x_0, \dots, x_n]$ homogeneous of same degree and without common factor $+ f^{-1}$ of the same form.

- $\deg(f) = \deg(f_i)$.
- $\cap \{f_i = 0\}$ set where f is not well defined.
- Remark: $Bir(\mathbb{P}_k^n) \simeq Aut_k \ k(x_1, \dots, x_n)$.

Examples

- $\operatorname{\mathsf{Aut}}(\mathbb{P}^n) = \{ f \in \operatorname{\mathsf{Bir}}(\mathbb{P}^n) \mid \deg(f) = 1 \} \simeq \operatorname{\mathsf{PGL}}_{n+1}(k).$
- $\mathsf{GL}_n(\mathbb{Z})$: subgroup of monomial transformations. $(m_{ij})_{1\leqslant i,j\leqslant n} \leftrightsquigarrow (x_1,\ldots,x_n) \mapsto (\prod_{j=1}^n x_i^{m_{1j}},\ldots,\prod_{j=1}^n x_i^{m_{nj}})$

Examples

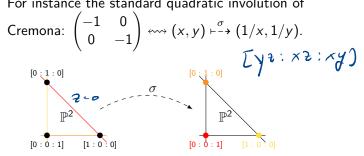
- $\operatorname{\mathsf{Aut}}(\mathbb{P}^n) = \{ f \in \operatorname{\mathsf{Bir}}(\mathbb{P}^n) \mid \operatorname{\mathsf{deg}}(f) = 1 \} \simeq \operatorname{\mathsf{PGL}}_{n+1}(k).$
- $\mathsf{GL}_n(\mathbb{Z})$: subgroup of monomial transformations. $(m_{ij})_{1\leqslant i,j\leqslant n} \leftrightsquigarrow (x_1,\ldots,x_n) \longmapsto (\prod_{j=1}^n x_j^{m_{1j}},\ldots,\prod_{j=1}^n x_j^{m_{nj}})$
 - * For instance the standard quadratic involution of

Cremona:
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \longleftrightarrow (x,y) \stackrel{\sigma}{\mapsto} (1/x,1/y).$$

$$(x,y) \stackrel{\sigma}{\mapsto} (1/x,1/y).$$

Examples

- $\operatorname{Aut}(\mathbb{P}^n) = \{ f \in \operatorname{Bir}(\mathbb{P}^n) \mid \deg(f) = 1 \} \simeq \operatorname{PGL}_{n+1}(k).$
- $GL_n(\mathbb{Z})$: subgroup of monomial transformations. $(m_{ij})_{1 \leq i,j \leq n} \iff (x_1,\ldots,x_n) \mapsto (\prod_{i=1}^n x_i^{m_{1j}},\ldots,\prod_{i=1}^n x_i^{m_{nj}})$
 - * For instance the standard quadratic involution of



- L. Cremona introduced $Bir(\mathbb{P}^2_{\mathbb{C}})$ in 1863-1865.
- Examples of field related to this group:
 - * Algebraic geometry,
 - * Complex, real, ... geometry
 - * Dynamic,
 - * Topology,
 - * Geometric group theory...

Context: $Bir(\mathbb{P}^2_k)$, a lot of results

• Generators:

Theorem ($\simeq 1900$; Noether-Castelnuovo)

Let $k = \bar{k}$. Bir(\mathbb{P}^2) =< Aut(\mathbb{P}^2), $\sigma >$.

Context: $Bir(\mathbb{P}^2_k)$, a lot of results

Generators:

Theorem (
$$\simeq$$
 1900; Noether-Castelnuovo)

Let $k = \bar{k}$. Bir(\mathbb{P}^2) =< Aut(\mathbb{P}^2), $\sigma >$.

• Key tool to study Bir(\mathbb{P}^2_{ν}):

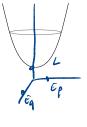
$$\operatorname{Bir}(\mathbb{P}^2) \curvearrowright \mathbb{H}^{\infty} \qquad \operatorname{analoguous} \qquad \mathbb{H}^2 = \{(x,y,z) \in \mathbb{R}^3 | x^2 - y^2 - z^2 = 1 \text{ and } x > 0\}$$

$$\mathbb{H}^{\infty} = \{c \in \mathcal{Z} \mid c \cdot c = 1 \text{ and } c \cdot \ell > 0\} \subset \mathbb{R}^{\infty}$$

$$\operatorname{where} \mathcal{Z} \text{ is } \lim_{S \to \mathbb{P}^2} \operatorname{NS}(S) \subset \mathbb{R}^{\infty}$$

$$\mathbb{S}^{\infty} = \{(x,y,z) \in \mathbb{R}^3 | x^2 - y^2 - z^2 = 1 \text{ and } x > 0\}$$

$$\mathbb{R}^{\infty} = \{(x,y,z) \in \mathbb{R}^3 | x^2 - y^2 - z^2 = 1 \text{ and } x > 0\}$$



Context: $Bir(\mathbb{P}^2_k)$, a lot of results

Generators:

Theorem (
$$\simeq$$
 1900; Noether-Castelnuovo)

Let $k = \bar{k}$. Bir(\mathbb{P}^2) =< Aut(\mathbb{P}^2), $\sigma >$.

• Key tool to study $Bir(\mathbb{P}^2_k)$:

$$\mathsf{Bir}(\mathbb{P}^2) \curvearrowright \mathbb{H}^\infty \qquad \stackrel{\mathsf{analoguous}}{\longleftrightarrow}$$

$$\begin{split} \mathbb{H}^{\infty} &= \{c \in \mathcal{Z} \mid c \cdot c = 1 \text{ and } c \cdot \ell > 0\} \\ \text{where } \mathcal{Z} \text{ is } & \varinjlim_{S \to \mathbb{P}^2} \text{NS}(S). \end{split}$$

 $\mathbb{H}^2 = \{(x,y,z) \in \mathbb{R}^3 | x^2 - y^2 - z^2 = 1 \text{ and } x > 0\}$

Theorem $(k = \bar{k} \text{ Cantat-Lamy ('13)}; k \text{ finite+...}$ Shepherd-Barron ('21); k, L. ('16))

The Cremona group $Bir(\mathbb{P}^2)$ is not simple.

Context: in higher rank, more complicated !

• Generators: No (non-trivial) system of generators known.

Theorem ('99; Pan)

For $n\geqslant 3$, $\mathrm{Bir}(\mathbb{P}^n_{\mathbb{C}})$ can not be generated by elements of bounded degree.

• No (interesting) action known on geometric space.

Theorem ('20; Blanc-Lamy-Zimmermann)

For $n \geqslant 3$, the Cremona group $\mathrm{Bir}(\mathbb{P}^n_{\mathbb{C}})$ is not simple.

Context

Result

Theorem ('20, L.-Urech)

For all $n \ge 1$ and for any field k, we constructed a CAT(0) cube complex on which $Bir(\mathbb{P}^n_k)$ acts non trivially.

→ for any group of birational transformations and for its subgroups of pseudo-automorphisms.

CAT(0) cube complexes

Definitions

- A <u>cube complex</u> is a union of unit euclidean cubes glued together along faces.
 Its <u>dimension</u> is the maximal dimension of its cubes, if it is finite.
- Remark: Two distances:
 - * the one induced by the Euclidean metric.
 - * the one in the 1-skeleton.

CAT(0) cube complexes

Definitions

- A <u>cube complex</u> is a union of unit euclidean cubes glued together along faces.
- Remark: Two distances:
 - * the one induced by the Euclidean metric.
 - * the one in the 1-skeleton.
- A cube complex C is CAT(0) if:
 - * it is simply connected,
 - * the links of its vertices are flag: $\forall s$ vertices of C, $\forall \{s_1, \ldots, s_n\}$ vertices of C adjacent to s and pairwise in a square, $\{s, s_1, \ldots, s_n\}$ belong to a cube.
- Example:

CAT(0) cube complexes

Tools

- <u>Tool 1:</u> If *G* acts on an oriented CAT(0) cube complex with a bounded orbit, it fixes a vertex.
- <u>Tool 2:</u>

Theorem (Haglund)

Let G act on an oriented CAT(0) cube complex. For any $g \in G$

- * either g fixes a vertex (elliptic).
- or g preserves a combinatorial geodesic and acts by translation on it.

Isomorphisms in codimension ℓ .

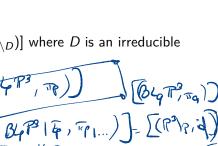
- Let X, Y variety. A birational transformation $f: X \dashrightarrow Y$ is an **isomorphism in codimension** ℓ if $\mathsf{Exc}(f)$ and $\mathsf{Exc}(f^{-1})$ have codimension $> \ell$.
 - \rightsquigarrow Psaut $^{\ell}(X)$ the group of automorphisms in codimension ℓ .
- Remark:
 - * $\mathsf{Psaut}^0(X) = \mathsf{Bir}(X)$.
 - * Psautⁿ(X) = Aut(X) where $n = \dim(X)$.
 - * $Psaut^1(X)$ group of pseudo-automorphisms.
- Example: If $D \subset X$ is a closed subvariety of codimension $\ell + 1$ then $\iota : X \setminus D \hookrightarrow X$ is an isomorphism in codimension ℓ .

Construction of $C^0(\mathbb{P}^n)$

- Vertices: $[(V,\varphi)]$
 - * V normal rational variety of dim n,
 - * $\varphi: V \dashrightarrow \mathbb{P}^n$ birational transformation,
 - * $(V,\varphi) \sim (V',\varphi')$ iff $\varphi'^{-1}\varphi$ is an isomorphism in
- Example:

codimension 1.

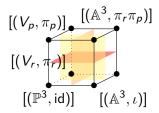
- Edges: $[(V, \varphi)]$ •—• $[(V \setminus D, \varphi \mid_{V \setminus D})]$ where D is an irreducible
- subvariety of codim 1.



mubes no mois

Construction of $C^0(\mathbb{P}^n)$

- <u>n-cubes:</u> $[(V_1, \varphi_1)], \ldots, [(V_{2^n}, \varphi_{2^n})]$, if there exists $1 \le r \le 2^n$ such that for all $1 \le i \le 2^n$:
 - * $D_1, \ldots, D_n \subset V_r$ irreducible, distinct of codim 1,
 - $* V_i = V_r \setminus \{D_{i_1} \cup \cdots \cup D_{i_j}\}$
 - * φ_i is the restriction of φ_r to V_i .
- Example:



Properties

- The complex is not locally finite.
- The complex is not of finite dimension.
- But it is oriented!
 Bir(X) acts on C⁰(X):
 - $f \bullet [(V, \varphi)] = [(V, f\varphi)].$

Theorem ('20; L.-Urech)

 $C^0(X)$ is a CAT(0) cube complex.

Consequence of the fact that any finite subset of vertices lies in a cube.

Geodesics

Results

Results of (pseudo)-regularisation

• A subgroup $G \subset Bir(X)$ is (pseudo-)regularisable if there exist a variety Y and $\varphi: Y \dashrightarrow \mathbb{P}^n$ such that

$$\varphi^{-1}G\varphi < (\mathsf{Ps})\operatorname{Aut}(Y).$$

Proposition ('20; L.-Urech)

Let G < Bir(X). G is pseudo-regularisable iff there exists $A \geqslant 0$ such that $\{Exc^1(g) \mid g \in G\} \leqslant A$.

Results

Results of (pseudo)-regularisation

- A group has the FW property if every action on a CAT(0) cube complex has a fixed point.

 GL2 (2) CB173
- Example: $SL(2,\mathbb{Z})$, $SL(2,\mathbb{Z}[\sqrt{3}])$...

Theorem ('20, L.-Urech; Cornulier)

Let $G \subset Bir(\mathbb{P}^n)$ which has the FW property, then G is regularisable. If moreover n=2, G is projectively regularisable.

- → Answer a question of Cantat-Cornulier ('19 pseudo-regularisable).
- → Reprove immediately their result.

Construction of $C^{\ell}(X)$ of P_{λ} and P_{λ} A $C^{\ell}(x)$

- Vertices: $[(V, \varphi)]$
 - * V normal variety of dim n,
 - * $\varphi: V \dashrightarrow X$ birational transformation,
 - * $(V, \varphi) \sim (V', \varphi')$ iff $\varphi'^{-1}\varphi$ is an isomorphism in codimension $\ell + 1$.
- Edges: $[(V, \varphi)]$ •—• $[(V \setminus D, \varphi \mid_{V \setminus D})]$ where D is an irreducible subvariety of codim $\ell + 1$.
- <u>n-cubes:</u> $[(V_1, \varphi_1)], \ldots, [(V_{2^n}, \varphi_{2^n})]$, if there exists $1 \le r \le 2^n$ such that for all $1 \le i \le 2^n$:
 - * $D_1, \ldots, D_n \subset V_r$ distinct, irreducible of codim $\ell + 1$,
 - $* V_i = V_r \setminus \{D_{i_1} \cup \cdots \cup D_{i_j}\}$
 - * φ_i is the restriction of φ_r to V_i .

Proof

Properties

- The complex is not locally finite.
- The complex is not of finite dimension.
- But it is oriented!
- Psaut $^{\ell}(X)$ acts on $\mathcal{C}^{\ell}(X)$:

$$f \bullet [(V, \varphi)] = [(V, f\varphi)].$$

Theorem ('20; L.-Urech)

 $\mathcal{C}^\ell(X)$ is a CAT(0) cube complex.

~ Consequence of the fact that any finite subset of vertices lies in a cube.

Proof GCBrP2 FW GAC°(P°) G fires a rectex

F, V, 8+ la: V, -- , Pm er 4.9 h < Brant (1) Now 4,168, 1 C'(V2) FW J42, 42 8V P2 4, 61, 92 2 Psant 2 (V2) L Prout (Vn)

Thanks!