
Quantum theta bases

Travis Mandel

Ψt (zv1 )

Ψt (zv2 )

Ψt (zv1+v2 )

•

Travis Mandel Quantum theta bases May 4, 2021 1 / 29



Introduction

Outline

I [Fock-Goncharov]: Cluster algebras should have canonical bases satisfying nice
positivity properties.

I Gross-Hacking-Keel-Kontsevich (GHKK):

Ideas from mirror symmetry
(the Gross-Siebert program)  

Canonical “theta bases” for
classical cluster algebras.

I Also expect canonical bases for quantum cluster algebras (Berenstein-Zelevinsky,
Fock-Goncharov).

I [Davison-M]: GHKK arguments + DT theory Quantum theta bases.
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Cluster varieties

Cluster algebras

Cluster algebras — certain combinatorially constructed commutative rings.
Fomin-Zelevinsky (2002) — to create an algebraic/combinatorial framework for
understanding Lusztig’s dual canonical bases and total positivity for semisimple
(quantum) groups.

Applications:
I Representation theory and quantum groups;
I (Higher) Teichmüller theory and Poisson geometry;
I DT–theory and quiver representations;
I Mirror symmetry;
I ...

Examples:
I Semisimple Lie groups;
I Grassmannians, other partial flag varieties, and Schubert varieties;
I Higher Teichmüller spaces;
I All log Calabi-Yau surfaces;
I ...
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Cluster varieties

Cluster varieties

I Fock-Goncharov:
Cluster varieties constructed by gluing together algebraic tori, called clusters,
via certain birational maps called mutations.

F

F̃

Ẽ

E

{{ ##

•

•

•

//mutation
x 7→ x , y 7→ y(1 + x)

I Gross-Hacking-Keel: Interpret mutations as a blow-up followed by a blow-down.

I Upper cluster algebra — ring of global regular functions on the cluster variety.

I Cluster algebra — subring generated by the “cluster monomials,” i.e., elements
which are monomials in some cluster.
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Defining quantum cluster algebras

Seeds

A (skew-symmetric) seed is the data S = (N, I,E ,B), where

I N is a finite-rank lattice;

I E = {ei |i ∈ I} is part of a basis for N, indexed by I;

I B(·, ·) is a Z-valued skew-symmetric form on N.

The dual lattice: Denote M = Hom(N,Z).

I Let 〈·, ·〉 : N ⊕M → Z denote the dual pairing.

I Let vi := B(ei , ·) ∈ M.

I Let M⊕ denote the positive span of the vi ’s.

I To quantize, need a Z-valued skew-symmetric form Λ on M such that

Λ(·, vi ) = ei for all i ∈ I.
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Defining quantum cluster algebras

Quantum tori

Define the classical torus algebra (coordinate ring on N ⊗ C∗):

AS := C[M] := C[zu|u ∈ M]/〈zuzv = zu+v 〉.

Use Λ to define the quantum torus algebra

AS
t : CΛ

t [M] := C[t±1][zu|u ∈ M]/〈zuzv = tΛ(u,v)zu+v 〉.
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Defining quantum cluster algebras

Seed mutation

Given S and j ∈ I, define a new seed µj (S) by replacing each ei with

e′i := µj (ei ) :=

{
ei + max(0,B(ei , ej ))ej if i 6= j
−ej if i = j .

while keeping the rest of the seed data the same.

Classical cluster mutation:

µAj : AS 99K Aµj (S), zm 7→ zm(1 + zvj )〈ej ,m〉.

The cluster variety A is constructed by gluing algebraic tori via all possible sequences
of mutations as above.
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Defining quantum cluster algebras

Quantum binomial coefficients

I For k ∈ Z≥0, define

[k ]t :=
tk − t−k

t − t−1 = t−k+1 + t−k+3 + . . .+ tk−3 + tk−1 ∈ C[t±1].

Note limt→1[k ]t = k .

I Define
[k ]t ! := [k ]t [k − 1]t · · · [2]t [1]t .

I For r , k ∈ Z≥0, r ≥ k , define (
r
k

)
t

:=
[r ]t !

[k ]t ![r − k ]t !
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Defining quantum cluster algebras

Quantum cluster mutation

Recall AS
t := CΛ

t [M], and recall

µAj : zm 7→ zm(1 + zvj )〈ej ,m〉.

For quantum mutation µAt
j : AS

t 99K A
µj (S)

t , say that for 〈ej ,m〉 ≥ 0, we have

µAt
j : zm 7→

〈ej ,m〉∑
k=0

(
〈ej ,m〉

k

)
t

zm+kvj .

[Berenstein-Zelevinsky]

Typically defined in terms of conjugation by a quantum dilogarithm:
µAt

j (zn) := Ψt (zvj )znΨt (zvj )−1 where

− Li(−x ; t) : =
∞∑

k=1

(−1)k−1

k [k ]t
xk ,

Ψt (zvj ) : = exp(− Li(−zvj ; t)).
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Defining quantum cluster algebras

Quantum cluster varieties

I Given ~ = (j1, . . . , jk ) ∈ Ik , let

µ~ = µjk ◦ · · · ◦ µj1 .

Denote S~ := µ~(S).

I Similarly define µAt
~ .

I Define

Aup
t :=

{
f ∈ AS

t

∣∣∣ µAt
~ (f ) ∈ AS~

t for all tuples ~ of indices in I
}
.
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Fock-Goncharov atomic bases conjectures

Positivity

Let f ∈ Aup
t \ {0}.

I f is universally positive if each µAt
~ (f ) has positive integer coefficients.

I f is atomic if it is universally positive, but is not a sum of two other universally
positive elements.

I A basis is strongly positive if the structure constants are non-negative.
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Fock-Goncharov atomic bases conjectures

The Fock-Goncharov conjecture

Conjecture (Fock-Goncharov)

The atomic elements are indexed by M and form a basis for Aup
t which includes all the

quantum cluster monomials.

Note: atomic =⇒ strong positivity =⇒ universal positivity.

This conjecture is not quite right:

I Lee-Li-Zelevinsky: The atomic elements may be linearly dependent.

I Gross-Hacking-Keel: X up is often just C and so cannot have a basis indexed by N.
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Fock-Goncharov atomic bases conjectures

Modified Fock-Goncharov conjectures

Corrections to the Fock-Goncharov conjecture:

I Need more charts when defining universal positivity, not just the clusters.

1 + x−3

1 + y3

σbad

I Sometimes need to work with a formal completion:

Ât := CΛ
t [M]⊗CΛ

t [M⊕] C
Λ
t JM⊕K.

Then the basis should only be a “topological basis.”
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Fock-Goncharov atomic bases conjectures

Theorem: Quantum theta bases

Theorem (Davison-M)

Subject to the above modifications, the quantum Fock-Goncharov conjectures are true.

I In the classical limit, we recover [Gross-Hacking-Keel-Kontsevich].

I The “full Fock-Goncharov conjecture” holds in nice situations.

Travis Mandel Quantum theta bases May 4, 2021 14 / 29
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Motivation for the classical theta function construction

SYZ Mirror Symmetry

The geometric intuition behind [GHKK] comes from SYZ mirror symmetry.

Travis Mandel Quantum theta bases May 4, 2021 15 / 29



Motivation for the classical theta function construction

Local coordinates from cylinders

B

X

yj =
∫

Γj
(ωX )

Γj

γj

I Mirror Y locally looks like TB/TZB.

I Local algebraic coordinates on Y : zj := exp[2πi(dyj + iyj )].
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Motivation for the classical theta function construction

Global coordinates from holomorphic disks

B

X

Γ

p Q

ϑp,Q :=
∑

Γ

exp(2πi(dyΓ + iyΓ))
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Motivation for the classical theta function construction

More complicated holomorphic disks

B

X

Singular SYZ fibers result in more complicated disks.

Travis Mandel Quantum theta bases May 4, 2021 18 / 29



Motivation for the classical theta function construction

Wall-crossing

B

X

 

I This leads to “wall-crossing,” or non-trivial transition maps between different local
coordinate systems.

I E.g., (C∗)2 99K (C∗)2, x−1 7→ x−1(1 + y).
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Motivation for the classical theta function construction

Scattering

Initial walls can interact to form new walls.
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Motivation for the classical theta function construction

Scattering diagrams

The data of these walls is encoded in a “scattering diagram.”

1 + y

1 + x−1

1 + x−1y

Walls labelled with functions indicating the corresponding transition functions.
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Motivation for the classical theta function construction

Broken lines

Broken lines are essentially tropical versions of the holomorphic disks used to
construct the theta functions.

p

1 + y

1 + x−1

1 + x−1y

•

x

xy

y

Q
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Construction of quantum theta functions

Scattering diagrams

I A scattering diagram D is a collection of codimension one walls d in MR with
attached elements fd = 1 +

∑∞
k=1 ck zkvd ∈ CΛ

t JM⊕K, where d ⊂ vΛ⊥
d .

I Path γ ⊂ MR  path-ordered product θγ,D : CΛ
t JM⊕K ∼−→ CΛ

t JM⊕K:
I Whenever γ crosses a wall, conjugate by the function fd attached to the wall (or its

inverse).
I D is called consistent if θγ,D only depends on the endpoints of γ.
I (d, fd) called incoming if vd ∈ d.

I Let
DAin := {(e⊥i ,Ψt (zvi ))|i ∈ I}.

I This uniquely determines a consistent scattering diagram DA = Scat(DAin ) with
DAin as the only incoming walls.

Ψt (zv1 )

Ψt (zv2 )

Ψt (zv1+v2 )

1 + x−3

1 + y3

σbad
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Construction of quantum theta functions

Broken lines

Broken line with ends (p,Q), p ∈ M, Q generic in MR — a piecewise-straight path
γ : (−∞, 0]→ MR, bending only at walls, with a monomial aizpi ∈ Ct [M] attached to
each straight segment, such that:

I The first attached
monomial is zp,

I γ(0) = Q,

I pi = −γ′i
I ai+1zpi+1 is a term in
θdi (aizpi ).

Ψt (zv1 )

Ψt (zv2 )

Ψt (zv1+v2 )

•

z(1,0)

z(1,1)

z(0,1)

Q
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Construction of quantum theta functions

Theta functions

For p ∈ M, Q ∈ MR, define

ϑp,Q :=
∑

Ends(γ)=(p,Q)

aγzmγ ,

aγzmγ := monomial attached to the last straight segment of γ.

Lemma (Carl-Pumperla-Siebert, M)

For consistent scattering diagrams, different choices of Q are related by path-ordered
product. Interpret this as saying that we actually have a single global function ϑp for
each p, and then the ϑp,Q’s are expansions in different local cooridnate systems.
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Construction of quantum theta functions

Positivity of the scattering diagram

Theorem (Davison-M)

Up to equivalence, every scattering function of DA has the form E(−p(t)zv ) for some
p(t) ∈ Z≥0[t±1].

I Here, E is the “plethystic exponential,” an algebraization of the graded symmetric
product.

I E(−zv ) = Ψt (zv ).

I Generally, E(−p(t)zv ) factors as a product of Ψtk (tazkv ) for k ∈ Z≥1, a ∈ Z.

Theorem =⇒ Positivity of broken lines

=⇒ Universal and strong positivity and atomicity.
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Construction of quantum theta functions

Quiver representations and stability conditions

I Let Q be a quiver without oriented 2-cycles.

I Q  a seed with N = ZQ0 , I = Q0, E = {ei |i ∈ I}, B = adjacency matrix for Q.

I Q  a category rep(Q) of representations of Q:
I V ∈ rep(Q): vector spaces Vi for each i ∈ Q0 morphisms Vi → Vj for each arrow i → j .
I Let n =

∑
i∈I ai ei ∈ N⊕. Say dim(V ) = n if dim(Vi ) = ai for each i ∈ I.

I Representations V with dim(V ) = n form a smooth algebraic stack:

Mn(Q) :=
∏

a∈Q1

Hom(Cnt(a) ,Cns(a) )/
∏

i∈Q0

GLni

I ζ ∈ MR  stability conditions for rep(Q): Say V is ζ-semistable if:
I 〈dim(V ), ζ〉 = 0, and
I 〈dim(U), ζ〉 ≤ 0 for all subresentations U of V .
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Construction of quantum theta functions

Stability scattering diagrams

I Let Mζ -sst
n be the moduli stack of ζ-semistable V ∈ rep(Q) with dim(V ) = n ∈ N.

I There is a consistent DStab with scattering function f at generic ζ ∈ MR given by:

f−1 = χ
(

Hc(Mζ -sst(Q),Q)∗vir

)
. [Bridgeland]

Here, If V is an (M⊕ ⊕ Z)-graded vector space, define

χ(V ) :=
∑
m,r

dim(Vm,r )t r zm ∈ Z[t±1][M⊕].

I DStab = DA iff Q \ {vertex-loops} is acyclic (otherwise need a potential function).

I Davison-Meinhardt integrality theorem =⇒ χ
(
Hc(Mζ -sst(Q),Q)∗vir

)
has the

desired form E(p(t)zv ).

I For non-acyclic cases, use techniques from [GHKK] to reduce to acyclic cases
(allowing vertex loops).
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Construction of quantum theta functions

Application in preparation (joint with F. Qin)

I Quantum skein algebras on marked surfaces have a quantum cluster algebra
structure [Muller];

= t +t−1

I [D. Thurston]: these have canonical “quantum bracelet bases,” conjecturally
strongly positive;

I Theorem [M-Qin]: Quantum bracelet bases are quantum theta bases.
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