Tropical curves The dual plane Bitangents Real bitangents Arithmetic

Counting bitangents of plane quartics tropical, real and arithmetic

Hannah Markwig joint work (in progress) with Angie Cueto, Sam Payne, Kristin Shaw

Eberhard Karls Universität Tübingen

May 2021

Tropicalized plane curves

Field: $K = k\{\{t\}\}$, i.e., Puiseux series over a field k with characteristic not 2. The tropicalization map

 $(x, y) \mapsto (-\operatorname{val}(x), -\operatorname{val}(y)).$

The plane quartic V(f) for

$$\begin{split} f(x,y) &= t^{36}x^4 + t^{18}x^3y + t^2x^2y^2 + t^{18}xy^3 + t^{36}y^4 + t^{23}x^3 \\ &+ t^6x^2y + t^6xy^2 + t^{23}y^3 + t^{12}x^2 + xy + t^{12}y^2 + t^2x \\ &+ t^2y + 1. \end{split}$$

Tropical curves The dual plane Bitangents Real bitangents Arithmetic

●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

Tropical curves

The dual plane Bitangents Real bitangents Arithmetic

Tropicalization of a plane quartic

The tropicalization of V(f):

The tropical dual \mathbb{R}^2

However, for better drawing of bitangents, we use $(\mathbb{R}^2)^{\vee} \to \mathbb{R}^2$: line centered at $(x, y) \mapsto (x, y)$.

< 🗗 >

< ≣⇒

< ≞→ ≣

Bitangents to quartics

- A plane quartic has 28 bitangents (Plücker, 1834).
- A tropical plane quartic may have infinitely many bitangents.
- We identify: $L_1 \sim L_2$ if we can continuously move L_1 to L_2 while maintaining bitangency.

Bitangents

Tropical curves

The dual plane

Bitangents

Real bitangents

Example

Bitangents

Tropical curves

The dual plane

Bitangents

Real bitangents

Tropical curves The dual plane Bitangents Real bitangents Arithmetic

Example

Example

Tropical curves The dual plane

Bitangents

Real bitangents

Arithmetic

For $q \in \mathbb{C}\{\{t\}\}[x, y]$ a (generic) quartic polynomial with $\operatorname{Trop}(V(q)) = C$, exactly 2 of the 28 bitangent lines to V(q)tropicalize to the tropical line with vertex the upper red point, exactly 2 to the one with vertex the lower red point, and none to a point in the interior of the red segment.

Bitangents to quartics

- A plane quartic has 28 bitangents (Plücker, 1834).
- A tropical plane quartic may have infinitely many bitangents.
- We identify: L₁ ~ L₂ if we can continuously move L₁ to L₂ while maintaining bitangency.
- Then: A tropical quartic in \mathbb{R}^2 has 7 bitangent classes (Baker, Len, Morrison, Pflueger, Ren, 2014).
- If the skeleton of the tropical quartic is a K_4 , then each bitangent class has 4 lifts (Chan, Jiradilok, 2015).
- For any generic *smooth* tropical quartic in ℝ², each bitangent class has 4 lifts (Len, M, 2017).

Tropical curves The dual plane Bitangents Real bitangents Arithmetic

< ● 国 > ● 国 → ● 国

Real bitangents

• A real plane quartic can have 4, 8, 16 or 28 real bitangents (depending on the ovals).

Theorem (Cueto-M, 2020)

A tropical bitangent class of a generic smooth tropical quartic in \mathbb{R}^2 has either 0 or 4 real lifts.

Techniques of proof: Combinatorial classification and local lifting computations.

< @ > < 注 > < 注 > Tropical curves

The dual plane

Bitangents

Real bitangents

Combinatorics: Example

Bitangents

Tropical curves

The dual plane

Bitangents

Real bitangents

Arithmetic

Combinatorial Classification

40 shapes for bitangent classes, up to symmetry.

The black cells of each bitangent class miss the curve, whereas $rac{}_{\circ}$, the red ones lie on it. The unfilled vertices indicate points that $rac{}_{\circ}$, must be vertices.

Tropical curves

The dual plane

Bitangents

Real bitangents

Relevant parts of the dual subdivision

Bitangents

Tropical curves

The dual plane

Bitangents

Real bitangents

Lifting conditions

	al c		

Shape	Lifting conditions
(A)	$(-1)^{i}(s_{1v}s_{1,v+1})^{i}s_{0i}s_{22} > 0$ and $(-1)^{j}(s_{u1}s_{u+1,1})^{j}s_{j0}s_{22} > 0$
(B)	$(-1)^{i+1}(s_{1v}s_{1,v+1})^{i+1}s_{0i}s_{21} > 0$ and
	$(-1)^{j+1} s_{21}^{j+1} s_{31}^{j} s_{1v} s_{1,v+1} s_{j0} > 0$
(C)	If $j = 2$: $(-1)^{i} s_{11}^{i} s_{0i} s_{20} > 0$ and $(-1)^{k} s_{21}^{k} s_{k,4-k} s_{20} > 0$
	If $j = 1, 3$: $(-1)^{i+1} s_{11}^{i+1} s_{21} s_{0i} s_{j0} > 0$ and
	$(-1)^k s_{21}^{k+1} s_{11} s_{k,4-k} s_{j0} > 0$
(D),(L)	$(-1)^i (s_{10}s_{11})^i s_{0i} s_{22} > 0$
(E), (F), (J)	$(-1)^{i}(s_{1v}s_{1,v+1})^{i}s_{0i}s_{20} > 0$
(G)	$(-1)^i (s_{10}s_{11})^i s_{0i} s_{p,4-p} > 0$
(H)	$(-1)^{i+1}(s_{1v}s_{1,v+1})^{i+1}s_{0i}s_{21} > 0 \text{ and } -s_{1v}s_{1,v+1}s_{21}s_{40} > 0$
(I),(K)	$(-1)^{i}(s_{10}s_{11})^{i}s_{0i}s_{p,4-p} > 0$
(M)	$(-1)^{i+1}(s_{1v}s_{1,v+1})^{i+1}s_{0i}s_{21} > 0$ and $s_{1v}s_{1,v+1}s_{30}s_{31} > 0$
(N)	$-s_{01} s_{10} s_{11} s_{p,4-p} > 0$
(O),(P)	$-s_{01}s_{10}s_{11}s_{22} > 0$
(Q),(R),(S)	$s_{00} \ s_{22} > 0$
(T),(U),(V)	$s_{00} s_{p,4-p} > 0$
rest	no conditions

Bitangent classes and their real-lifting sign conditions.

The dual plane Bitangents

Real bitangents

Arithmetic

Example for Lifting

Bitangents

Tropical curves

The dual plane

Bitangents

Real bitangents

Negative signs	Lifting tropical bitangents	Total $\#$ of real lifts	Topology	
—	1, 3	8	2 non-nested ovals	
^s 31	1, 2, 3, 7	16	3 ovals	
s13, s31, s22	3	4	1 oval 🚽 🗖	
s13, s31	$1, \ldots, 7$	28	4 ovals 🛛 🚽 🗇	
			< ≣	
			< Ξ	
			3	

Corollaries

Tropical curves

The dual plane

Bitangents

Real bitangents

Arithmetic

Corollary

A tropical bitangent class is a tropical convex set.

Corollary

Any real lift of a tropical bitangent to a generic smooth quartic is totally real, i.e. the points of tangency are also real.

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

Questions

- What are the tropicalizations of real quartics which have real, but not totally real, bitangents?
- How can we show that altogether, there are 4, 8, 16 or 28 real lifts? (Geiger-Panizzut)
- What about bitangents of tropical quartics which are not in \mathbb{R}^2 , but in a different model of the tropical plane?

Bitangents

Tropical curves

The dual plane

Bitangents

Real bitangents

Tropical curves

The dual plane

Bitangents

Real bitangents

Arithmetic

Avoidance loci

Theorem (Kummer, Vinnikov,...)

Every connected component of the avoidance locus of a smooth real quartic contains precisely 4 bitangents in its closure.

Theorem (Payne-Shaw-M (in progress))

A tropical bitangent class which is liftable to the reals is (roughly) the tropicalization of a connected component of the avoidance locus.

Further perspective: arithmetic counts

Definition

Let k be a field. The Grothendieck-Witt ring GW(k) contains all formal sums of isomorphism classes of quadratic forms $V \times V \to k$ over k.

Example

For
$$k = \mathbb{C}$$
,

since

$$\begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

 $\begin{vmatrix} 1 & 0 \end{vmatrix} \sim \begin{vmatrix} 1 & 0 \end{vmatrix}$

but not for $k = \mathbb{R}$.

Bitangents

Tropical curves The dual plane

Bitangents

Real bitangents

Arithmetic counts

Associates an element in $\mathrm{GW}(k)$ to a geometric object to be counted.

- There exist arithmetic counts of
 - ... lines in cubic surfaces (Kass-Wickelgren),
 - ... plane curves satisfying point conditions (Levine),
 - ... bitangents of a quartic (Larson-Vogt).

Insert

- $k = \mathbb{C} \rightsquigarrow \dim \equiv$ "number"
- $k = \mathbb{R} \rightsquigarrow$ other meaningful real invariants (e.g. Welschinger invariants)

Tropical geometry plays intermediary role, e.g. quantum counts of plane curves. Bitangents

Tropical curves The dual plane

Bitangents

Real bitangents

Bitangent to quartics

Theorem (Payne-Shaw-M (in progress))

For any field of characteristic $\neq 2$, a tropical bitangent class to a smooth tropicalized quartic has either 0 or 4 lifts. We give all lifting conditions.

Conjecture (Payne-Shaw-M (in progress))

The element in GW(k) that belongs to the 4 bitangents in an equivalence class can be determined with tropical methods and is a Laurent monomial in the coefficients of the quartic.

Bitangents

Tropical curves

The dual plane

Bitangents

Real bitangents

Arithmetic

<日 <日 <日>

bitangent			Bitangents
(II)a	$\langle -2 \rangle \ , \langle 2 \rangle \ , \langle 2s_{12}s_{00}s_{13}a_{13}s_{11}a_{11} \rangle \ , \ \langle -" \rangle$		
(II)b	$\langle 1 angle$, $\langle -1 angle$, $\langle 2 angle$, $\langle -2 angle$		
(II)c	$\langle -1 angle$, $\langle 1 angle$, $\langle 1 angle$, $\langle 1 angle$		
(A)a	$ \begin{array}{c} \langle a_{1k}^{k+1} a_{1l}^{l+1} a_{1k+1}^{k} a_{1l+1}^{l+1} (s_{12}), \langle -^{n} \rangle, \langle ^{n} \rangle, \langle -^{n} \rangle \\ \langle 2a_{1k}^{k} a_{1k+1}^{k+1} a_{3-m}^{3-m-1} a_{3-m-1}^{3-m-1} s_{1} s_{2}^{2} \rangle, \langle -^{n} \rangle, \langle ^{n} \rangle, \langle -^{n} \rangle \end{array} $		Tropical curves
(A)b	$ \langle 2a_{1k}^{k}a_{1k+1}^{k+1}a_{m3-m}^{3-m}a_{m+13-m-1}^{3-m-1}s_{1}s_{2}^{2}\rangle \ , \langle -"\rangle \ , \ \langle "\rangle \ , \ \langle -"\rangle $		
(D)a	$\langle s_{12}2 a_{10} a_{22}s_{1} angle$, $\langle -" angle$, $\langle a_{22}a_{10}s_{1} angle$, $\langle -" angle$		The dual plane
(D)b	$\langle 2s_1^2 angle \; , \langle -" angle \; , \; \langle 2s_1^2 angle \; , \; \langle -" angle$		
(D)c	$\langle a_{31}a_{12}s_1\rangle$, (-") , $\langle 2a_{02}a_{21} a_{31}a_{11} s_1\rangle$, (-")		Bitangents
(E)a	$ \langle (-1)^k a_{21} a_{1k}^k a_{1k+1}^{k+1} s_1 \rangle \ , \langle - " \rangle \ , \ \langle (-1)^k a_{20} a_{31} a_{30} a_{1k}^k a_{1k+1}^{k+1} s_1 \rangle \ , \ \langle - " \rangle $		Real bitangents
(E)b	$\langle (-1)^k a_{22} a_{1k}^{k+1} a_{1k+1}^k s_1 \rangle , \langle -" \rangle , \langle " \rangle , \langle -" \rangle$		
(E)c	$ \begin{array}{c} \langle (-1)^k a_{22} a_{1k}^{k+1} a_{1k+1}^k s_1 \rangle \ , \langle -" \rangle \ , \langle " \rangle \ , \langle -" \rangle \\ \langle (-1)^{2-k} 2s_1^2 a_{10} a_{k3-k}^{2-k} a_{k+13-k-1}^{3-k} \rangle \ , \langle -" \rangle \ , \langle " \rangle \ , \langle -" \rangle \end{array} $		Arithmetic
(F)a	$\langle (-1)^k a_{21} a_{1k}^k a_{1k+1}^{k+1} s_1 \rangle \ , \langle -" \rangle \ , \ \langle (-1)^k a_{20} a_{1k}^{k+1} a_{1k+1}^k s_1 \rangle \ , \ \langle -" \rangle$		
(F)b	$\langle (-1)^k a_{22} a_{1k}^{k+1} a_{1k+1}^k s_1 angle$, $\langle -" angle$, $\langle 2" angle$, $\langle -2" angle$		
(F)c	$\langle (-1)^{2-k} 2s_1^2 a_{10} a_{k3-k}^{2-k} a_{k+13-k-1}^{3-k} \rangle$, $\langle -" \rangle$, $\langle 2" \rangle$, $\langle -2" \rangle$		
(G)a I	$\langle 2s_{12}a_{22} a_{11} s_1 angle\;,\langle -" angle\;,\;\langle 2s_{21}a_{11} a_{22} s_1 angle\;,\;\langle -" angle$		
(G)a II	$\langle 2s_{11}s_{03}s_1\rangle$, $\langle -"\rangle$, $\langle 2s_{04}s_{12}s_1\rangle$, $\langle -"\rangle$		
(G)a III	$\langle 2s_{11}s_{21}s_1 \rangle$, $\langle -" \rangle$, $\langle 2s_{40}s_{30}s_1 \rangle$, $\langle -" \rangle$		
(G)b I	$\langle 2s_{02}s_{21}s_1\rangle$, (-"), $\langle 2a_{02}s_{21} a_{11} s_1\rangle$, (-")		
(G)b II	$ \langle 2s_{04}a_{21} a_{13} s_{1}\rangle \ , \langle -"\rangle \ , \ \langle 2a_{04}s_{21} a_{12} s_{1}\rangle \ , \ \langle -"\rangle $		
(G)b III	$\langle 2s_{00}a_{21} a_{11} s_{1}\rangle$, $\langle -"\rangle$, $\langle 2a_{00}s_{21} a_{10} s_{1}\rangle$, $\langle -"\rangle$		
(G)c	$\langle s_1^2 \rangle$, $\langle s_1^2 \rangle$, $\langle -s_1^2 \rangle$, $\langle -s_1^2 \rangle$		
(H)a	$\langle a_{1k}^k a_{1k+1}^{\kappa+1} a_{21} s_1 s_2^2 \rangle$, $\langle -" \rangle$, $\langle " \rangle$, $\langle -" \rangle$		
(H)b	$ \begin{array}{c} \langle s_1^2 \rangle , \langle s_1^2 \rangle , \langle -s_1^2 \rangle , \langle -s_1^2 \rangle \\ \langle a_k^1 a_{1k+1}^{4} a_{21s_1s_2}^2 \rangle , \langle -" \rangle , \langle " \rangle , \langle -" \rangle \\ \langle a_{k3}^{-k-1} a_{3-k}^{-k} a_{k+13-k-1}^{-1} a_{11s_2s_1}^2 \rangle , \langle -" \rangle , \langle " \rangle , \langle -" \rangle \\ \end{array} $		
(N)a I	$\langle 2s_{12}a_{11}s_1 \rangle , \langle -" \rangle , \langle 2s_{21}a_{11}s_1 \rangle , \langle -" \rangle$		
(N)a II	$\langle 2s_{03}a_{04}s_1 \rangle$, $\langle -" \rangle$, $\langle 2s_{12}a_{04}s_1 \rangle$, $\langle -" \rangle$	57 ►	
(N)a III	$\langle 2s_{21}a_{40}s_1\rangle$, $\langle -"\rangle$, $\langle 2s_{30}a_{40}s_1\rangle$, $\langle -"\rangle$		
(N)b I	$\langle 2s_1^2 angle$, $\langle 2s_1^2 angle$, $\langle 2s_{12}a_{02}s_1 angle$, $\langle -" angle$	≣ → 1	
(N)b II	$\langle 2s_1^2 \rangle$, $\langle 2s_1^2 \rangle$, $\langle 2a_{21}a_{04} a_{31} s_1 \rangle$, $\langle -" \rangle$		
	····	R.C.	